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Abstract

Sulcal pits, the locally deepest points in sulci of the highly convoluted and variable cerebral 

cortex, are found to be spatially consistent across human adult individuals. It is suggested that 

sulcal pits are genetically controlled and have close relationships with functional areas. To date, 

the existing imaging studies of sulcal pits are mainly focused on adult brains, yet little is known 

about the spatial distribution and temporal development of sulcal pits in the first 2 years of life, 

which is the most dynamic and critical period of postnatal brain development. Studying sulcal pits 

during this period would greatly enrich our limited understandings of the origins and 

developmental trajectories of sulcal pits, and also provide important insights into many 

neurodevelopmental disorders associated with abnormal cortical foldings. In this paper, by using 

surface-based morphometry, for the first time, we systemically investigated the spatial distribution 

and temporal development of sulcal pits in major cortical sulci from 73 healthy infants, each with 

longitudinal 3T MR scans at term birth, 1 year, and 2 years of age. Our results suggest that the 

spatially consistent distributions of sulcal pits in major sulci across individuals have already 

existed at term birth and this spatial distribution pattern keeps relatively stable in the first 2 years 

of life, despite that the cerebral cortex expands dramatically and the sulcal depth increases 

considerably during this period. Specially, the depth of sulcal pits increases regionally 

heterogeneously, with more rapid growth in the high-order association cortex, including the 

prefrontal and temporal cortices, than the sensorimotor cortex in the first 2 years of life. 

Meanwhile, our results also suggest that there exist hemispheric asymmetries of the spatial 

distributions of sulcal pits in several cortical regions, such as the central, superior temporal and 

postcentral sulci, consistently from birth to 2 years of age, which likely has close relationship with 

the lateralization of brain functions of these regions. This study provides detailed insights into the 

spatial distribution and temporal development of deep sulcal landmarks in infants.
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1. Introduction

The human cerebral cortex is highly convoluted and variable across adult individuals (Li et 

al., 2009; Ono et al., 1990). Sulcal pits are the locally deepest points along sulcal bottom 

lines in the cerebral cortex (Lohmann et al., 2008). During the human brain development, 

the deepest parts of primary sulci are thought as the first places to develop in an embryo’s 

brain and then change least as the cortex grows (Lohmann et al., 2008). Quantitative MR 

imaging studies provide strong evidences that the deepest parts of sulci are more genetically 

controlled than the superficial parts (Le Goualher et al., 1999; Lohmann et al., 1999; McKay 

et al., 2013). Abundant studies also indicate that there are particularly spatial relationships 

between the deepest parts of sulci and functional areas (Lohmann et al., 2008; Piao et al., 

2004; Rakic, 1988, 2004; Smart and McSherry, 1986; Welker, 1990).

Accordingly, sulcal pits have drawn increasing attentions in neuroimaging studies in the past 

few years (Im et al., 2010; Im et al., 2013; Lohmann et al., 2008; McKay et al., 2013). 

Lohmann et al. first examined sulcal pits in volumetric MR images and observed that the 

spatial distribution of sulcal pits in major sulci was strikingly regular across adult 

individuals, despite their highly variable cortex foldings (Lohmann et al., 2008). Then, Im et 

al. proposed a more reliable sulcal pits extraction approach on cortical surfaces 

reconstructed from MR images (Im et al., 2010; Im et al., 2013). In this method, a watershed 

algorithm based on the sulcal depth was used to partition the cortical surface into many 

basins, and then the deepest point in each basin was identified as the sulcal pit, after pruning 

basins with shallow sulcal depths or small sizes. The results in (Im et al., 2010) confirmed 

the observations in (Lohmann et al., 2008), and further revealed the hemispheric 

asymmetries of sulcal pits. According to these studies, sulcal pits in major cortical sulci 

were considered as reliable anatomical landmarks and some of them could be potentially 

helpful for the challenging problem of inter-subject brain MR image registration (Li et al., 

2010; Lohmann et al., 2008). Im et al. (Im et al., 2013) further investigated the relationships 

between the presence of sulcal pits and intelligence, and found that, in the left posterior 

inferior frontal sulcus and the right posterior inferior temporal sulcus, the number of sulcal 

pits of young adults with high IQ was significantly different from that of young adults with 

average IQ. McKay et al. (McKay et al., 2013) specifically studied the central sulcus in 

adults and found that most adult individuals had two peaks in the sulcal depth position 

profiles, close to the hand and mouth regions, where the peak genetic heritability of the 

sulcal depth occurred. By tracking the cortical surface development of 4 neonates between 

birth and four weeks of age (Lefevre et al., 2009), Lefèvre et al. found that the cortical 

surfaces grew in a radial manner from some growth seeds. They suggested that the concepts 

of growth seeds, sulcal roots (Regis et al., 2005) and sulcal pits might be merged into one 

kind of entity that could be stable across individuals.

Meng et al. Page 2

Neuroimage. Author manuscript; available in PMC 2015 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, to our knowledge, most existing imaging studies of sulcal pits were mainly 

focused on adult brains, while little is known about the spatial distribution and temporal 

development of sulcal pits in the normal infants from birth to 2 years of age. Note that the 

first 2 years of life is the most dynamic and critical period of the postnatal brain structural 

and functional development (Knickmeyer et al., 2008; Li et al., 2014c; Lyall et al., 2014; 

Nie et al., 2012b; Nie et al., 2013b), with the cortical surface area expansion 1.8 times in the 

first year and 1.2 times in the second year (Li et al., 2013), although major cortical sulci are 

already present at term birth (Chi et al., 1977; Dubois et al., 2008; Hill et al., 2010a). 

