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Distinct Roles of Bulbar Muscarinic and Nicotinic Receptors
in Olfactory Discrimination Learning
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The olfactory bulb (OB) and piriform cortex receive dense cholinergic projections from the basal forebrain. Cholinergic modulation
within the piriform cortex has long been proposed to serve important functions in olfactory learning and memory. We here investigate
how olfactory discrimination learning is regulated by cholinergic modulation of the OB inputs to the piriform cortex. We examined rats’
performance on a two-alternative choice odor discrimination task following local, bilateral blockade of cholinergic nicotinic and/or
muscarinic receptors in the OB. Results demonstrate that acquisition, but not recall, of novel discrimination problems is impaired
following blockade of OB cholinergic receptors, although the relative contribution of muscarinic and nicotinic receptors depends on task
difficulty. Blocking muscarinic receptors impairs learning for nearly all odor sets, whereas blocking nicotinic receptors only affects
performance for perceptually similar odors. This pattern of behavioral effects is consistent with predictions from a model of cholinergic
modulation in the OB and piriform cortex (de Almeida et al., 2013). Model simulations suggest that muscarinic and nicotinic receptors
may serve complementary roles in regulating coherence and sparseness of the OB network output, which in turn differentially regulate
the strength and overlap in cortical odor representations. Overall, our results suggest that muscarinic receptor blockade results in a bona
fide learning impairment that may arise because cortical neurons are activated less often. Behavioral impairment following nicotinic
receptor blockade may not be due to the inability of the cortex to learn, but rather arises because the cortex is unable to resolve highly
overlapping input patterns.
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Introduction
As early as the first synapse in the rodent olfactory bulb (OB),
ascending signals from olfactory sensory neurons are integrated
with centrifugal projections from cortex and subcortical neuro-
modulatory inputs (Halász and Shepherd, 1983; Shipley and En-
nis, 1996; Cleland and Linster, 2003). In particular, the OB is the
recipient of dense cholinergic projections from the horizontal
limb of the diagonal band of Broca (Macrides et al., 1981; Zá-
borszky et al., 1986). Cholinergic modulation of cortical circuits
has long been associated with attentional and top-down process-
ing and is thought to play a critical role in learning and memory
(Hasselmo et al., 1992; Sarter and Bruno, 1997; Yu and Dayan,
2005; Hasselmo and Giocomo, 2006).

A growing body of research has elucidated the cellular effects
of cholinergic modulation in the OB, which are mediated by both

nicotinic and muscarinic receptors (Castillo et al., 1999; Ghat-
pande et al., 2006; Pressler et al., 2007; D’Souza and Vijayaragha-
van, 2012). In the glomerular layer of the OB, activation of
nicotinic receptors regulates the excitability of inhibitory periglo-
merular cells (Ravel et al., 1990; Castillo et al., 1999) and en-
hances the contrast in bulbar activation patterns, i.e., determines
which mitral (Mi) cells are responsive to a given odorant (Man-
dairon et al., 2006b; Chaudhury et al., 2009). Behaviorally, block-
ade of nicotinic receptors in the OB impairs olfactory
discrimination of chemically similar odorants, but does not affect
discrimination of dissimilar odorants; these effects can be pre-
dicted in a straightforward manner from changes in bulbar acti-
vation patterns (Mandairon et al., 2006b).

In the deeper layers of the bulb, muscarinic receptors are thought
to regulate spike timing and synchronization of Mi cells (Li and
Cleland, 2013) by depolarizing granule cells (Castillo et al., 1999)
and transforming afterhyperpolarization into afterdepolarization
(Pressler et al., 2007). These effects could serve to regulate odor pro-
cessing in cortical networks, which are sensitive to the timing of Mi
cell inputs (Haddad et al., 2013). Although previous observations
suggest that muscarinic receptor modulation is important during
olfactory tasks that require odors to be remembered across short
time delays (Ravel et al., 1994; Devore et al., 2012), we currently lack
a mechanistic understanding of how these behavioral consequences
arise from these changes in the OB network output.

