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Abstract

Recent studies on AD/MCI diagnosis have shown that the tasks of identifying brain disease and 

predicting clinical scores are highly related to each other. Furthermore, it has been shown that 

feature selection with a manifold learning or a sparse model can handle the problems of high 

feature dimensionality and small sample size. However, the tasks of clinical score regression and 

clinical label classification were often conducted separately in the previous studies. Regarding the 

feature selection, to our best knowledge, most of the previous work considered a loss function 

defined as an element-wise difference between the target values and the predicted ones. In this 

paper, we consider the problems of joint regression and classification for AD/MCI diagnosis and 

propose a novel matrix-similarity based loss function that uses high-level information inherent in 

the target response matrix and imposes the information to be preserved in the predicted response 

matrix. The newly devised loss function is combined with a group lasso method for joint feature 

selection across tasks, i.e., predictions of clinical scores and a class label. In order to validate the 

effectiveness of the proposed method, we conducted experiments on the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) dataset, and showed that the newly devised loss function helped 

enhance the performances of both clinical score prediction and disease status identification, 

outperforming the state-of-the-art methods.
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1. Introduction

Alzheimer’s Disease (AD) is the most common form of dementia that often appears in the 

persons over 65 years old. Brookmeyer et al. showed that there are 26.6 million AD patients 
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worldwide and 1 out of 85 people will be affected by AD by 2050 [13, 1, 49]. Thus, for 

timely treatment that might be effective to slow the progression, it’s highly important for 

early diagnosis of AD and its early stage, Mild Cognitive Impairment (MCI). Studies have 

shown that AD may significantly affect both structures and functions of the brain [17, 18, 

47, 55]. Greicius et al. demonstrated that the disrupted connectivity between posterior 

cingulate and hippocampus led to the posterior cingulate hypometabolism [17]. Guo et al. 

reported that AD patients exhibited significant decrease of gray matter volume in the 

hippocampus, parahippocampal gyrus, and insula and superior temporal gyrus [18]. 

However, previous imaging studies for the diagnosis of AD employed either univariate 

methods or group-comparison methods, thus limiting their application to disease diagnosis 

on an individual level [7, 24, 25, 28, 34, 50, 56, 58].

For the last decades, neuroimaging has been successfully used to investigate the characters 

of neurodegenerative progression in the spectrum between cognitive normal and AD. 

Particularly, different modalities provide different kind of information for helping 

monitoring AD, e.g., structural brain atrophy by Magnetic Resonance Imaging (MRI) [10, 

11, 14, 29], metabolic alterations in the brain by Positron Emission Tomography (PET) [35, 

31], and pathological amyloid depositions through CerebroSpinal Fluid (CSF) [2, 14, 19, 

36]. It has been shown that the analysis of patterns in neuroimaging data for AD/MCI 

diagnosis can be efficiently handled by machine learning and pattern recognition methods. 

However, the previous studies mostly focused on developing classification models for 

predicting categorical class labels such as AD, MCI, and healthy Normal Control (NC). 

Recently, regression models have also been investigated to predict clinical scores such as 

Alzheimer’s Disease Assessment Scale-Cognitive subscale (ADAS-Cog) and Mini-Mental 

State Examination (MMSE) from individual MRI and/or PET scans [4, 16, 42, 46]. For 

example, Cheng et al. presented a novel semi-supervised multi-modal relevance vector 

regression method for predicting clinical scores of neurological diseases [4]; Duchesne et al. 

employed linear regression models to estimate one-year MMSE changes from structural 

MRI [12]; Fan et al. and Wang et al. designed, independently, high-dimensional kernel-

based regression methods to estimate ADAS-Cog and MMSE [48].

Unlike those previous studies that focused on only one of the tasks [22, 27, 44], there have 

been also efforts to tackle both tasks simultaneously in a unified framework. For example, 

Zhang and Shen proposed a method of joint feature selection for both disease diagnosis and 

clinical scores prediction, and showed that the features used for these tasks were highly 

correlated [55]. For better understanding of the underlying mechanism of AD, our interest in 

this paper is to predict both clinical scores and disease status jointly, and here we call it as a 

Joint Regression and Classification (JRC) problem.

For a robust model construction, it has been a long issue in the field of medical image 

analysis to filter out uninformative features and to overcome the small sample size problem. 

Wang et al. showed that only a few brain areas (such as medial temporal lobe structures, 

medial and lateral parietal, as well as prefrontal cortical areas) may predict memory scores 

and thus can be used to discriminate AD from NC [47]. Regarding the small sample size 

problem, in the diagnosis of AD, the available sample size is usually small, while the feature 

dimensionality is high. For example, the sample size used in [22, 27] was as small as 103 
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(i.e., 51 AD and 52 NC), while the dimensionality of features (including MRI features and 

PET features) were hundreds or even thousands. The small sample size makes it difficult to 

build a generalised model, and the high-dimensional data could lead to the over-fitting issue 

[60] although the number of intrinsic features may be low [51].

In order to tackle these problems, feature selection has been commonly used in the literature. 

Zhang and Shen embedded an ℓ2,1-norm regularizer into a sparse learning model for multi-

task learning [55]. Recent studies on neuroimage-based AD/MCI diagnosis demonstrated 

that the consideration of the manifold of the data can further improve the performance of the 

feature selection model [59, 61]. Moreover, manifold learning techniques have been used in 

the feature selection models for either regression or classification [6, 9, 27, 26, 22]. Cho et 

al. adopted a manifold harmonic transformation method on the cortical thickness data [6]. 