Increasing evidences also suggest that many neurodevelopmental disorders are likely the 

results of abnormal brain development during this critical period of rapid cortex growth 

(Gilmore et al., 2012). Thus, studying sulcal pits during this period would greatly increase 

our currently limited understanding of the developmental trajectories of sulcal pits and also 

provide important insights into the neurodevelopmental disorders associated with abnormal 

cortical foldings. In this paper, by using the cortical surface based morphometry, for the first 

time, we systematically study the spatial distribution of sulcal pits and their temporal 

development from 73 healthy infants, each with 3 longitudinal MR scans at term birth, 1 

year, and 2 years of age. Our results suggest that the spatially consistent distributions of 

sulcal pits in major sulci across subjects have already existed at term birth. Meanwhile, 

though the cortex expands dramatically and the sulcal depth increases considerably, the 

spatial distributions of major sulcal pits keep relatively stable in the first 2 years. 

Importantly, the depth of sulcal pits exhibits a regionally heterogeneous growth, with more 

rapid growth in the high-order association cortex, including the prefrontal and temporal 

cortices, than the sensorimotor cortex in the first 2 years of lift. Moreover, our results reveal 

certain hemispheric asymmetries in infants.

2. Materials and Methods

Subjects

This study was approved by the Institutional Review Board of the University of North 

Carolina (UNC) School of Medicine. The UNC hospitals recruited pregnant mothers during 

their second trimesters of pregnancy, with the informed consents obtained from both 

parents. Subjects were excluded if the fetal ultrasound was abnormal or the mother had 

major medical diseases or psychotic illness. The infants in the study cohort did not have any 

congenital anomaly, metabolic disease or focal lesion. Before scanning, the infants were fed, 

swaddled, and fitted with ear protection, and none of them was sedated (Gilmore et al., 

2012; Li et al., 2013; Shi et al., 2011).

MR images were longitudinally acquired for all 73 healthy infants at 0, 1 and 2 years of age. 

Specifically, the study group consisted of 31 singletons (including 20 males and 11 females) 

and 42 twins (including 22 males and 20 females). For the twins, there were 7 monozygotic 

twin pairs, 10 dizygotic twin pairs and 8 “single” twins (Gilmore et al., 2012). The mean 

gestational age at birth for all the 73 infants was 37.9±1.6 weeks. The mean age at each 

scanning time point is provided in Table 1. No gender difference of ages at scanning was 

found at any of the three time points. This dataset has been used in prior studies of the 

development of the cortical gray matter volume (Gilmore et al., 2012), the expansion of the 
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cortical surface area (Li et al., 2013), and the hemispheric asymmetries of the cerebral cortex 

(Li et al., 2014b) in infants.

To closely compare sulcal pits in infants to those in adults, we also studied a cohort of 64 

healthy young adults, including 29 males and 35 females. Yong adult data were obtained 

from a subset of the Pediatric MRI Data Repository (Release 4.0) created for the NIH MRI 

Study of Normal Brain Development (Evans, 2006), a multi-site project aimed at providing 

a normative database to characterize healthy brain maturation in relation to behavior (Nie et 

al., 2013a). The average age of these young adults was 18.9±1.4 years.

MR Image Acquisition

For infants, MR images were acquired by using a Siemens head-only 3T scanner with a 

circular polarized head coil. For T1-weighted images, 160 sagittal slices were acquired with 

the three-dimensional magnetization-prepared rapid gradient echo (MPRAGE) sequence: 

TR = 1900 ms, TE = 4.38 ms, inversion time = 1100 ms, flip angle = 7°, and resolution = 

1×1×1 mm3. For T2-weighted images, 70 transverse slices were acquired with turbo spin-

echo (TSE) sequences: TR = 7380 ms, TE = 119 ms, flip angle = 150°, and resolution = 

1.25×1.25×1.95 mm3 (Gilmore et al., 2012; Shi et al., 2011). The T2-weighted image was 

linearly aligned onto its counterpart of T1-weighted image and then resampled to the 

resolution of 1×1×1 mm3.

For young adults, a three-dimensional T1-weighted Spoiled Gradient Recalled (SPGR) echo 

sequence from 1.5T scanners was obtained on each participant, with 1 mm isotropic data 

acquired sagittally from the entire head. Slice thickness of 1.5 mm was allowed for GE 

scanners due to their limit of 124 slices. Total acquisition time was about 25 min and was 

often repeated when indicated by the scanner-side quality control process. More details on 

image acquisition can be found in (Evans, 2006).

Image Preprocessing

All MR images were preprocessed by the following pipeline. First, skull, cerebellum and 

brain stem were automatically removed (Shi et al., 2012). Second, intensity inhomogeneity 

was corrected using N3 method (Sled et al., 1998). Third, each image was rigidly aligned to 

the age-matched brain atlas (Shi et al., 2011). Fourth, tissue segmentation of MR images 

was performed by using a longitudinally-guided coupled level-sets method (Wang et al., 

2013a; Wang et al., 2013b). Fifth, non-cortical structures were automatically masked and 

filled, and each brain was further separated into left and right hemispheres. More details on 

image preprocessing can be found in (Li et al., 2014b; Li et al., 2014c).

Cortical Surface Reconstruction and Registration

For each hemisphere of each image, a topologically-correct and geometrically-accurate 

cortical surface was reconstructed using a deformable surface method (Li et al., 2014a; Li et 

al., 2012). Herein, we adopted the inner cortical surface (white-gray matter interface) for 

sulcal pits analysis, in order to closely compare with the existing results on adult brains (Im 

et al., 2010; Im et al., 2013; Lohmann et al., 2008). To analyze the hemispheric asymmetries 

of sulcal pits, the inner cortical surface of the right hemisphere was mirror-flipped to its 
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corresponding left hemisphere along the midsagittal plane (Li et al., 2014b). Each inner 

cortical surface was then smoothed, inflated, and mapped to a standard sphere (Fischl et al., 

1999). To establish both inter-subject and left-right unbiased cortical correspondences, all 

spherical cortical surfaces of the left hemisphere and mirror-flipped right hemisphere at the 

same age were nonlinearly aligned to the age-matched, left-right unbiased surface atlases (Li 

et al., 2014b) by using Spherical Demons (Yeo et al., 2010). To establish longitudinal 

cortical correspondences, the spherical cortical surfaces at birth were aligned onto the 

corresponding spherical cortical surfaces at 1 year of age, and then the spherical cortical 

surfaces at 1 year of age were aligned onto the corresponding spherical cortical surfaces at 2 

years of age, using Spherical Demons (Yeo et al., 2010). All cortical surface reconstruction 

and alignment results were visually checked to ensure reasonable accuracy.

