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Abstract

Prime regulation over hematopoietic progenitor cell (HPC) production is exerted by

hematopoietins (HP’s) and their Janus kinase-coupled receptors (HP-R’s). For HP/HP-R studies,

one central challenge in determining specific effects involves the delineation of non-redundant

signal transduction factors and their lineage restricted actions. Via loss-of-function (LOF) studies,

we define roles for an HP-regulated Serpina3g/Spi2A intracellular serpin during

granulomyelocytic, B-cell and HSC formation. In granulomyelocytic progenitors, GMCSF

strongly induced Serpina3g expression with Stat5-dependency. Spi2A-KO led to 20-fold

decreased CFU-GM formation, limited GMCSF-dependent granulocyte formation, and
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compromised neutrophil survival upon TNF-α exposure. In B-cell progenitors, Serpina3g was an

IL7 target. Spi2A-KO elevated CFU-preB >6-fold, and altered B-cell formation in competitive

BMT, and CpG challenge experiments. In HSCs, Serpina3g/Spi2A expression was also elevated.

Spi2A-KO compromised LT-HSC proliferation (as well as LSK cell lysosomal integrity), and

skewed LSK recovery post 5-FU. Spi2A therefore functions to modulate HP-regulated immune

cell, and HSC formation post 5-FU challenge.
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INTRODUCTION

The formation of hematopoietic progenitor cell (HPCs) is regulated, in part, by

hematopoietins (HP’s), and their cell surface receptors (HP-R’s). This includes extended sets

of interleukins and colony-stimulating factors that target HPCs and regulate their growth,

development and/or cellular functions [1–3]. HP-R’s typically are unique for their cognate

ligands [2–4], but are differentially expressed among HPC lineages and/or developmental

stages [2–6]. With regards to HP-R signaling events, substantial commonalities nonetheless

exist (eg, PI3K/AKT and MEK/ERK modules) which further can be blended via HP-R

crosstalk [7, 8]. To understand (and modify) specific HP actions, it therefore becomes

important to define signals that HP-R’s differentially transduce to coordinately regulate

hematopoiesis.

Via transcriptome analyses of erythroid progenitors, we recently discovered the intracellular

serpin (serine protease inhibitor) Serpina3g/Spi2A as a novel EPOR/JAK2 target [9]. Within

maturing erythroblasts, Spi2A proved to cytoprotect against oxidative stress in part by

inhibiting leached lysosome cathepsins [9]. Guided by observed Serpina3g expression

profiles, we presently employ our unique Spi2A-KO model [9] plus primary HPC analyses

to provide new insight into HP-regulation of Serpina3g, and roles of Spi2A in modulating

the formation of defined granulomonocytic, B-cell and HSC populations.

MATERIALS AND METHODS are detailed for all approaches in supplemental text.

RESULTS

Serpina3g expression profiles, and Spi2A as an agent of GMCSF-dependent
granulomyelocytic cell formation

Serpina3g/Spi2A action studies in HPCs were prompted by predominant expression

observed among hematopoietic cells, including granulomyelocytic progenitors (Fig-1A)

(together with B-cells and HSC, see below). In a LOF approach to gain functional insight,

effects of Spi2A deletion on granulomyelocytic cells were assessed. At steady-state, Spi2A-

KO mice maintained normal peripheral blood cell levels (Fig-S1). However, clonal colony-

forming unit analyses of bone marrow HPCs (Fig1B–D) revealed a marked 22.7 ± 3.4-fold

deficit in CFU-GM due to Spi2A-KO. CFU-M and CFU-G were less affected (~1.4-fold

effect on CFU-G, p=0.05), but total myeloid CFU were diminished. GMCSF effects on CFU
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formation also were studied. When GMCSF was included together with permissive HP’s

(IL3, IL6, SCF), numbers of wild-type CFU-G increased (as expected) but Spi2A-KO HPCs

were non-responsive to this GMCSF effect (Fig-1D). For CFU-GM, GMCSF inclusion

somewhat increased overall numbers, as well as the difference in CFU-GM observed due to

Spi2A-KO (each by ~125%)(data not shown).