Liu et al. conducted the manifold learning between a predicted graph and a target graph for 

AD classification [26], while Jie et al. proposed a manifold regularized multi-task learning 

framework to jointly select features from multi-modal data for AD diagnosis [22]. To our 

best knowledge, previous methods usually first conducted feature selection and then built 

regression or classification models for the diagnosis of AD. From a mathematical 

standpoint, the previous methods used a loss function defined as sum of the element-wise 

difference between target values and predicted ones, and considered only the manifold of 

feature observations, not the manifold of the target variables. Furthermore, none of the 

previous methods considered a manifold-based feature selection method for the JRC 

problem.

In this paper, we propose a novel loss function that considers a high-level information 

inherent in the observations, and combine it with a group lasso [53] for joint sparse feature 

selection in the JRC problem. The rationale for our approach is that, compared to the low-

level neuroimaging features, it is less likely for the high-level clinical label and clinical 

scores to be contaminated by noises [55]. For this reason, we build a more robust model by 

taking into account the relational information between high-level clinical label and clinical 

scores as well as the relation among samples in feature selection. This discriminates our 

method from the previous methods that considered only the relation among feature samples. 

Specifically, we define a loss function as a matrix similarity and impose the high-level 

information in the target response matrix to be preserved in the predicted response matrix. 

For the high-level information, we use the relations between response samples and the 

relations between response variables in a response matrix, each of which we call as ‘sample-

sample relation’ and ‘variable-variable relation’. Hereafter, each column and each row of a 

matrix denote, respectively, one sample and one response variable. In our work, a sample in 

a response matrix consists of clinical scores and a class label, and each of the clinical scores 

or a class label is considered as a response variable. By utilizing these high-level 

information inherent in the target response matrix and imposing them to be preserved in the 

predicted response matrix, we define a more sophisticated loss function, which affects 

feature selection, and thus enhances the performances of the regression and classification in 

AD/MCI diagnosis.
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2. Materials and Image Preprocessing

For performance evaluation, we use the ADNI dataset publicly available on the web. The 

ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute 

of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration 

(FDA), private pharmaceutical companies, and non-profit organizations. The main goal of 

ADNI was designed to test if the serial of MRI, PET, other biological markers, and clinical 

and neuropsychological assessment can be combined to measure the progression of MCI and 

early AD. To this end, ADNI recruited over 800 adults (aged 55 to 90) to participate in the 

research. More specifically, approximately 200 cognitively normal older individuals were 

followed for 3 years, 400 people with MCI were followed for 3 years, and 200 people with 

early AD were followed for 2 years1. The research protocol was approved by each local 

institutional review board and the written informed consent was obtained from each 

participant.

2.1. Subjects

The general inclusion/exclusion criteria of the subjects are briefly described as follows:

1. The MMSE score of each healthy subject (a.k.a., Normal Control (NC)) is between 

24 and 30. Their Clinical Dementia Rating (CDR) is of 0. Moreover, the healthy 

subject is non-depressed, non MCI, and non-demented.

2. The MMSE score of each MCI subject is between 24 and 30. Their CDR is of 0.5. 

Moreover, each MCI subject is an absence of significant level of impairment in 

other cognitive domains, essentially preserved activities of daily living, and an 

absence of dementia.

3. The MMSE score of each Mild AD subject is between 20 and 26, with the CDR of 

0.5 or 1.0.

In this paper, we use baseline MRI, PET, and CSF data obtained from 202 subjects 

including 51 AD subjects, 52 NC subjects, and 99 MCI subjects2. The detailed demographic 

information is summarized in Table 1.

2.2. MRI, PET, and CSF

We downloaded raw Digital Imaging and Communications in Medicine (DICOM) MRI 

scans from the public ADNI website. These MRI scans were already reviewed for quality, 

and automatically corrected for spatial distortion caused by gradient nonlinearity and B1 

field inhomogeneity. PET images were acquired 30–60 minutes post-injection. They were 

then averaged, spatially aligned, interpolated to a standard voxel size, intensity normalized, 

and smoothed to a common resolution of 8 mm full width at half maximum. CSF data were 

collected in the morning after an overnight fast using a 20- or 24-gauge spinal needle, frozen 

within 1 hour of collection, and transported on dry ice to the ADNI Biomarker Core 

1Please refer to ‘www.adni-info.org’ for up-to-date information.
2Including 43 MCI converters and 56 MCI non-converters.
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laboratory at the University of Pennsylvania Medical Center. In this study, CSF Aβ42, CSF 

t-tau, and CSF p-tau are used as features.