Here, we used a combination of behavioral pharmacology and
computational modeling to investigate the role of bulbar nico-
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tinic and muscarinic receptors in olfactory discrimination learn-
ing in rats (Fig. 1). We found that acquisition of novel odor
discrimination problems generally required bulbar muscarinic
receptors, whereas nicotinic receptors only affected discrimina-
tion between odors eliciting a high degree of perceptual overlap.
To understand the neural basis of the behavioral impairments, we
simulated the task using a recently developed model of cholin-
ergic modulation in the OB and piriform cortex (de Almeida et
al., 2013). Modeling results suggest that behavioral discrimina-
tion of odors is directly related to the Euclidean distance between
their cortical representations (Gire et al., 2013) and that bulbar
nicotinic and muscarinic receptors can control this distance by
independently regulating the specificity and strength of the cor-
tical odor representations, respectively.

Materials and Methods
Subjects
Seventeen adult male Long–Evans rats initially weighing 250 –300 g were
obtained from Charles River Laboratory. Rats were housed individually
in standard laboratory cages on a 12 h reversed light/dark cycle (lights on
at 9:00 P.M.), with behavioral testing occurring during their dark phase.
Rats were given unlimited access to water but were food deprived to

maintain bodyweight at 85% of their ad libitum-feeding weight. All pro-
cedures were approved by the Cornell University Institutional Animal
Care and Use Committee.

Surgery
Indwelling guide cannulae (22 gauge; Plastics One) were implanted bi-
laterally into the OBs as described previously (Devore et al., 2012).
Briefly, under aseptic conditions, rats were anesthetized with isoflurane
(5% saturated vapor) and mounted in a stereotax. Anesthesia was main-
tained throughout the surgical procedures with isoflurane at 1–3% satu-
rated vapor. After exposing the skull and clearing overlying tissues, a
small craniotomy was made over each OB (anteroposterior, �8 mm;
mediolateral, �1.9 mm). Guide cannulae were lowered to a depth of 4.0
mm relative to bregma, just dorsal of the target infusion site, and secured
to the skull using stainless-steel bone screws and dental acrylic (Fig. 2).
Dummy cannulae, cut to extend 1 mm beyond the end of the guide tubes,
were fixed in place except during infusions to prevent blockage or infec-
tion. Rats were given unlimited access to food for 1 week following sur-
gery and were then returned to a food-deprivation schedule in
preparation for behavioral testing.

Odorants
To vary the difficulty of the olfactory discrimination task, we asked rats to
discriminate between pairs of chemically unrelated monomolecular

Figure 1. Experimental and computational experiments. A, Behavioral experiments. Rats are trained using an operant conditioning paradigm to discriminate between two novel odorants. Both
odorants are rewarded and rats learn to associate the odorants with spatially separated reward ports. Learning is assessed by measuring the percentage correct performance for five consecutive
(daily) sessions consisting of 200 trials each. Cholinergic modulation in the OB is manipulated by directly infusing antagonists bilaterally into the OBs. B, Simulations. To simulate odor discrimination
learning, the OB and cortical network model is presented with a pair of odorants over a sequence of five training sessions. Olfactory information is presented to the bulbar network [olfactory sensory
neuron (OSN) activation pattern], transformed and processed by the OB network and projected to the cortical network. The cortical representations are rendered more distinct during learning via
plasticity at associational synapses, simulating behavioral discrimination learning. Manipulations of cholinergic modulation in the OB are simulated by changing OB network parameters. Learning
is measured as the change in distance between cortical odor representations across training sessions. Heat maps show simulated average firing rates in the model represented in a 10 � 10 matrix,
with warmer colors representing higher rates.
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odorants (Table 1, training sets 1–3, testing sets 1– 8) or binary mixtures
of chemically related monomolecular odorants in the ratios of 1:3 and 3:1
(Table 1, testing sets 9 –13). All pure odorants were obtained from Sigma-
Aldrich and were diluted in mineral oil so as to theoretically emit a
steady-state vapor-phase partial pressure of 3 Pa (Cleland et al., 2002);
the corresponding percentage liquid volume dilutions can be found in
Table 1.