Sulcal Pits Extraction

For each vertex on the cortical surface, the sulcal depth, defined as the distance from the 

vertex to the closest point in the cerebral hull surface, was computed using the method in (Li 

et al., 2014b). Then, a watershed algorithm was applied to the sulcal depth map on the 

surface mesh for extracting sulcal pits, as in (Im et al., 2010). Specifically, 1) a vertex with 

the currently largest sulcal depth was first picked out; 2) if none of its one-ring neighbor was 

labeled, this vertex was then selected as a sulcal pit and assigned with a new label; if it had a 

labeled neighbor, this vertex was assigned with the same label as its labeled neighbor; if it 

had at least 2 neighbors with different labels, this vertex was assigned with the label of the 

closest neighbor; 3) the steps 1 and 2 were repeated until the sulcal depth of the currently 

picked vertex was less than a predefined threshold T, as we are only interested in deep sulcal 

pits. To avoid the over extraction of sulcal pits, three threshold parameters (area A, distance 

D and ridge height R) were also introduced, as in (Im et al., 2010). Specifically, area A was 

used to exclude those sulcal pits in very small basins. Distance D was used to prevent two 

sulcal pits from being too close to each other. And ridge height R was the sulcal depth 

difference between a candidate sulcal pit and the ridge point of neighboring basins, as 

explained in Figure 1, and was used to check whether a candidate sulcal pit was significantly 

different from its neighboring sulcal pits. For a candidate sulcal pit, if it failed to pass the 

threshold A (area) or D (distance), and also failed to pass the threshold R (ridge height), it 

will not be included as a sulcal pit; otherwise, this candidate sulcal pit will be kept as a 

sulcal pit.

For the adult brains with relatively stable brain size across individuals, these threshold 

parameters could be set as fixed values for all subjects (Im et al., 2010). However, in 

developing infants, the variations of the brain size across different subjects at different ages 

are quite large, thus using fixed values for these parameters is not suitable for infant studies. 

To find suitable parameters for these thresholds, we performed exhaustive searching from a 

range of each parameter based on the randomly-selected 10 infants with manually-labeled 

“ground truth” of sulcal pits. Specifically, we first performed the watershed algorithm to 

over extract sulcal pits at 0, 1 and 2 years of age, and manually removed those false sulcal 

pits. Then, for each surface, an exhaustive searching from a range of each parameter was 

performed to find a group of optimal parameters that led to the fewest false positive and 

false negative sulcal pits, compared with those manually defined results. We found that the 
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optimal results were obtained by setting D as 10 rings neighborhood on the resampled 

cortical surface with 168,324 vertices and R as 2.5 mm. However, the optimal parameters 

for A and T varied significantly across different cortical surfaces. Therefore, we further 

investigated the relationships between A and the total area of the cortical surface. By 

performing a linear regression, we found that the optimal A has the following approximate 

relationship with the total area S of the cortical surface:

(1)

Similarly, we found that the optimal T has the following approximate relationship with the 

maximum sulcal depth M of the cortical surface:

(2)

Therefore, in all our following analysis, we fixed the parameters D as 10 rings and R as 2.5 

mm, while computed the parameters A and T adaptively for each infant cortical surface 

based on Eqs. (1) and (2), respectively. More information on defining the “ground truth” and 

parameter selection can be found in Supplementary Materials.

Figure 2 showed the sulcal pits extraction results on the cortical surfaces of the left 

hemispheres of a representative infant at 0, 1, and 2 years of age. The sulcal pits were 

represented by white points and the cortical surfaces were color-coded by the sulcal depth. 

As we can see, the cortical surface grew dynamically and the sulcal depth increased 

considerably, especially in the first year of life. Due to the convoluted cortical folding, it is 

difficult to observe the sulcal pits in some deep sulci. For better inspection, sulcal pits were 

also mapped onto the partially inflated cortical surfaces, as shown in the second, fourth and 

sixth rows of Figure 2. As we can see, though the infant cortical surface developed 

dramatically in the first two years of life, the spatial distribution of deep sulcal pits in major 

sulci was temporally relatively consistent. For example, as can be observed in the third and 

fourth rows, there consistently existed two sulcal pits in the central sulcus and their relative 

positions were nearly unchanged in the first 2 years, though the central sulcus became much 

longer and deeper.

Computing Sulcal Pits Concentration Regions and Frequencies

To examine the spatial distributions of sulcal pits across individuals at each age, all the 

sulcal pits from 73 infants were mapped onto the age-matched inflated surface atlases. Each 

infant contained sulcal pits in both minor and major sulci, and those sulcal pits in minor 

sulci were highly variable across individuals and often turned out to be the isolated points 

when mapped onto the surface atlas. Therefore, a clustering algorithm was adopted to 

remove those minor and variable sulcal pits. As most of major sulcal pits across subjects 

were spatially-close and concentrated together, a relatively intuitive clustering algorithm 

was adopted and worked reasonably well. Specifically, 1) for a sulcal pit that had not been 

classified to any cluster, a new cluster C was created, and all the vertices in its two-ring 

neighborhood without being visited previously were pushed into a queue Q. 2) A vertex was 

popped from Q; if this vertex was a sulcal pit, it was added to the cluster C, and all vertices 
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in its two-ring neighborhood (without being visited before) were pushed into Q. 3) The 

process in step 2 was repeated until the queue Q was empty. 4) The steps from 1 to 3 were 

repeated until all sulcal pits had been classified. 5) If the number of sulcal pits in a cluster 

was no more than 7 (≈10% of 73 subjects), this cluster was removed.