Based on faltered Spi2A-KO CFU-GM formation, Serpina3g regulation by GMCSF was

assessed. JAK2-plus-Stat5 are key GMCSF-R mediators [10], and Stat5 has been implicated

in Serpina3g expression [9]. GMPs from wild-type as well as Stat5a/b-KO bone marrow

therefore were analyzed. HP’s were withdrawn, cells were challenged with GMCSF. RNA

was isolated, and effects on Serpina3g transcript levels were determined. In wild-type GMP,

GMCSF induced Serpina3g expression ≥7.8 fold, while Stat5a/b-KO blocked this response

(Fig-1E). Within the Serpina3g locus, several candidate Stat5 elements were observed

within 5′, 3′ and intronic regions (Fig-1F). For a proximal promoter consensus element,

ChIP analyses confirmed Stat5 occupancy (using T-cell extracts to provide for known

positive Stat5-target genes) (Fig-S2).

Possible GMCSF effects on granulomonocytic cell formation from Spi2A-KO vs wild-type

Linneg HPCs next were analyzed ex vivo (Fig-2). For neutrophils and with GMCSF as a

singular HP, no significant Spi2A-KO effects were observed. For IL3, IL6, SCF plus

GMCSF dosing, however, neutrophil formation from Spi2A-KO progenitors was

compromised 4.2-fold (Fig-2B,C) emphasizing functional roles for Spi2A as an important

GMCSF transducer in GMP (and/or granulocytic cells). (For observed increases in

monocyte levels, this was a relative frequency effect, and overall cell numbers were largely

unaffected due to Spi2A-KO). Possible Spi2A effects among developing neutrophils also

were assessed using TNF-α as a relevant pro-apoptotic cytokine [11, 12]: TNF-α-exposed

Spi2A-KO neutrophils exhibited significantly heightened apoptosis (Fig-2D–F).

Roles for Spi2A during B-cell formation

B-cell progenitor formation depends upon IL7/IL7R actions (and JAK1/3-plus Stat5

signaling) [3, 13]. In bone marrow-derived B220pos progenitors expanded ex vivo, IL7

proved to induce Serpina3g expression ≥9-fold, with elevated transcript levels also observed

among B-cells, lymph nodes and spleen (Fig-3A,B). CFU analyses revealed heightened pre-

B cell levels due to Spi2A-KO (Fig-3C and S4). Spi2A effects on B-cell formation also were

observed in competitive BMT studies (Fig-3D). Here, CD45.2 LSK cells from either Spi2A-

KO, compound Spi2A-KO plus Cathepsin B-KO, or wild-type BM were co-transplanted

with competing CD45.1-marked wild-type donor cells to CD45.1-plus-CD45.2 co-marked

recipients. Consistent with CFU-preB findings, Spi2A-KO proved (in this competitive

format) to enhance contributions to B220pos B-cell formation, and this phenotype was

partially reversed by Cathepsin B-KO. These effects also were observed albeit less markedly

among CD3pos T-cell populations. Findings indicate apparent compensatory increases in

progenitor B-cell populations upon Spi2A deletion. When later stage B220pos B-cells were

propagated ex vivo, significant deficiencies in ex vivo expansion (Fig-3E) and increases in

apoptosis upon CpG challenge (to activate TLR-9) [14] (Fig-3F), nonetheless, were

observed.
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Spi2A expression, and functional effects, in HSC populations

Serpina3g/Spi2A expression in HSCs was high-level (Fig-4A). In the absence of Spi2A,