Behavior apparatus and training
All behavioral training and testing took place in an operant chamber
(Coulbourn Instruments). House lights, located on the rear wall of the
chamber, were illuminated to indicate the start of a new trial. Rats were
trained to poke their nose into an odor port located centrally in the front
wall of the chamber and hold for at least 300 ms (Fig. 1A). An infrared
photobeam detected entry into the nose port and triggered delivery of
one of two pseudorandomly selected odors. Odor delivery was controlled
by a computer-controlled olfactometer controlling a series of solenoid
valves (NResearch). Odors were generated by bubbling charcoal-filtered
air (1 L/min) through glass vials containing pure odorants diluted in
mineral oil (Table 1). The odor stimulus turned off when the rat with-
drew from the nose port or after 1500 ms if the rat remained in the nose
port for extended periods of time. Rats were trained to respond to the
odor stimulus by poking into one of two reward ports based on the odor
identity (Fig. 1A). Correct responses, defined as a poke into the correct
reward port within 8 s of odor termination, resulted in delivery of a 45 mg
sucrose pellet (BioServe) followed by chamber lights extinguishing for
3 s; incorrect or incomplete responses resulted in extinguishing of cham-
ber lights for 6 s. All hardware events were controlled using custom-
written Labview (National Instruments) routines.

Before surgical implantation of cannulae, rats were trained to perform
the task using three training odor sets (Table 1). Rats were trained on
multiple odor sets to promote rule learning, as opposed to rote learning
of a specific odor pair (Jennings and Keefer, 1969). Training on an indi-
vidual odor set was considered complete when rats achieved �70% cor-
rect trials across the session for two consecutive sessions. Following the
surgical recovery period, rats were retrained on the same three training
odor sets before commencing experimental sessions.

Pharmacology
We used cholinergic antagonists selective for either nicotinic or musca-
rinic receptors to determine the role of each receptor type in task perfor-
mance (Ravel et al., 1994; Mandairon et al., 2006b; Chaudhury et al.,

2009). Rats were tested using each antagonist separately, with a mixture
of both antagonists, or with 0.9% sterile saline as a vehicle control.
Specifically, the following drugs/dosages were used: the nonselective
muscarinic antagonist scopolamine hydrobromide (22 mM and 4.4 mM;
Sigma-Aldrich) and the selective nicotinic antagonist methyllycaconitine
citrate hydrate (MLA; 19.0 and 3.6 mM; Tocris Bioscience). Dosages were
chosen based on previous studies of cholinergic modulation of OB
(Mandairon et al., 2006b; Devore et al., 2012). Drugs were prepared
weekly by dissolving in 0.9% sterile saline and stored in small aliquots for
daily use.

Before each experimental session, animals received bilateral drug or
vehicle infusions at a rate of 2 �l/min for a total infusion volume of 6
�l/bulb (for both single and combination of drugs), which has been
shown to result in sufficient diffusion within but not outside the OB
(Mandairon et al., 2006b). The infusion cannulae were kept in place for
�1 min after the infusion ended to prevent backflow. Behavioral testing
commenced 20 min after drug administration was complete.

Experimental design
Acquisition. During each week of experimental testing, rats performed
200 trials per day for 5 consecutive days using the same novel odor set for
all 5 d. To determine the role of bulbar cholinergic processing in acqui-
sition of novel odor discrimination, we infused the same drug (or vehi-
cle) for each of the 5 consecutive testing days with each odor pair. We
tested muscarinic (scopolamine, 22 mM) and nicotinic (MLA, 19 mM)
blockade separately, as well as in combination at the same dosages. The
order in which rats experienced the different drug treatments was ap-
proximately counter-balanced across subjects. Nine rats participated in
the acquisition task: four rats completed 8 weeks of behavioral testing (2
weeks for each of the drug conditions) and five rats completed 4 weeks of
testing (1 week for each of the drug conditions). Each of the 13 odor sets
listed in Table 2 was tested once in each of the four main drug conditions.
Odor sets were pseudorandomly assigned such that no two animals ex-
perienced an odor set– drug combination twice; rats were tested on one
novel odor set under each drug condition.