After sulcal pits clustering, we further extracted the concentration regions on the cortical 

surface based on the spatial distribution of sulcal pits, and computed the frequency of sulcal 

pits appearing in each concentration region, according to the following 5 steps.

1. Based on the sulcal pits clustering result, each vertex in an infant cortical surface 

was assigned a density value. Specifically, if a vertex was a sulcal pit and its 

corresponding vertex in the surface atlas was in a cluster, the density value was set 

as 1; otherwise, the density value was set to as 0.

2. All infant cortical surfaces from 0 to 2 years of age were mapped onto the surface 

atlas at 1 year of age, and the density value of each vertex in this atlas surface was 

calculated as the sum of the density values of the corresponding vertices from all 

the cortical surfaces at 0, 1 and 2 years of age.

3. The density map was further smoothed by 20 iterations using an anisotropic 

smoothing method that smoothed the density map along the orientations of sulci, 

based on the normal direction information. Note that, as the density map was 

computed from 73 subjects, the density values were sparsely distributed in sulci. 

Therefore, without smoothing, it would lead to many small regions when using the 

watershed method in the next step. Specifically, the anisotropic smoothing of the 

density values was formulated as:

(3)

At the vertex i, d(i, t) is the density value at the iteration t, p(i) is the 3D coordinate 

position of vertex i, and n(i) and n(j) are the respective normal directions. S(n(i)

·n(j)) is defined as: if n(i) ·n(j)>0, S(n(i) ·n(j))= n(i) ·n(j); otherwise, S(n(i) · 

n(j))=0. N(i) is the N-ring neighborhood of the vertex i. Herein, we experimentally 

adopted N=3 in our results.

4. A watershed method, which stopped when the density value was less than 0.04, 

was performed on the smoothed density map to partition the surface atlas at 1 year 

of age into regions. Then these regions were mapped back onto the surface atlases 

of 0 and 2 years of age. Results of concentration regions with respect to different 

settings of parameters can be found in Supplementary Materials.

5. The frequency of sulcal pits appearing in each concentration region was computed. 

Specifically, if a sulcal pit in an infant surface was mapped into a region in the 

corresponding age-matched surface atlas, the frequency of this region was 

increased by one. If two or more sulcal pits from an infant cortical surface were 
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mapped into the same region, only one sulcal pit was counted. Finally, the 

frequency was normalized by the number of subjects.

3. Results

Spatial Distributions of Sulcal Pits

We extracted sulcal pits from the cortical surfaces of all 73 infants at birth, 1 and 2 years of 

age. To examine the spatial distribution of sulcal pits across individuals at each age, all the 

sulcal pits from 73 infants were mapped onto the age-matched inflated surface atlas, as 

shown in Figure 3. Specifically, the sulcal pits extracted from all 73 infant scans at birth 

were mapped onto the surface atlas at birth, as shown in the first column of Figure 3. 

Similarly, the sulcal pits extracted from all the scans at 1 year (2 year) of age were mapped 

onto the corresponding surface atlas at 1 year (2 year) of age, as shown in the second (third) 

column of Figure 3. As can be seen, the sulcal pits of the infant population were consistently 

concentrated in some specified regions from 0 to 2 years of age. This pattern was 

particularly pronounced in major sulci, such as the central sulcus, precentral sulcus, 

postcentral sulcus, superior temporal sulcus, and parieto-occipital sulcus. For example, in 

the central sulcus, we identified two distinct clusters of sulcal pits on both left and right 

hemispheres at birth. During the dynamic cortex development from 0 to 2 years of age, the 

relative positions of concentration regions kept almost unchanged. These results suggest the 

existence of spatially-consistent distributions of sulcal pits in major sulci across subjects at 

term birth, and these spatial distribution patterns are relatively stable during the dynamic 

cortex development in the first 2 years of life. In addition, individual’s average change of 

sulcal pit number was 3.67±0.13 in the first year and 1.30±0.67 in the second year. The 

change of individuals’ sulcal pit number was very small, and was likely caused by the 

development of minor sulci or noises in the surface-processing pipeline. To closely compare 

the distributions of sulcal pits in infants with those in adults, we also applied our method to 

the cortical surfaces of 64 young adults. As shown in the fourth column of Figure 3, the 

spatial distributions of sulcal pits in major sulci of adults were highly consistent with those 

of infants, though more sulcal pits in minor sulci existed in adults. For more discussions on 

difference between infants and adults, please see the Supplementary Materials.

To better examine the hemispheric asymmetries of the sulcal pits, we mapped the sulcal pits 

of right hemispheres onto the left hemispheric surface atlases, as shown in Figure 4. The 

sulcal pits of left hemispheres were represented by red points, while the sulcal pits of right 

hemispheres were represented by green points. In most cortical regions, the spatial 

distributions of sulcal pits were relatively symmetric. However, several regions exhibited 

strong asymmetries of the sulcal pits distribution. For example, in the central sulcus, sulcal 

pits in the left hemisphere were more superior in position, compared with those in the right 

hemisphere. In the superior temporal sulcus, the sulcal pit cluster close to the temporal pole 

was more anterior in the right hemisphere than in the left hemisphere. In contrast, the sulcal 

pit cluster close to the Heschl’s gyrus (primary auditory cortex) in the left hemisphere was 

more anterior than that in the right hemisphere. In addition, a sulcal pit cluster at the 

superior part of the postcentral sulcus existed in the left hemisphere, but it didn’t appear in 

the right hemisphere. These asymmetric patterns were generally quite stable from birth to 2 

years of age. Certain longitudinal changes were also observed. For example, the number of 