2.3. Image Analysis

The image processing for all MR and PET images was conducted following the same 

procedures in [55]. Specifically, we first performed anterior commissure-posterior 

commissure correction using MIPAV software3 on all images, and used the N3 algorithm 

[40] to correct the intensity inhomogeneity. Second, we extracted a brain on all structural 

MR images using a robust skull-stripping method, followed by manual edition and intensity 

inhomogeneity correction. After removal of cerebellum based on registration and intensity 

inhomogeneity correction by repeating N3 for three times, we used FAST algorithm in the 

FSL package [57] to segment the structural MR images into three different tissues: Gray 

Matter (GM), White Matter (WM), and CerebroSpinal Fluid (CSF). Next, we used 

HAMMER4 [37] (although other methods [21, 32, 39, 38, 52, 54] can be used) to conduct 

registration and obtained the Region-Of-Interest (ROI)-labeled image based on the Jacob 

template, which dissects a brain into 93 ROIs [23]. For each of all 93 ROI regions in the 

labeled image of one subject, we computed the GM tissue volumes in the ROI region by 

integrating the GM segmentation result of this subject. And, for each subject, we first 

aligned the PET image to its respective MR T1 image using affine registration and then 

computed the average intensity of each ROI in the PET image. Finally, for each subject, we 

obtained totally 93 features from MRI, 93 features from PET, and 3 features from CSF. In 

order for multi-modality fusion, we simply concatenated the features of modalities into a 

long feature vector.

3. Method

In this section, we describe our framework for joint regression and classification in AD/MCI 

diagnosis and propose a novel matrix similarity-based loss function and feature selection. 

Fig. 1 presents a schematic diagram of our method for predictions of clinical scores and a 

class label. Given MRI, PET, and CSF data, we first extract features from MRI and PET, 

while we use the CSF data itself as CSF features. We then construct a feature matrix X with 

a concatenation of multi-modal features at each column, and a corresponding response 

matrix Y with a concatenation of clinical scores (e.g., ADAS-Cog, MMSE) and a class label 

at each column. With our new loss function and a group lasso method, we select features 

that are jointly used to represent the clinical scores and the class label. By using the 

dimension-reduced data, we build clinical scores regression models and a clinical label 

identification model with Support Vector Regression (SVR) and Support Vector 

Classification (SVC), respectively.

3.1. Notations

In this paper, we denote matrices as boldface uppercase letters, vectors as boldface 

lowercase letters, and scalars as normal italic letters, respectively. For a matrix X = [xij], its 

3http://mipav.cit.nih.gov/clickwrap.php.
4Although there exist many recent methods for registration, HAMMER has already been validated on many datasets including the 
ADNI dataset and continuously improved for the last decade.
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i-th row and j-th column are denoted as xi and xj, respectively. Also, we denote the 

Frobenius norm and ℓ2,1-norm of a matrix X as  and 

, respectively. We further denote the transpose operator, 

the trace operator, and the inverse of a matrix X as XT, tr(X), and X−1, respectively.

3.2. Matrix-Similarity based Loss Function

Let X = [x1, …, xn] ∈ ℝd×n and Y = [y1, …, yn] ∈ ℝc×n, where n, d, and c denote the 

numbers of samples (or subjects)5, feature variables, and response variables, respectively. In 

our work, the response variables correspond to ADAS-Cog, MMSE, and a class label. We 

assume that the response variables can be predicted by a weighted linear combination of the 

features as follows:

(1)

where W ∈ ℝd×c is a regression matrix. By regarding the prediction of each response 

variable as a task and constraining the same features to be used across tasks, we can use a 

group lasso method [53] formulated as follows:

(2)

where f(W) is a loss function depending on W and λ is a sparsity control parameter. Note 

that each element in a column wk of W assigns a weight to each of the observed features in 

predicting the k-th response variable. The ℓ2,1-norm regularizer ||W||2,1 penalizes all 

coefficients in the same row of W together for joint selection or un-selection in predicting 

the response variables. Specifically, the ℓ2-norm regularizer enforces the selection of the 

same features across all tasks, and the ℓ1-norm imposes the feature sparseness in the linear 

combination. In our JRC problem, this ℓ2,1-norm selects the ROIs that are highly relevant to 

the estimation of both clinical scores and a class label.

With regard to the loss function in Eq. (2), the most commonly used metric in the literature 

is the element-wise distance between the target response matrix Y and the predicted 

response matrix Ŷ as follows:

(3)

This element-wise loss function has been successfully used in many objective functions in 

the literature [45, 53, 55]. From a matrix similarity point of view, Eq. (3) measures the 

matrix similarity between Y and Ŷ with the sum of the element-wise differences between 

5In this work, we have one sample per subject.
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matrices. Note that, in this case, the lower the score is, the more similar they are. However, 

we believe that there exists additional information inherent in the matrices, which we can 

use in measuring the similarity, such as the relations between any pair of columns and the 

relations between any pair of rows in a matrix. In our case, the columns and the rows 

correspond, respectively, to samples and response variables. Ideally, besides the element-

wise values, those relations in the target response matrix Y should be preserved in the 

predicted response matrix Ŷ. Concretely, the row-wise relations find the correlations of a 

clinical label and ADAS-Cog, a clinical label and MMSE, and ADAS-Cog and MMSE over 

samples, and the column-wise relations represent the correlation between any pair of 

samples over response variables. By enriching the loss function with the higher-level 

information and imposing the information to be matched between two matrices, we can find 

an optimal regression matrix W that helps accurately predict the target response values, and 

thus select useful features. The selected features can be finally used for more accurate 

prediction of testing samples in both the clinical scores and a class label.

To better characterize the newly devised loss function, we explain them in the context of a 

graph matching. We illustrate the sample-sample (a pair of columns) relations, e.g., (yi − yj) 

or (ŷi − ŷj), and the variable-variable (a pair of rows) relations, e.g. (yk − yl) or (ŷk − ŷl), by 

means of a graph in Fig. 2(a) and Fig. 2(b), respectively. In Fig. 2(a), a node represents one 

sample, i.e., a column vector yi or ŷi in the respective matrices, an edge in a graph denotes 

the relation between the connected nodes, and different colors denote different class labels. 