Control tasks. (1) To determine whether the dosages of drugs chosen
were excessive, we tested six rats for 1 week in the acquisition task after
infusing the combination drug mixture at 20% of the original concentra-
tion (scopolamine, 4.4 mM; MLA, 3.6 mM). (2) To ensure that rats were
not using nonodor information (such as auditory cues from the solenoid
valves) to solve the task, we tested six rats in the acquisition task for five
consecutive sessions using identical odors [(�)-limonene, 0.2% dilution
in mineral oil] loaded into different ports in the olfactometer. (3) To test
whether cholinergic receptor blockade affected odor perception in gen-
eral rather than acquisition in particular, we trained rats for 4 d with
saline infusions and tested under drug conditions on day 5.

Data analysis
Data analysis was performed using custom scripts written in Matlab (The
Mathworks) and SPSS statistical software (SPSS). Performance was as-
sessed by computing the fraction of correct trials out of the total number
of completed trials; incomplete trials were discarded. A mixed-effects
ANOVA was used to test for a significant effect of testing session (within
subjects), drug (between subjects), and odor set (between subjects). To
summarize performance across the 5 d test sequence, we computed a

performance index (PI), defined as ¥
d�1
5

�pd � 0.5�

5
, where pd is the frac-

tion of correct trials in a single session. The PI essentially serves as a
measure of learning rate: it is equal to one if rats perform perfectly across
all test sessions and zero if they perform at chance. Differences in PI
across drug treatments was detected using a one-way ANOVA; we used
Fisher’s post hoc pairwise comparisons to determine significant differ-
ences between drug and vehicle conditions. The criterion for significance
was set at � � 0.05.

Perceptual similarity test
We used an olfactory habituation paradigm (Cleland et al., 2002) to
assess the ability of rats to spontaneously discriminate between the pairs
of odors used in the two-alternative choice discrimination experiment.
We first habituated rats to one of the odors in an odor set by repeated

Figure 2. Cannulae placement. Coronal section through the OB illustrating placement of
guide cannula and infusion needle.
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presentation and then assessed the novelty response to the second odor in
the odor set by measuring active investigation, defined as directed sniff-
ing within 1 cm of the odor source. The relative magnitude of the novelty
response is assumed to be proportional to the perceptual similarity of the
test and habituated odors (Cleland et al., 2002). For this experiment, we
used a cohort of naive rats (n � 8), housed under identical conditions as
the rats participating in the discrimination experiments, but given un-
limited access to both food and water. Perceptual similarity testing took
place in the home cages of the test animals under red light. All odors were
diluted in mineral oil to a theoretical vapor-phase partial pressure of 3 Pa
(Table 2). Odors were presented by placing 60 �l of the odor stimulus
onto a 1 inch square piece of filter paper (Whatman #1) inside a weighing
dish. The trial commenced when the weighing dish was inverted and
placed on top of the wire cage lid. One experimenter prepared odor
stimuli and controlled the start and stop of each trial, while a second
experimenter, blind to the identity of the odorant, timed the active in-
vestigation. Each test session was preceded by one 50 s presentation of
mineral oil. Test sessions comprised four 50 s presentations of the habit-
uation odor at 5 min intervals, followed by two probe trials, consisting of
one 50 s presentation of the habituated and test odorants, in random
order. The assignment of the odors as habituation or test odorants, as

well as the order of the two probe trials, was balanced across subjects
and odor sets. Each rat completed one session for each of the 13 odor
sets listed in Table 2, in random order. Data were analyzed by com-
puting a behavioral dissimilarity index (Cleland et al., 2002), defined

as 1 �
tdifferent

tsame
, where tsame and tdifferent are the investigation times for the

probe trials for the habituation odor and test odor, respectively.