Meng et al. Page 8

Neuroimage. Author manuscript; available in PMC 2015 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sulcal pits in the left superior temporal sulcus was much larger than that in the right 

hemisphere at 2 years of age, compared to birth and 1 year of age. Note that left-right 

cortical hemispheric correspondences were established by alignment all spherical surfaces of 

left hemispheres and mirror-flipped right hemispheres onto the left-right unbiased and age-

matched spherical surface atlases (Li et al., 2014b), based on the cortical folding geometries 

of average convexity and mean curvature, using Spherical demons. Therefore, left-right 

hemispheric correspondences were largely unbiased to any hemisphere. Thus, the positional 

asymmetries of sulcal pits on the surface atlases largely reflected their left-right positional 

differences relative to the sulci.

Concentration Regions of Sulcal Pits

Based on the spatial distributions of sulcal pits, we further partitioned the cortical surface as 

a set of concentration regions of sulcal pits, as shown in Figure 5, where each region was 

assigned an anatomical label. Both left and right hemispheres had 54 concentration regions 

of sulcal pits, and most of the concentration regions in the two hemispheres were one-to-one 

mapped. Also, most major sulci contained 2 to 4 concentration regions. One notable 

exception was that the cingulate sulcus, which was quite long and variable across 

individuals, contained 7 concentration regions in the left hemisphere and 6 concentration 

regions in the right hemisphere. Some short sulci only contained one concentration region, 

such as the lateral occipital sulcus, olfactory sulcus, subparietal sulcus and parieto-occipital 

sulcus. As each infant twin pair shared certain genetic information, which might affect the 

similarity of their sulcal morphologies, we repeated our experiments by removing one 

subject for each twin pair and achieved similar results (Figure S9, Supplementary Material).

To inspect the temporal changes of the frequency of sulcal pits appearing in each 

concentration region, Figure 6 provided the frequency maps at birth, 1 and 2 years of age. 

As can be seen, although the frequency maps across ages were not strictly the same, high 

frequency regions were consistently found in major sulci, such as the central, precentral, 

postcentral, superior temporal, superior frontal, cingulate, parieto-occipital and calcarine 

sulci at all three ages. The frequency map was generally stable during the dynamic cortex 

development in the first 2 years, with some regions showing gradual increases. To make a 

close comparison with adults, we also provided the frequency maps of 64 adults in Figure 

S10 of Supplementary Materials, where high frequency regions were also found in major 

sulci.

Several notable hemispheric asymmetries can be observed in the concentration regions of 

sulcal pits. For example, in the central sulcus, the frequency of the concentration region in 

its superior part (concentration region 6) on the left hemisphere was much higher than that 

on the right hemisphere consistently from birth to 2 years of age. Similarly, in the 

postcentral sulcus, the frequency of the concentration region in its middle part 

(concentration region 13) on the left hemisphere was also larger than that on the right 

hemisphere consistently from birth to 2 years of age. Moreover, in the postcentral sulcus, 

there existed a concentration region of sulcal pits in its superior part (concentration region 

12) on the left hemisphere, but no corresponding region on the right hemisphere, which was 

also observed in adults (Figure S10, Supplementary Materials). In the superior temporal 
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sulcus, there were four concentration regions of sulcal pits (concentration regions 19, 20, 21 

and 22) on the left hemisphere, but only three concentration regions on the right hemisphere 

(concentration regions 19, 20 and 21). In the left superior temporal sulcus, the frequency of 

the concentration region was highly consistent at birth, 1 and 2 years of age; while in the 

right superior temporal sulcus the frequency of the concentration region 21 decreased from 

birth to 1 year of age, and meanwhile the frequency of its neighboring concentration region 

20 increased. This may suggest that the sulcal pits in the right superior temporal sulcus 

shifted towards the anterior part along the sulcus. In addition, the frequency of the 

concentration region on the left temporal pole was consistently larger than that on the right 

temporal pole during the first 2 years.

We also investigated the growth of the mean depth of the sulcal pits in each concentration 

region in the first 2 years of life, as shown in Figure 7. The mean depths of concentration 

regions increased dramatically in the first year and moderately in the second year, with 

regionally heterogeneous growth patterns. In the first year, the superior frontal sulcus 

(concentration regions 1 and 2), inferior frontal sulcus (concentration regions 8 and 9), 

superior temporal sulcus (concentration regions 19 and 20) and inferior temporal sulcus 

(concentration regions 25 and 26) exhibited high growth of the mean depth of sulcal pits. 

The central sulcus (concentration regions 6 and 7), calcarine sulcus (concentration region 

36), and insular cortex exhibited low growth of the mean depth of sulcal pits. In the second 

year, concentration regions on the lateral surface exhibited larger growth than those on the 

medial surface.

Gender Differences of Sulcal Pits

Gender differences of sulcal pits during the first 2 years were also investigated. For each 

infant, we computed the mean depths for all sulcal pits at birth, 1 and 2 years of age, as 

shown in Figure 8. Table 2 further provided the mean values and standard deviations of 

mean depths of the sulcal pits of the infant population from 0 to 2 years of age. By including 

the age as a confounding factor, the mean depth of sulcal pits in males was consistently 

larger than that of females at 0, 1 and 2 years of age, with the p-values consistently smaller 

than 0.05. However, by including both the age and total brain volume (TBV) as confounding 

factors, no significant difference between males and females was found in the mean depth of 

sulcal pits. Figure 9 shows that the mean depth of sulcal pits and the TBV are approximately 

linearly correlated (r>0.96), suggesting that the gender difference of the mean depth of 

sulcal pits are primarily induced by their brain volume differences.