In the graph, the samples of the same class would have a small distance, whereas the 

samples of different classes would have a large distance. In Fig. 2(b), a node represents a set 

of observations for a response variable, i.e., a row vector in the respective matrices, and an 

edge denotes the relation between nodes.

As explained above, we impose these relational properties in a target response matrix, now 

represented by graphs, to be preserved in the respective graphs for the predicted response 

matrix as follows:

(4)

(5)

where  and  denote, respectively, graphs representing the sample-sample relations for 

the target response matrix Y and the predicted response matrix Ŷ, and  and  denote, 

respectively, graphs representing the variable-variable relations for the target response 

matrix Y and the predicted response matrix Ŷ. Hereafter, we call the graphs representing the 

sample-sample relations and the variable-variable relations as ‘S-graph’ and ‘V-graph’, 

respectively. We formulate the problem of matching two sets of graphs, i.e., S-graph and V-

graph, as follows:
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(6)

(7)

where MS and MV denote, respectively, the graph matching scores between  and , and 

between  and , and n and c denote, respectively, the numbers of samples and response 

variables in the matrices as mentioned above. By introducing these newly devised graph 

matching terms into the loss function of Eq. (3), our new loss function becomes as follows:

(8)

where α1 and α2 denote, respectively, the control parameters for the respective terms. 

Compared to the conventional element-wise loss function in Eq. (3), the proposed function 

additionally considers two graph matching regularization terms.

Finally, our objective function for feature selection can be written as follows:

(9)

It is worth noting that unlike the previous manifold learning methods, i.e., local linear 

embedding [33], locality preserving projection [20], and high-order graph matching [26], 

that focused on the sample similarities by imposing nearby samples to be still nearby in the 

transformed space, the proposed method imposes more strict constraints, i.e., sample-sample 

relations and variable-variable relations, in finding the optimal regression matrix W.

3.3. Objective Function Optimization

After some mathematical transformations, we can simplify MS and MV as follows:

(10)

(11)

where Hn = nIn − 1n(1n)T and Hc = cIc − 1c(1c)T, In (or Ic) is an identity matrix of size n (or 

c), and 1n (or 1c) is a column vector of n (or c) ones. By replacing the graph matching terms 

MS and MV with Eq. (10) and Eq. (11), our objective function in Eq. (9) can be rewritten as 

follows:
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(12)

By setting the derivative of the objective function in Eq. (12) with respect to W as zero, we 

can obtain an equation formed as follows:

(13)

where A = −(XXT)−1(XXT + 2α1XHnXT + λQ), B = 2α2Hc, C = −(XXT)−1(XYT + 

2α1XHnYT + 2α2XYTHc), and Q ∈ ℝd×d is a diagonal matrix with the i-th diagonal element 

set to

(14)

Although the objective function in Eq. (12) is convex, due to the non-smooth term of ||

W||2,1, it is not straightforward to find the global optimum. Furthermore, due to the 

interdependence in computing matrices of W and Q, it’s not trivial to solve Eq. (13). To this 

end, in this work, we apply an iterative approach to optimize Eq. (13) by alternatively 

computing Q and W. That is, at the t-th iteration, we first update the matrix W(t) with the 

matrix Q(t − 1) fixed and then update the matrix Q(t) with the updated matrix W(t). Refer to 

Algorithm 1 and Appendix A, respectively, for implementation details and the proof of 

convergence of our algorithm.

Algorithm 1

Pseudo code of solving Eq. (12).

3.4. Feature Selection and Model Training

Due to the use of an ℓ2,1-norm regularizer in our objective function, after finding the optimal 

solution with Algorithm 1, we have some zero (or close to zero) row vectors in W, whose 

corresponding features are not useful in joint predictions of clinical scores and a class label. 

Furthermore, following the literatures [62, 61], we believe that the lower the ℓ2-norm value 

of a row vector, the less informative the respective feature in our observation. To this end, 

we first sort rows in W in a descending order based on their ℓ2-norm values, i.e., ||wj||2, j ∈ 
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{1,…, d}, to find K top-ranked rows7, and then select the respective features. Note that the 

selected features are jointly used to predict clinical scores and a class label.

With the selected features, we then train support vector machines, which have been 

successfully used in many fields [43, 55]. Specifically, we build two SVR [41] models for 

predicting ADAS-Cog and MMSE scores, respectively, and a SVC [3] model for identifying 

a class label8.

4. Experimental Results

We conducted various experiments to compare the proposed method with the state-of-the-art 

methods, as detailed below.

4.1. Experimental Settings

We considered three binary classification problems: AD vs. NC, MCI vs. NC, and MCI-C 

vs. MCI-NC. For MCI vs. NC, both MCI-C and MCI-NC were labeled as MCI. For each set 

of experiments, we used features from MRI, PET, MRI+PET (MP for short), or MRI+PET

+CSF (MPC for short) for training our feature selection model with the same target 

responses, i.e., 2 clinical scores and 1 class label. Then, with the respectively selected 

features, we trained two regression models, each of which was for a clinical score of ADAS-

Cog and MMSE, respectively, and one classification model for a class label.