HSC populations were maintained at steady-state (data not shown), and also in long-term

competitive BMT studies (Fig-S5). In vivo BrdU incorporation rates, however, indicated

compromised LT-HSC cell cycle progression (Fig-4B). Based on recently observed

lysosomal compromise in Spi2A-KO erythroblasts [9], lysosome numbers and integrity also

were analyzed. In Spi2A-KO LSK cells, numbers of intact lysosomes were decreased, and

extra-lysosomal distributions of Cathepsin-B were increased (Fig-4C) suggesting that

observed impairments in cell cycle progression may be due to a loss of protection from

LMP. In 5-fluorouracil challenge studies, further effects of Spi2A-KO on rebound LSK

formation were observed. Specifically (and as analyzed at d7 post-5FU) Spi2A-KO LSK

levels proved to be significantly elevated (Fig-4D). This was observed among all replicates

(Fig-S6), and may reflect engagement of compensatory HP effects, spatial-temporal

increases in HSC niche residence, and/or possible induction of a surrogate clade-B serpin.

DISCUSSION

Serpins are a family of ~45 kDa protease inhibitors plus orthologues (eg, Maspin tumor

suppressor, MENT chromatin factor) that exert diverse biochemical and cellular effects [15,

16]. Many target catalytic serines (eg, chymotrypsin, elastase), while others cross classes

(eg, cysteine protease inhibitors). Most are secreted with one example as PAI serpin

inhibition of tPA during fibrinolysis [17]. A second involves GCSF repression of secreted

Serpina-1 and -3 [18]. This reverses inhibition of bone marrow proteases which then

promote CD34pos progenitor release. For the present studies, Serpina3g/Spi2A’s observed

lineage-selective expression, intracellular localization [9, 19] and HP-regulation prompted

analyses of Spi2A’s hematopoietic roles.

Among granulomyelocytic cells, deficiencies in CFU-GM formation due to Spi2A-KO,

together with the defining of Serpina3g as a GMCSF plus Stat5 target, first underscore

important effects on GM(P) expansion (Figs 1,2). Ex vivo, Spi2A-KO further compromised

neutrophil formation, with GMCSF-dependency. Here, roles for co-acting IL3, IL6 and SCF

HP’s in engaging Spi2A’s effects point to early GM progenitors as a Spi2A-regulated

cohort. This also underscores GMCSF as a prime Serpina3g inducer, but in suggested

synergism, induction by IL3 has been reported (in BaF3 cells, NCBI GEO GDS3349).

Spi2A also proved to cytoprotect developing neutrophils against TNF-α-induced apoptosis

(Fig-2). TNFa can heighten ROS, but unlike the case in erythroid progenitors, ROS levels in

neutrophils were not significantly altered due to Spi2A-KO (negative data not shown). This,

nonetheless, does not discount hypothesized effects linked to lysosomal compromise. Via

CFU, competitive BMT and ex vivo analyses, roles for Spi2A also were defined during B-

cell formation (Fig-3). For CFU-pre-B, compensatory effects are implicated by observed

substantial increases due to Spi2A-KO. BMT studies likewise reveal apparent enhancement

of B220pos cell formation. In isolated ex vivo settings, Spi2A-KO proved to compromise

later stage B220pos B-cell growth, and survival.

In HSCs, Spi2A levels were maximal. Spi2A disruption compromised LT-HSC BrdU

incorporation rates, and LSK lysosomes also leached Cathepsin B (Fig4A–C). Spi2A-KO
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HSC levels nonetheless were sustained (including post long-term BMT). Post 5-FU

exposure, however, rebound LSK formation was skewed due to Spi2A-deficiency with

~200% increases observed (Fig-4D, S6). As for CFU-preB, this implicates compensatory

mechanisms potentially involving HP effects (eg, Tpo/Mpl), HSC niche remodeling, and/or

surrogate clade B serpin induction. The extent to which such 5-FU and stress-induced

increases in Spi2A-KO LSK cells give rise to durable peripheral blood cell progeny will be

of interest to assess in future investigations.