Histology
After completing all behavioral sessions, rats were deeply anesthetized
with an intraperitoneal injection of urethane (1.5 mg/kg) and received
bilateral infusions of 1% methylene blue (6 �l per bulb). Twenty minutes
following the dye infusion, rats were killed by cardiac perfusion of 0.9%
saline followed by 10% formalin. The brain was extracted and visually
inspected to confirm methylene blue diffusion within the main OBs
but not encroaching on surrounding surfaces. The brain was then
soaked in 10% formalin overnight, saturated in a solution of 20%
sucrose in PBS, and then sectioned in 40 �m slices and stained with
cresyl violet to verify cannulae placement within the main OB. All
cannulae were found to be centered in the OB and we observed no dye
infusions outside of the OBs.

Computational modeling
To assess the importance of OB cholinergic modulation on cortical dis-
crimination learning, we use a combined computational model of OB
and cortex (Figs. 1B, 3). Briefly, we have previously shown the network
effects of bulbar cholinergic modulation (de Almeida et al., 2013): nico-
tinic receptors modulate the sparseness of odor representations, whereas
muscarinic receptors modulate the synchrony among neurons mediating
this representation (Fig. 3B). From previous work, we assume that odor
representations in the OB define the perceptual similarity between pairs
of odorants (Cleland et al., 2002), and that odor discrimination learning
happens in structures postsynaptic to the OB, represented here by piri-
form cortex (Calu et al., 2007; Roesch et al., 2007; Miura et al., 2012; Gire
et al., 2013). The similarity of rate representations conveyed to the piri-
form cortex from the OB is modulated by acetylcholine (ACh; Fig. 3Ci),
as is the synchrony among neurons activated by the odorants (Fig. 3Cii).
Learning in the piriform cortex proper further modulates the cortical
representations of odorants and renders them more distinct from each
other (Fig. 1B; de Almeida et al., 2013). The modeling part of the present
study assesses whether known cholinergic modulation in the OB affects
cortical learning in a manner that is sufficient to reproduce the observed
behavioral effects (Fig. 1B).

Mi output and odor stimulation. The inputs to the piriform cortex
network were implemented as a simplified model of Mi cells, which
enabled us to independently manipulate the levels of sparseness or syn-
chronization in the odor representation while keeping the average Mi
output frequency constant, at �6 Hz. This balance helps to ensure that
the effects on cortical learning observed are a result of the changes in

Table 1. List of odorants used in behavioral experimentsa

ID Odor 1
Percentage volume/
volume concentration Odor 2

Percentage volume/
volume concentration

1 acetic acid 0.0078 pentyl butyrate 0.0572
2 butyl hexanoate 1.627 1,8-cineole 0.195
3 furfuryl propionate 0.6512 propanol 0.00553
4 methyl valerate 0.0228 2-pentanone 0.0054
5 Citronellal 1.658 butyl propionate 0.0604
6 2-furyl methyl ketone 0.259 heptanal 0.0707
7 Heptanol 0.838 ethyl acetate 0.00169
8 n-propyl acetate 0.00627 methyl 2-furoate 0.247
9 butanol/hexanol (3:1) 0.0156/0.0638 butanol/hexanol (1:3) 0.0052/0.191

10 hexanal/octanal (3:1) 0.0166/0.036 hexanal/octanal (1:3) 0.0055/0.11
11 butyl acetate/hexyl acetate (3:1) 0.0164/0.057 butyl acetate/hexyl acetate (1:3) 0.0055/0.177
12 hexanoic acid/octanoic acid (3:1) 1.116/3.75 hexanoic acid/octanoic acid (1:3) 0.372/10.305
13 ethyl pentanoate/butyl pentanoate (3:1) 0.0449/0.429 ethyl pentanoate/butyl pentanoate (1:3) 0.01495/0.143
aOdorant ID corresponds to identifiers shown in Figure 5. All odorants were diluted in mineral oil to theoretically emit a vapor-phase partial pressure of 3 Pa (Cleland et al., 2002); the resulting percentage volume/volume concentrations are
listed. Odor sets 9 –13 consisted of binary mixtures of two odorants, as listed.