To evaluate the performance of all competing methods, we employed the metrics of 

Correlation Coefficient (CC) and Root Mean Squared Error (RMSE) between the predicted 

clinical scores and the target clinical scores in regression, and also the metrics of 

classification ACCuracy (ACC), SENsitivity (SEN), SPEcificity (SPE), and Area Under 

Curve (AUC) in classification.

We used 10-fold cross-validation to compare all methods. Specifically, we first randomly 

partitioned the whole dataset into 10 subsets. We then selected one subset for testing and 

used the remaining 9 subsets for training. We repeated the whole process 10 times to avoid 

the possible bias during dataset partitioning for cross-validation. The final result was 

computed by averaging results from all experiments. For the model selection, i.e., tuning 

parameters9 in Eq. (12) and in the LIBSVM toolbox10, we further split he training dataset 

into 5 subsets for 5-fold inner cross-validation. The parameters that resulted in the best 

performance in the inner cross-validation were used in testing.

4.2. Competing Methods

We particularly selected the following methods/ways for comparison.

7Following the previous work [62, 59, 61], we set K as the number of non-zero row vectors, i.e., , where δ(·) is a 
Kronecker delta function and θ is a threshold. In our experiments, we set θ= 10−5 empirically.
8We used the LIBSVM toolbox available at ‘http://www.csie.ntu.edu.tw/~cjlin/libsvm/’.
9α1 ∈ {10−5, …, 102}, α2 ∈ {10−5, …, 102}, and λ ∈ {102, …, 108} in our experiments.
10C ∈ {2−5, …, 25} in our experiments.
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• Original features based method: We conducted the tasks of regression and 

classification using the original features with no feature selection step, and used 

them as baseline method. In the following, we denote this method with the suffix 

“N”.

• Single-task based method: We conducted each of regression or classification tasks 

separately by using the objective function in Eq. (12). In particular, although here 

we used the same original features as the proposed method, we performed the task 

of regression or classification separately at each time for selecting their own sets of 

features. In the following, we use the suffix “S” to represent the type of single-task 

based method. For example, MP-S denotes a single-task based feature selection 

method on the MP data.

• M3T [55]: This Multi-Modal Multi-Task method includes two key steps: (1) using 

multi-task feature selection for determining a common subset of relevant features 

for multiple response variables (or multiple tasks) from each modality, and (2) a 

multi-kernel decision fusion for integrating the selected features from all modalities 

for prediction. It is worth noting that M3T is a special case of our method, i.e., by 

setting α1 = 0 and α2 = 0 in Eq. (12).

• HOGM [26]: High-Order Graph Matching method uses a sample-sample relation in 

a matrix and applies an ℓ1-norm regularization term with a single response or a 

single task.

• M2TFS [22]: Manifold regularized Multi-Task Feature Selection (M2TFS) 

conducts feature selection by combining the least square loss function with an ℓ2,1-

norm regularizer and a graph regularizer, and then perform multi-modality 

classification as a multi-task learning framework with each task focusing on each 

modality. This method is designed only for conducting classification. In our 

experiments, M2TFS included two versions, i.e., (1) M2TFS-C, denoting the use of 

simple concatenation of multi-modality features for classification, and (2) M2TFS-

K, denoting the use of multiple kernels for fusing information from multi-modality 

data. Since M2TFS was designed for multi-modality data, requiring each modality 

with the same feature dimensionality, we applied it to only MP in our experiments.

4.3. Simulation Study

In this section, we justify the validity of the proposed method on simulation data and 

compare with the competing methods. For the simulation study, we generated data using a 

linear regression model of Y = WT X + E, where X ∈ ℝd×n is a regressor matrix, W ∈ ℝd×3 

is a coefficient matrix, E ∈ ℝ3×n is a noise matrix, and  is a 

response matrix. Specifically, we generated two datasets to consider the cases of single-

modality and multi-modality. (1) Single-modality: For each class, we generated ni (i = 1, 2) 

samples by setting the first d0 rows relevant to the classes and the remaining d−d0 rows 

irrelevant for discrimination. The samples of each class were generated from multivariate 

normal distribution. The class labels of all samples were set in y3. We constructed W by 

setting the first d0 rows with the values drawn from (0, 1) and the rest d − d0 rows zero. 

We then obtained the noise E from (0, 10−3Σ(0.1)), where Σ(0.1) was a covariance matrix 
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with the diagonal elements of 1 and the off-diagonal elements of 0.1. After obtaining X, W, 

and E as described above, we obtained the observation  via the linear regression 

model and then centered and standardized it. We generated data sets of ‘Data1’ by setting n1 

= 50, n2 = 60, d = 80, and d0 = 30, and ‘Data2’ by setting n1 = 50, n2 = 50, d = 120, and d0 = 

60. (2) Multi-modality: Applying the same setting with the single-modality, we generated 

W, and E, and two regression matrices with the same dimensionality. X includes these two 

regression matrices to form multi-modality data. Finally, we obtained Y and then centered 

and standardized it. We generated data sets of ‘Data3’ by setting n1 = 50, n2 = 50, d = 140, 

and d0 = 50, and ‘Data4’ by setting n1 = 50, n2 = 40, d1 = 120, and d0 = 50.

We applied the proposed method and the competing methods on these simulated data 

according to the experimental setting in Section 4.1, and evaluated the performances using 

the metrics of Correlation Coefficient (CC) and ACCuracy (ACC) for regression and 

classification, respectively. Table 4.3 shows the results on the four simulation datasets. The 

proposed method obtained the best performance in both classification and regression. 