CONCLUSIONS

As a GMCSF, IL7 and Stat5 target, Serpina3g/Spi2A is shown via LOF studies to regulate

GMP pools, neutrophil formation plus survival, and pre-B pools plus B-cell formation.

Novel roles for Spi2A therefore are implicated in cellular immunity, and potentially the

leukemogenic effects recently shown to be exerted by GMCSF [20], and the IL7R [21].

Spi2A also appears to modulate LT-HSC cell cycle progression, lysosome integrity and LSK

expansion post-5FU myeloablation. Figure 4E provides a summary outline of these diverse

and meaningful hematopoietic roles of Spi2A.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Regulated Spi2A expression, and function in supporting granulomyelocytic CFU
formation
A] Heightened Serpina3g expression in bone marrow, and among granulomonocytic

progenitor cells: Values are mean Serpina3g transcript expression values (+/− SE) as

normalized to levels in murine bone marrow. B] Spi2A deficiency markedly compromises

CFU-GM pools: Via methylcellulose colony-forming assays, numbers of CFU-GM in bone

marrow preparations from Spi2A-KO and wild-type mice were determined (means +/− SE,

n=3). C] Effects of Spi2A deletion on CFU-G, CFU-M and CFU-GM composite pools: In

assessing frequencies of granulomyelocytic HPC populations in Spi2A-KO mice vs wild-

type controls, bone marrow CFU-GM, CFU-G and CFU-M colony-forming units were

assayed. Values are means +/− SE (n=3). D] Spi2A-deficiency limits GMCSF-supported

CFU-G colony formation: CFU-G assays were performed in the absence vs presence of

GMCSF (10 ng/mL). Values are normalized means +/− SE (n=3). E] GMCSF regulates

Serpina3g expression via Stat5: GMP were isolated from either wild-type or Stat5a,b-KO

mouse bone marrow. For each, biological triplicate GMP preparations were then incubated

for 5 hours in the absence of HP’s, and challenged with GMCSF. At 180 minutes, RNA was

isolated and was used in transcriptome analyses to determine GMCSF and Stat5a, b effects

on Serpina3g expression. Values are mean relative expression levels +/− SE. F] Consensus

Stat5a/b binding site distribution at the Serpina3g locus: In silico analyses predict the

occurrences of five upstream, two downstream and several intragenic consensus Stat5

binding sites within the Serpina3g gene.
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Figure 2. GMCSF-dependent development of HPCs to neutrophils falters due to Spi2A
deficiency, and Spi2A cytoprotects developing neutrophils against TNF-α induced apoptosis
A–C] Spi2A-KO HPCs exhibit deficits in GMCSF-dependent neutrophil formation: The

approach used for analyses of HP-dependent granulomyelocyte formation from Linneg HPCs

is outlined (A), and effects on neutrophil formation of Spi2A disruption are illustrated (B),

and summarized (mean values +/− SE, n=4) (C). D–F] Developing Spi2A-KO neutrophils

exhibit heightened sensitivity to TNF-α-induced apoptosis: Linneg progenitors were isolated

from wild-type or Spi2A-KO bone marrow, and expanded ex vivo (IL3, IL6, SCF). At day 3

of expansion, cells were exposed to TNF-α (25ng/mL, 12 hours). Frequencies of apoptotic

cells then were determined (Annexin V-positivity) Representative primary flow cytometry

analyses are shown (E) together with summary data (F) [means +/− SE (n=3)].
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Figure 3. Regulated Spi2A/Serpina3g expression, and function, in B-cells
A] IL7 induction of Serpina3g in primary bone marrow-derived B220pos progenitors: Bone

marrow HPCs were isolated and expanded in the presence of IL7, SCF and OP9 stromal

cells. B220pos B-cell progenitors were then isolated, cultured for 6 hours in the absence of

HP’s (without stromal cells) and challenged with IL7 (±10ng/mL). At 90 minutes, cells were

lysed (Trizol reagent), and RNA plus cDNA were prepared. Serpina3g levels then were

determined by quantitative PCR (normalized mean relative expression levels +/− SE, n=3).