Table 2. Model parameters

Mi output
ACh ON f � 36, � � 20, A � 4.5, r � 132
ACh ON, Mu OFF f � 36, � � 3.2, A � 4.5, r � 144
ACh ON, Ni OFF f � 36, � � 23, A � 10.5, r � 29
ACh OFF f � 30, � � 3.7, A � 10.3, r � 33

Piriform cortex
network

General
parameters
(all neurons)

v hyper � 	10mV; �min � 	2mV; t refrac � 2 ms

Pyr cell � � 10 ms; 	 � 10; �max � 17 mV
Ff cell � � 5 ms; 	 � 5; �max � 17 mV
Fb cell � � 5 ms; 	 � 5; �max � 17 mV
Mi cell to Pyr cell g max � 0.6; EN � �70 mV; �1 � 1 ms; �2 � 2 ms; Conn � 0.2
Mi cell to Ff cell g max � 2.4; EN � �70 mV; �1 � 1 ms; �2 � 2 ms; Conn � 0.4
Ff inhibition

(Pyr cell)
g max � 0.08; EN � 	10mV; �1 � 4 ms; �2 � 8 ms; Conn � 0.3

Fb inhibition
(Pyr cell)

g max � 0.8; EN � 	10mV; �1 � 4 ms; �2 � 8 ms; Conn � 0.4

Pyr cell association
fibers

g max � 8.0 3.2*; EN � �70mV; �1 � 1 ms; �2 � 2 ms; Conn � 0.2

Pyr adaptation
(ahc)

A ahc � 160 10*; EN � 	20 mV; �ahc � 20 ms

Pyr to Fb cell g max � 0.8; EN � �70 mV; �1 � 1 ms; �2 � 2 ms; Conn � 0.2

*Different weights are without with cholinergic modulation, respectively.
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sparseness and coherence alone and not due to changes in Mi average
spiking activity. This simplified model is a schematic representation
of findings well established with an integrate-and-fire network model
(de Almeida et al., 2013), as well as a detailed biophysical model of OB
(Li and Cleland, 2013). In this simplified model, the firing probability
p of a Mi cell i at time t is defined by the following equation (Eq. 1):

pi�t� 
 Air

1 � cos�2�ft���

1

T�
0

T


1 � cos�2�ft���dt

where 0 � Ai � 1 sets the affinity of neuron i to a given odorant. These
affinities are represented in our model by the overall activation of Mi cells
(see details below). The parameter r defines the firing rate in response to
the odor stimulation, T is the modulation period (in milliseconds), f sets
the frequency of this modulation, and � controls the duration of the
positive excursion of the oscillation. Observe that � controls how tightly
together Mi cells fire (synchronization), but does not change firing rate.
After each spike, the firing probability p is reduced to 0 for 20 ms to avoid
unrealistic bursts during the firing cycles and to better fit the simulation
using the integrate-and-fire model (de Almeida et al., 2013). In the
model, odorants are defined by a distribution of affinities A across the Mi
cells. We generated 100 different affinity values and randomly permuted
them to create different odorants to guarantee that all odors impose the
same average input to Mi cell population. The numerical values of the
affinities were selected from a normal probability density function with
� � 50 and 
 � s, where s is a parameter that defines the level of

sparseness in the Mi output (for details on this and all other parameters in
the model, see Table 2). For all simulations reported in Results, affinity
values for each odorant are randomly distributed across the Mi cell pop-
ulation; however, in some figures, these were centered at neuron #50 for
easy of visualization only.