Gender differences were also found on the hemispheric asymmetries of mean depth of sulcal 

pits. For males, the mean depth of sulcal pits in the right hemisphere was significantly larger 

than that in the left hemisphere at 1 and 2 years of age (p ≪ 0.05), but not at birth. For 

females, no significant hemispheric asymmetry of the mean depths of sulcal pits was 

observed at birth, 1 and 2 years of age. Table 3 further showed the growth percentages of the 

mean depths of sulcal pits from 0 to 2 years of age. As we can see, the mean depth of sulcal 

pits increased dramatically in the first 2 years. Specifically, the mean depth of males 

increased 40.74±9.08% in the first year and 8.27±3.80% in the second year, while the values 

of females increased 43.72±8.70% in the first year and 6.81±3.50% in the second year.

Meng et al. Page 10

Neuroimage. Author manuscript; available in PMC 2015 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We also computed the normalized mean depth of sulcal pits, which was defined as the ratio 

between the mean depth of sulcal pits and the mean depth of the whole cortical surface, as 

shown in Figure 10 and Table 4. The temporal change of the normalized mean depth 

reflected the relationship between the development of sulcal pits and the development of the 

cortex. In the first year, the normalized mean depth of sulcal pits decreased dramatically, 

suggesting that the depth increase of sulcal pits was smaller than that of the whole cortex. 

This is likely related to the fact that major sulci become longer and new minor sulci emerge 

and develop, leading to more convoluted areas. In the second year, the normalized mean 

depth of sulcal pits kept almost unchanged. By regressing out both age and TBV, there was 

no significant difference in the normalized mean depth of sulcal pits between males and 

females at term birth, 1 year and 2 years of age.

Meanwhile, we also investigated the frequency of the concentration regions of sulcal pits for 

males and females separately, and found no strong gender differences in almost all sulcal 

regions. However, we found one instance of pronounced gender difference in the central 

sulcus on the right hemisphere, as shown in Figure 11. As can be seen, in the superior part of 

the central sulcus, the frequency of the concentration region of sulcal pits of males was 

consistently higher than that of females in 0, 1 and 2 years of age.

4. Discussion

Spatial Distribution and Temporal Development of Sulcal Pits in Infants

For the first time, we find that sulcal pits in major sulci across infant subjects are spatially 

highly-consistent and clustered in certain cortical regions at term birth. Moreover, the spatial 

distributions of sulcal pits are temporally relatively stable in the first 2 years, despite the 

dynamic cortical surface expansion and sulcal depth increase during this stage. Our results 

in infants are consistent with our results in young adults and also the previous studies in 

adults (Im et al., 2010; Lohmann et al., 2008), where sulcal pits in major sulci are found 

spatially consistent across subjects. Taken together, the spatially consistent distributions of 

sulcal pits are largely established at term birth, and are kept stable during postnatal brain 

development. These results also support the findings that major cortical foldings are well 

established (Chi et al., 1977; Hill et al., 2010a) at term birth, and well preserved during 

postnatal brain development (Li et al., 2013).

We identify 54 concentration regions of sulcal pits in each hemisphere, though the 

concentration regions in the left and right hemispheres are not strictly one-to-one mapped. 

Concentration regions in major sulci show high frequency, such as the central sulcus, 

precentral sulcus, superior frontal sulcus, inferior frontal sulcus, intra-parietal sulcus, 

superior temporal sulcus, parieto-occipital sulcus and cingulate sulcus. In the previous study 

of adults (Im et al., 2010), 48 concentration regions on the left hemisphere and 47 

concentration regions in the right hemisphere are found. For most concentration regions, our 

results in infants are generally consistent with our results in young adults and also the results 

in (Im et al., 2010). For examples, in both studies, most major sulci contain 2 to 4 

concentration regions, and the cingulate sulcus has more than 4 concentration regions. The 

different numbers of concentration regions between our results and (Im et al., 2010) are 

likely due to the methodology differences and age range differences of subjects. For 
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example, there are 2 concentration regions in the central sulcus in both our infant and adult 

results, approximately corresponding to the positions of sulcal roots in (Cachia et al., 2003), 

but 3 concentration regions in the previous study of adults (Im et al., 2010). In fact, the 

frequency of the extra concentration region in (Im et al., 2010) is quite low (less than 30%), 

and this region is also reported as the central sylvian sulcus in (Perrot et al., 2011). Note that 

our results are consistent with the findings that there are two primitive folds in the central 

sulcus (Cachia et al., 2003; Lefevre et al., 2009; Lohmann et al., 2008; McKay et al., 2013; 

Operto et al., 2012; Regis et al., 2005).

The depth of sulcal pits exhibits regionally heterogeneous development, with high growth in 

the high-order association cortex, including prefrontal cortex and temporal cortex, and low 

growth in the central sulcus (the boundary between primary motor cortex and somatosensory 

cortex) in the first 2 years. In the previous studies of cortical surface area expansion in 

infants, the prefrontal cortex and temporal cortex exhibit high expansion, while the central 

sulcus exhibits low expansion (Li et al., 2013). The high growth of the depth of sulcal pits in 

the association cortex likely leads to the high expansion of cortical surface area in these 

regions. Evolutionary high-expansion of cortical surface area between macaque and human 

is also found in the prefrontal and temporal cortices (Hill et al., 2010b). The association 

cortex corresponds to phylogenetically late-developing regions that are essential to the 

human-specific cognitive functions such as reasoning and language (Goldman-Rakic, 1988; 

Mueller et al., 2013). Our results also suggest that the association cortex is relatively 

immature in structure compared to the sensorimotor cortex at term birth.