For comparison, EPO-induction of Serpina3g in primary erythroid progenitor cell

preparations was analyzed in parallel. B] Serpina3g expression levels among B-cells, and B-

cell resident tissue: values are relative expression levels (means +/− SE) normalized to

Serpina3g transcript levels in bone marrow. C] CFU-preB levels are multi-fold elevated due

to Spi2A-KO: Steady-state pre-B colony forming unit levels in wild-type and Spi2A-KO

mice are graphed (means +/− SE, n=4). D] CD45.2-marked LSK cells from either wild-type,

Spi2A-KO, or compound Spi2A-KO Cathepsin B-KO bone marrow preparations were

competed in transplantation experiments with wild-type CD45.1-marked bone marrow

leukocytes. At weeks 6, 12 and 18, frequencies of engrafted donor-derived CD45.2 cells as

co-marked by B220pos, CD3pos, or CD11bpos then were determined. E] B220pos B-cell

formation from Spi2A HPCs falters ex vivo: Primary bone marrow HPCs from wild-type or

Spi2A-KO mice were plated (1.5 × 106 cells/mL) onto OP9 feeder cells in the presence of
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IL7 (10 ng/mL). At day-2, medium was refreshed. At days 3 and 5, numbers of viable

B220pos cells were determined (mean values +/− SE). F] Spi2A-KO primary B220pos B-

cells exhibit heightened sensitivity to CpG-induced apoptosis: At day-2.5 of culture, B-cell

cultures were exposed to a CpG TLR-9 ligand (2 μM). At day-5, effects on apoptosis were

determined (APC-Annexin V) (means +/− SE, n=3).
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Figure 4. Serpina3g/Spi2A expression, and actions in hematopoietic stem cells
A] Serpina3g transcript expression levels among HSC/HPC subpopulations. Values and

means (+/− SE) for relative expression levels (NCBI GEO and Ensembl databases) as

normalized to Serpina3g levels in murine bone marrow. B] LT-HSC proliferation (based on

BrdU incorporation rates) is compromised due to Spi2A-KO: At 20hr post-BrdU dosing,

bone marrow was isolated from wild-type and Spi2A-KO mice, and assayed for HSC

markers plus BrdU incorporation via flow cytometry. Left panel: Primary flow cytometry

histograms for BrdU incorporation in bone marrow progenitor subsets as MPP (red) Linneg

Sca1+ c-Kit+ Flk2+ CD34+; ST-HSC (green) Linneg Sca1+ c-Kit+ Flk2− CD34+; LT-HSC

(blue) Linneg Sca1+ c-Kit+ Flk2− CD34−. Gating and percentage of BrdU+ cells for each

HSC subset are indicated. Right panel: Mean percentage BrdU+ cells ± SEM (n = 5 mice).

Results are representative of three independent experiments. C] Compromised lysosome

numbers, and heightened cathepsin-B leaching, in LSK cells due to Spi2A deletion: Among

LSK cells, frequencies of lysosomes (green fluorescence) were decreased due to Spi2A

disruption (left, and lower panels). Confocal IF analyses of lysosomes plus Cathepsin-B (red

fluorescence) further indicated leaching of Cathepsin-B from lysosomes within Spi2A-KO

LSK cells (right, and lower panels). D] Spi2A-deficiency skews the rebound formation of

LSK HSC’s post 5-fluorouracil challenge: Spi2A-KO and wild-type Spi2A+/+ control mice

were dosed with 5FU (150mg/kg). At d7 post-5FU, bone marrow was isolated and levels of

LinnegSca1posKitpos LSK HSC’s were analyzed. Values are means +/− SE (n=4 plus 4).
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Representative primary flow cytometry data also are shown (please also see Supplemental

Figure S6). E] Summary model outlining apparent roles for Spi2A serpin during HSC,

granulomonocytic and B-cell formation.
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