Specifically, first, the method without feature selection obtained the worst performance for 

both classification and regression in the four simulated dataset. This shows the importance 

of conducting feature selection on the high-dimensional features before performing 

classification or regression. Second, our joint classification and regression framework 

outperforms the single-task framework since the joint framework uses more information 

than the single-task framework. Third, all methods with multi-modality data improved 

performances compared to the methods with single-modality data.

4.4. Classification Results

Table 3 shows the classification performance for all methods. Fig. 3 shows the classification 

accuracy of the proposed method using single-task or multi-task formulation. Fig. 4 shows 

the Receiver Operating Characteristic (ROC) curves of the proposed method using four 

different combinations of data, i.e., MRI, PET, MP, and MPC. From the results, it is clear 

that the proposed method outperforms the competing methods in all experiments. 

Specifically, we observe the following results.

• It is important to conduct feature selection on the high-dimensional features before 

performing classification. The worst results were obtained by the methods without 

feature selection, i.e., MRI-N, PET-N, MP-N, and MPC-N. For example, for MRI-

based classification as shown in Table 3, even using a simple feature selection 

method, i.e., MRI-S, can still increase the classification accuracy by 1.7%, 8.4%, 

and 4.25% compared to MRI-N in AD vs. NC, MCI vs. NC, and MCI-C vs. MCI-

NC classifications, respectively. Our method with MPC improved the classification 

accuracy by 5.1%, 9.5%, and 8.5%, in AD vs. NC, MCI vs. NC, and MCI-C vs. 

MCI-NC classifications, respectively.

• It is beneficial to use joint regression and classification framework for feature 

selection, even only for the task of classification. As shown in Table 3 and Fig. 3, 

the proposed method that performed feature selection for joint regression and 

classification achieved better classification performance than the single-task based 

classification methods (MRI-S, PET-S, MP-S, and MPC-S). For example, for MRI-

Zhu et al. Page 12

Neuroimage. Author manuscript; available in PMC 2015 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



based classification, our method improved the classification accuracy by 2.6%, 

3.0%, and 6.3% compared to MRI-S based method in AD vs. NC, MCI vs. NC, and 

MCI-C vs. MCI-NC classifications, respectively.

• Multi-modality data helps improve classification performance. As shown in Table 

3, in all experiments, the classification performances of all methods with 

multimodality data such as MP and MPC were better than the same methods with 

single-modality data such as MRI or PET. Also, the classification performance by 

MPC was generally better than MP. For example, in classifying AD from NC, the 

proposed method with MPC achieved the classification accuracy of 95.9%, 

sensitivity of 95.7%, specificity of 98.6%, and AUC of 98.8%, while the best 

performance among other competing methods with single-modality data was only 

93.8% (accuracy), 92.3% (sensitivity), 96.7% (specificity), and 97.9% (AUC), 

respectively, and the best performance among other competing methods with MP 

data was 95.3% (accuracy), 94.9% (sensitivity), 98.1% (specificity), and 98.3% 

(AUC), respectively. In classifying MCI from NC, the proposed method with MPC 

achieved the classification accuracy of 82.0%, sensitivity of 98.0%, specificity of 

60.1%, and AUC of 87.0%, while the best performance among other competing 

methods with single-modality data was only 79.7% (accuracy), 96.5% (sensitivity), 

56.1% (specificity), and 85.2% (AUC), respectively, and the best performance 

among other competing methods with MP data was 80.2% (accuracy), 97.0% 

(sensitivity), 67.1% (specificity), and 85.5% (AUC), respectively. In classifying 

MCI-C from MCI-NC, the proposed method with MPC achieved the classification 

accuracy of 72.6%, sensitivity of 48.5%, specificity of 94.4%, and AUC of 78.8%, 

while the best accuracy among other competing methods with single-modality data 

was only 70.9% (accuracy), 42.7% (sensitivity), 95.5% (specificity), and 77.4% 

(AUC), respectively, and the best performance among other competing methods 

with MP was 72.0% (accuracy), 64.7% (sensitivity), 96.8% (specificity), and 

78.7% (AUC), respectively.

4.5. Regression Results

We evaluated the regression performance through the estimation of clinical scores (i.e., 

ADAS-Cog and MMSE) for the cases of using MRI, PET, MP, and MPC, respectively. We 

presented the results of CCs and RMSEs of all competing methods in Table 4 and Figs. 5–9, 

respectively.

Table 4 shows that the proposed method outperforms all other competing methods, when 

using a combination of three multi-modality data. Fig. 5 shows the regression performance 

of our method with a single-task or a multi-task learning scheme. Figs. 6–9 further show the 

scatter plots of the target scores vs. the estimated scores of our method for ADAS-Cog and 

MMSE, respectively, when using 4 different types of data. In these figures, the horizontal 

axis represents the predicted values of ADAS-Cog (top in Figs. 6–9) or MMSE (bottom in 

Figs. 6–9), and the vertical axis represents the target values.