Hemispheric Asymmetries of Sulcal Pits in Infants

We found 4 concentration regions in the left superior temporal sulcus (STS) and 3 

concentration regions in the right STS, which are consistent with the results in adults (Im et 

al., 2010). In addition, in the STS, the sulcal pits cluster close to the temporal pole was 

found to be more anterior in the right hemisphere than that in the left hemisphere. In both 

infants and adults, hemispheric structural asymmetries have been found in STS. For 

example, both sulcal depth and cortical surface area in the right STS are larger than those on 

the left STS (Glasel et al., 2011; Hill et al., 2010a; Li et al., 2014b; Van Essen, 2005; Van 

Essen et al., 2012). These asymmetries may be related to the fact that the STS appears 1 or 2 

weeks earlier in the right hemisphere than in the left hemisphere in fetuses (Chi et al., 1977; 

Habas et al., 2012). STS has also been reported to relate to the functional asymmetry 

(Emmorey et al., 2003; Good et al., 2001; Penhune et al., 1996; Sowell et al., 2002). 

Language function, one of the most famous functional asymmetries, is reported to be 

associated with the lateralization to the left superior temporal gyrus (Balsamo et al., 2002; 

Binder et al., 1997; Bleich-Cohen et al., 2009; Karbe et al., 1995; Tzourio et al., 1998). 

Thus, it has been suggested that the hemispheric asymmetry of sulcal pits in STS may be 

related to the language function lateralization (Im et al., 2010).

In our results, as all left and right hemispheres were aligned based on the cortical folding, 

the position asymmetries of sulcal pits largely reflect the left-right positional difference 

relative to the sulci. We have provided Figures S11-S12 in Supplementary Materials to 

illustrate absolute positional asymmetries of sulcal pits. The infant cortical surfaces exhibit 
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the most prominent vertex position asymmetries around the supramarginal gyrus (SMG), 

with the left SMG being significantly inferior and posterior to the right SMG (Li et al., 

2014a), which likely leads to the absolute positional asymmetries of sulcal pits in the 

superior temporal sulcus.

The postcentral sulcus has two concentration regions in the left hemisphere, but only one 

concentration region in the right hemisphere in both infants and young adults. Meanwhile, 

the frequency of concentration regions in the postcentral sulcus in the left hemisphere is 

consistently higher than that in the right hemisphere from birth to 2 years of age, consistent 

with the results in adults (Im et al., 2010). The cortical surface area of the postcentral gyrus 

(somatosensory cortex) in the left hemisphere has been found significantly larger than that in 

the right hemisphere in both infants (Li et al., 2014b) and adults (Jung et al., 2003), 

suggesting that the asymmetries of sulcal pits in the postcentral sulcus may be related to the 

lateralization of the cortical surface area.

In the central sulcus, as shown in Figure 4, sulcal pits in the left hemisphere were more 

superior in position, compared with those in the right hemisphere. This observation is 

consistent with the asymmetry of the hand knob localization reported in (Sun et al., 2012). 

Moreover, the frequency of the concentration region 6 in the left central sulcus is 

consistently higher than that in the right central sulcus from birth to 2 years of age. This 

asymmetry might be related to the fact that the left central sulcus tends to have double knobs 

while the right sulcus tends to have a single knob (Sun et al., 2012); it could also be related 

to the right-deeper-than-left sulcal depth asymmetry in the superior part of the central sulcus 

in infants (Li et al., 2014b).

Gender Differences of Sulcal Pits in Infants

The mean depth of sulcal pits in males is consistently larger than that of females from birth 

to 2 years of age, which is largely induced by the gender difference of the brain volume. 

According to the allometry, larger brains exhibit more extensive cortical folding, with 

regionally heterogeneous correlation patterns (Germanaud et al., 2012; Li et al., 2014c; Toro 

et al., 2008). Therefore, there might exist gender difference of the mean depth of sulcal pits 

in some specific regions, which will be investigated in our further work. In the superior part 

of the central sulcus and the inferior part of the postcentral sulcus, the frequency of 

concentration region of sulcal pits in males is consistently higher than that of females at 0, 1 

and 2 years of age. These results suggest that gender differences on sulcal pits have already 

existed at birth and are kept during postnatal cortex development. Moreover, the 

hemispheric asymmetry of the mean depth of sulcal pits increases with the age in males, but 

with no such significant hemispheric asymmetry found in females. This is consistent with 

the previous study of the depth of the central sulcus (Cykowski et al., 2008), which reported 

that the age correlation of depth asymmetries in the central sulcus is only significant in 

males.

Technical Issues

Cortical surface registration was performed by Spherical Demons, which used the average 

convexity for rough alignment and then the mean curvature for final fine alignment. The 
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average convexity recorded the accumulated movement for each vertex during surface 

inflation, reflecting the large-scale geometry of the cortical folding. Therefore, cortical 

surface registration was not forced to explicitly align sulcal pits. Due to the highly variable 

cortical folding across individuals, cortical surface registration typically aims to align those 

consistent major cortical foldings, with the smoothness constraint in the deformation field. 

Although we could force the alignments of minor and variable cortical folding by relaxing 

the smoothness constraint, thus leading to more clustered sulcal pits in those regions, the 

cortical correspondences in those variable folding regions would be actually less reliable and 

meaningful. The cingulate sulcus is very long, containing many variable sulcal pits, and also 

has many minor and variable sulci inside or around it. Thus, the surface registration was not 

forced to perfectly align those variable sulcal pits, leading to possibly inconsistent results in 

cingulate sulcus.

Limitations

Although we have revealed many important aspects on the sulcal pits in infants, the 

underlying biological mechanisms and changes are still largely unclear. Since the cortical 

connectivity by axon fibers in white matter is thought to be the major driving force of 

forming the convoluted cortical folding (Nie et al., 2012a; Van Essen, 1997), it would 

provide more insights into the infant cortex development by jointly studying the 

development of cortical sulcal pits and white matter fibers (derived from diffusion weighted 

MR images). Another limitation is that, although we have observed some relationships 

between sulcal pits and functional areas, not all the phenomenon of the sulcal pits, such as 

hemispherical asymmetries and gender differences, can be biologically well explained. 