In Table 4, we can see that the regression performance of the methods without feature 

selection (MRI-N, PET-N, MP-N and MPC-N) was worse than methods with feature 
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selection. Moreover, our method consistently achieved the best performance compared to 

other competing methods. Table 4 and Figs. 6–9 also indicate that our method with MPC 

consistently outperformed the same method with MP on each performance measure, 

although the method with MP already achieved a better performance than our method with a 

single modality such as MRI or PET. This scenario was observed for all other competing 

methods. In the prediction of ADAS-Cog and MMSE scores in AD vs. NC, our method with 

MPC obtained the CCs of 0.668 and 0.685, respectively, and the RMSEs of 4.47 and 1.78, 

respectively. The best performance among other competing methods with features of a 

single modality such as MRI or PET was 0.663 and 0.650 (CCs), and 4.58 and 1.89 

(RMSEs), respectively, and the best performance by other competing methods with MP 

features was 0.666 and 0.651 (CCs), and 4.53 and 1.80 (RMSEs), respectively. In MCI vs. 

NC, our method obtained CCs of 0.47 (ADAS-Cog) and 0.456 (MMSE), and RMSEs of 

4.16 (ADAS-Cog) and 1.59 (MMSE), which were superior to those of single-modality or 

MP. The proposed method also obtained the best results for the predictions of ADAS-Cos 

and MMSE scores in MCI-C vs. MCI-NC.

We also compared the proposed method with its variants, i.e., the single response (or single 

task) based method in Fig. 5. From the figure, we can see that the joint formulation of 

registration and classification outperforms the single-task based regression, same as for the 

classification task above.

4.6. Results Summary

From our experimental results, we found that (1) the proposed method formulated in a joint 

regression and classification framework outperformed its counterpart that was formulated 

separately for regression or classification; (2) the joint use of multiple modalities 

outperformed the case of using a single modality separately. Moreover, the paired-sample t-

tests (at 95% significance level) between results of our method and all other competing 

methods (e.g., with the p-values of all cases less than 0.025 and most cases less than 0.001) 

showed that our method was significantly better than all other methods on the tasks of 

predicting clinical scores (i.e., ADAS-Cog and MMSE) and identifying class label.

We also compared our method with M3T [55] that used the element-wise loss function in 

feature selection and also the methods that considered only either ‘sample-sample relation’ 

(S-graph) or ‘variable-variable relation’ (V-graph). In Fig. 10, we can see that (1) both S-

graph and V-graph based methods showed better performances in regression and 

classification than M3T. The mean improvement by both S-graph and V-graph based 

methods was about 1% compared to M3T. (2) Although there was no significant difference 

between S-graph and V-graph based methods (at 95% significance level in the paired-sample 

t-tests), our method that considered both graphs simultaneously were statistically significant 

different from them and M3T.

4.7. Most Discriminative Brain Regions

We also investigated the most discriminative regions that were selected by the proposed 

feature selection method. Since the feature selection in each fold was performed only based 

on the training set, the selected features could vary across different cross-validations. We 
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thus defined the most discriminative regions based on the selected frequency of each region 

over the cross-validations. The top 10 selected regions in MCI vs. NC classification with 

MPC were marked in Fig. 11. They were amygdala right, hippocampal formation left, 

hippocampal formation right, entorhinal cortex left, temporal pole left, parahippocampal 

gyrus left, uncus left, perirhinal cortex left, cunecus left, and temporal pole right. It is 

noteworthy that the top six-ranked brain regions are known to be highly related to AD and 

MCI in many previous studies [5, 8, 15, 27, 30, 55]. Moreover, according to Table 5, almost 

all the competing methods11 selected these six regions as the top selected regions. Even 

though most of the methods (including our methods and the competing methods) in our 

experiments selected these six features as a part of their final feature set, our proposed 

method outperforms the competing methods since it can select more useful features than the 

competing methods thanks to consideration of high-level information.

5. Conclusion

In this work, we proposed a novel loss function in the context of a matrix similarity. 

Specifically, we used high-level information inherent in the target response matrix and 

imposed the information to be preserved in the predicted response matrix. Our objective 

function for joint feature selection was formulated by combining the newly devised loss 

function with a group lasso. In our extensive experiments on ADNI dataset, we validated the 

effectiveness of the proposed method by showing the performance enhancements of both the 

clinical scores (ADAS-Cog and MMSE) prediction and the class label identification, 

outperforming the state-of-the-art methods. In the future work, we will extend the proposed 

framework to the problem of incomplete data, which often occurs in clinical trails and 

longitudinal follow-up studies.
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Appendix A

We prove that the proposed Algorithm 1 makes the value of the objective function in Eq. 

(12) monotonically decrease. We first give a Lemma from [62, 59, 61] as follows, which 

will be used in our proof.
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Lemma 1

For any nonzero row vectors (w(t))i ∈ ℝc and (w(t + 1))i ∈ ℝc, i = 1, …, d, and t denotes an 

iteration index, the following holds:

(A.1)

Theorem 1

In each iteration, Algorithm 1 monotonically decreases the objective function value in Eq. 

(12).

Proof

In Algorithm 1, we denote part of Eq. (12), i.e., without the last term λ||W||2,1, in the t-th 

iteration as . We also denote Q(t) as the optimal value 

in the t-th iteration for Q. According to [62, 59, 61], optimizing the non-smooth convex 

form ||W||2,1 can be transferred to iteratively optimize Q and W in tr(WT QW). Therefore, 

according to the 3-rd step of Algorithm 1, we have

(A.2)

By changing the trace form into the form of summation, we have

(A.3)

By simple modification, we can have

(A.4)

After reorganizing terms, we finally have
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(A.