Further studies using the functional MR images of infants are needed to better understand 

the biological meanings behind.

5. Conclusion

For the first time, we systematically studied the spatial distribution, longitudinal 

development, hemispheric asymmetries, and gender differences of major cortical sulcal pits 

in 73 healthy infants at birth, 1 and 2 years of age. We have revealed several important 

aspects on sulcal pits in infant brains. First, sulcal pits in major sulci are spatially consistent 

across individuals at term birth. Second, the spatially consistent distributions of sulcal pits 

are temporally relatively stable during the dynamic cortex development in the first 2 years of 

life. Third, the depth of sulcal pits in the association cortex grows more rapidly than that in 

the sensorimotor cortex in the first 2 years of life. Fourth, hemispheric asymmetries of the 

spatial distribution of sulcal pits exist in several cortical regions, such as the central, 

postcentral, and superior temporal sulci, likely related to the lateralization of brain functions 

of these areas. Fifth, consistently deeper sulcal pits in males than in females from birth to 2 

years of age is largely induced by their brain volume differences. These findings greatly 

increase our limited understandings on the sulcal pits development in infants. In our future 

work, we will also investigate the sulcal pits differences between healthy infants and infants 

at high-risk for neurodevelopmental disorders, to provide important insights into the 

neurodevelopment disorders associated with abnormal cortical foldings. Meanwhile, since 

the sulcal pits in major sulci are spatially consistent and temporally stable, some of them 
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could be potentially used as reliable anatomical landmarks for guiding both longitudinal and 

cross-sectional brain MR image registration.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A 2D schematic illustration of the ridge height R, defined as the sulcal depth difference 

between a ridge point (green point) and a candidate sulcal pit (red or blue point).
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Figure 2. 
Sulcal pits extraction results on the left hemisphere of a representative infant at 0, 1 and 2 

years of age. In the first, third and fifth rows, the sulcal pits represented by white points are 

overlaid on the cortical surfaces, color-coded by the sulcal depth (mm). For better 

inspection, in the second, fourth and sixth rows, the sulcal pits represented by red points are 

mapped onto the partially inflated cortical surfaces.

Meng et al. Page 20

Neuroimage. Author manuscript; available in PMC 2015 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Spatial distributions of sulcal pits on both left and right hemispheres from 73 infants at 0, 1, 

2 years of age and also 64 young adults. All the sulcal pits (red points) were mapped onto 

the age-matched, partially-inflated cortical surface atlases.
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Figure 4. 
Hemispheric asymmetries of the spatial distributions of sulcal pits at birth, 1 and 2 years of 

age. The red points are the sulcal pits from left hemispheres, while the green points are the 

sulcal pits from right hemispheres, but mapped onto the left hemisphere surface atlases.
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Figure 5. 
The concentration regions of the sulcal pits color-coded by their frequencies, overlaid on the 

partially inflated surface atlas at 1 year of age. The label for each of 61 concentration 

regions is assigned as follows: (1~4) superior frontal sulcus a, b, c and d; (5) junction 

between superior frontal sulcus and precentral sulcus; (6~7) central sulcus a and b; (8~10) 

inferior frontal sulcus a, b and c; (11) junction between precentral sulcus and inferior frontal 

sulcus; (12~13) postcentral sulcus a and b; (14~16) intraparietal sulcus a, b and c; (17) 

junction between intraparietal sulcus and superior temporal sulcus; (18) lateral occipital 

sulcus; (19~22) superior temporal sulcus a, b, c and d; (23~24) anterior occipital sulcus a 

and b; (25~27) inferior temporal sulcus a, b and c; (28~31) occipito-temporal sulcus a, b, c 

and d; (32~33) orbital sulcus a and b; (34) olfactory sulcus; (35~37) calcarine sulcus a, b 

and c; (38~43) collateral sulcus a, b, c, d, e and f; (44~50) cingulate sulcus a, b, c, d, e, f and 

g; (51) subparietal sulcus; (52) parieto-occipital sulcus; (53) junction between parieto-

occipital sulcus and calcarine sulcus; (54~61) circular insular sulcus a, b, c, d, e, f, g and h. 

Note that, although most concentration regions are symmetric in two hemispheres, some 

concentration regions only appear in one hemisphere.
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Figure 6. 
The frequency maps of sulcal pits appearing in concentration regions of 73 infants at birth, 1 

and 2 years of age. The frequency map is generally stable during the cortex development in 

the first 2 years.
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Figure 7. 
The increasing percentage of the mean depth of sulcal pits in each concentration region from 

0 to 1, 1 to 2, and 0 to 2 years of age.
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Figure 8. 
The distributions of the mean depths of sulcal pits of 73 infants at 0, 1 and 2 years of age.
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Figure 9. 
The distributions of the mean depths of sulcal pits of 73 infants with respect to their total 

brain volumes (r>0.96).
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Figure 10. 
The distributions of the normalized mean depths of sulcal pits of 73 infants at 0, 1 and 2 

years of age.
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Figure 11. 
Frequency of concentration regions of sulcal pits on the right hemisphere for males and 

females separately at 0, 1 and 2 years of age.
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Table 1

The mean ages at the MR scanning of the 73 infants at 0, 1 and 2 years of age, as well as 64 young adults.

0 year (days) 1 year (days) 2 years (days) Adults (years)

Male 27.3±13.1 390.0±21.6 765.4±37.4 18.7±1.4

Female 23.0±6.1 396.6±22.4 748.2±37.4 18.9±1.4

All 25.5±10.8 392.8±22.1 758.1±38.1 18.9±1.4
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