5)

According to Lemma 1, the third term of the left side in Eq. (A.5) is non-negative. 

Therefore, the following inequality holds

(A.6)
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Figure 1. 
The framework of the proposed method.
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Figure 2. 
An illustration of measuring matrix similarity by means of a graph matching. For simplicity, 

we showed only a small number of nodes. (a) Each node represents a column vector of the 

target or the predicted response matrix, edges represent the distance between nodes, and 

colors represent class labels. (b) Each node represents a row vector of the target or the 

predicted response matrix and edges denote the distance between nodes.
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Figure 3. 
Comparison of classification ACCuracy (ACC) of the proposed method with single-task 

(“Single”) or multi-task (“Joint”) learning.
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Figure 4. 
Receiver Operating Characteristic (ROC) curves for the proposed method using 4 different 

types of data.
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Figure 5. 
Correlation Coefficients (CC) for ADAS-Cog (top) and MMSE (bottom) scores prediction 

with our method formulated for single-task (“Single”) or multi-task (“Joint”) regression.
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Figure 6. 
Scatter plots and the respective Correlation Coefficients (CCs) obtained by the proposed 

method on MRI data (top: ADAS-Cog, bottom: MMSE).
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Figure 7. 
Scatter plots and the respective Correlation Coefficients (CCs) obtained by the proposed 

method on PET data (top: ADAS-Cog, bottom: MMSE).
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Figure 8. 
Scatter plots and the respective Correlation Coefficients (CCs) obtained by the proposed 

method on the MP data (top: ADAS-Cog, bottom: MMSE).
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Figure 9. 
Scatter plots and the respective Correlation Coefficients (CCs) obtained by the proposed 

method on the MPC data (top: ADAS-Cog, bottom: MMSE).
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Figure 10. 
Comparison of ACCuracy (ACC) (top), Correlation Coefficient (CC) of ADAS-Cog 

(middle), and CC of MMSE (bottom) among three graph based methods and also M3T.
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Figure 11. 
Top 10 selected MRI/PET regions in the MCI classification with MPC. The brain regions 

were color-coded. Moreover, different colors indicate different brain regions.
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Table 1

Demographic information of the subjects. The numbers in parentheses denote the number of subjects in each 

clinical category. (MCI-C: MCI Converters, MCI-NC: MCI Non-Converters)

AD (51) NC (52) MCI-C (43) MCI-NC (56)

Female/male 18/33 18/34 15/28 17/39

Age 75.2 ± 7.4 75.3 ± 5.2 75.8 ± 6.8 74.8 ± 7.1

Education 14.7 ± 3.6 15.8 ± 3.2 16.1 ± 2.6 15.8 ± 3.2

MMSE 23.8 ± 2.0 29.0 ± 1.2 26.6 ± 1.7 28.4± 1.7

ADAS-Cog 18.3 ± 6.0 12.1 ± 3.8 12.9 ± 3.9 8.03± 3.8
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Table 2

Performance comparison on simulated data. The number in parentheses is a standard deviation. Note that 

‘Data1-N’ means the original features of ‘Data1’ and ‘Data2-S’ means the single-task based feature selection 

method on ‘Data2’.

Dataset Method ACC CC (ADAS-Cog) CC (MMSE)

Data1

Data1-N 0.701 (0.093) 0.806 (0.118) 0.787 (0.142)

Data1-S 0.701 (0.086) 0.923 (0.065) 0.898 (0.070)

HOGM 0.712 (0.090) 0.949 (0.020) 0.938 (0.023)

M3T 0.704 (0.093) 0.950 (0.118) 0.948 (0.032)

Proposed 0.720 (0.073) 0.984 (0.016) 0.980 (0.017)

Data2

Data2-N 0.709 (0.102) 0.765 (0.132) 0.769 (0.131)

Data2-S 0.725 (0.099) 0.799 (0.105) 0.800 (0.123)

HOGM 0.720 (0.106) 0.832 (0.073) 0.827 (0.088)

M3T 0.719 (0.105) 0.857 (0.169) 0.830 (0.161)

Proposed 0.747 (0.071) 0.896 (0.061) 0.879 (0.080)

Data3

Data3-N 0.640 (0.115) 0.780 (0.196) 0.696 (0.189)

Data3-S 0.650 (0.128) 0.783 (0.149) 0.718 (0.170)

M2TFS-C 0.655 (0.138) 0.798 (0.132) 0.734 (0.166)

M2TFS-K 0.668 (0.129) 0.812 (0.124) 0.746 (0.153)

HOGM 0.678 (0.119) 0.802 (0.142) 0.748 (0.170)

M3T 0.654 (0.141) 0.820 (0.159) 0.751 (0.202)

Proposed 0.698 (0.107) 0.850 (0.101) 0.780 (0.155)

Data4

Data4-N 0.626 (0.111) 0.821 (0.117) 0.650 (0.205)

Data4-S 0.641 (0.096) 0.848 (0.114) 0.695 (0.208)

M2TFS-C 0.649 (0.084) 0.861 (0.077) 0.739 (0.173)

M2TFS-K 0.658 (0.799) 0.875 (0.090) 0.745 (0.154)

HOGM 0.664 (0.101) 0.868 (0.088) 0.754 (0.173)

M3T 0.651 (0.100) 0.879 (0.155) 0.750 (0.217)

Proposed 0.684 (0.070) 0.922 (0.098) 0.788 (0.153)
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