Olfactory cortex model. We used a computational model of the piri-
form cortex originally implemented by de Almeida et al. (2013). Figure
3A shows the structure of the piriform cortex model. The piriform cortex
network comprises three groups of cells: principal neurons [pyramidal
(Pyr) cells] and two groups of inhibitory interneurons defined as feed-
forward (Ff) cells and feedback (Fb) cells. The piriform cortex network
consisted of 100 neurons of each type. The piriform cortex network
receives inputs from Mi cells in the OB, which are each randomly con-
nected to Pyr and Ff cells (Linster et al., 2009; Stokes and Isaacson, 2010).
Specifically, each Pyr cell is connected to 20% of the Mi network, while Ff
cells receive outputs from 40% of the Mi cells. The Ff interneurons, in
turn, provide feedforward inhibition to Pyr neurons. The second group
of interneurons, the Fb cells, is recruited by the activation of Pyr cells and
sends its inhibitory projections back to the same group of Pyr cells
(Stokes and Isaacson, 2010). Pyr cells also receive autoassociative con-
nections from other Pyr cells that are subject to activity-dependent po-
tentiation, as described by de Almeida et al. (2013). The connectivity of
each cell type is represented in the model as the percentage of cells from
the presynaptic network that connect to a single cell in the postsynaptic
network and are listed in Table 2 as parameter Conn.

The neurons are implemented as single compartments. The changes in
the membrane voltage over time are described by the following differen-

Figure 3. Computational model of OB and piriform cortex. A, Simplified structure of the piriform cortex. The system receives excitatory input from Mi cell axons in the OB that connect to Pyr and
Ff cells. Pyr cells work as an autoassociative network, synapsing onto other Pyr neurons and to Fb cells. Both Ff and Fb interneurons make inhibitory synapses on Pyr cells (Stokes and Isaacson, 2010).
The autoassociative connections between Pyr cells are subject to activity-dependent plasticity (�). B, We defined four groups of OB outputs based on the impact of ACh on different receptors. Bi,
When both nicotinic and muscarinic receptors are on, the Mi activation pattern exhibits both high sparseness and high coherence (synchronization). Bii, When muscarinic receptors are off and
nicotinic receptors are on, Mi output exhibits high sparseness but low coherence. Biii, When muscarinic receptors are on and nicotinic receptors are off, the Mi output exhibits low sparseness but high
coherence. Biv, When both receptors are off, the Mi output has both low sparseness and low coherence. For ease of visualization, we here show a distribution centered on neuron #50. C, Average
changes in network properties (�SEM) in each of the four configurations. The data in each panel are computed from 50 simulations with random odors. Despite the changes in sparseness (Ci) and
coherence (Cii), the average firing frequency of the Mi output (Ciii) was kept constant at �6 Hz. This was done to isolate the effects of manipulating sparseness and coherence from the firing rate
of Mi cells.
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tial equation (Eq. 2) adopted from previous works (Linster and Cleland,
2002; Linster et al., 2007, 2009):

�
dv�t�

dt
� v�t� 
 Vext�t�

where � is the membrane time constant and Vext(t) is the external input
over time. Different neurons receive different inputs. The complete list of
parameters is found in Table 2. Changes in the input from a presynaptic
neuron j at time t are described in the following equation (Eq. 3):

Vj
ext�t� 
 Wijgij�t�
ENijvi�t��

where Wij is the synaptic strength, gi(t) represents conductance change in
cell i, EN,ij is the Nernst potential of the specific channel type, and vi(t) is
the membrane potential at time t of the postsynaptic neuron i. The
changes in conductance gi(t) depend on the rising and falling times of
the conductance (�1 and �2) and a constant with no unit representing the
maximum conductance of a given channel (gmax), as shown in the fol-
lowing equation (Eq. 4): g(t) � g max (e 	t /r 1 	 e 	t /t 2).

After firing, the voltage of each spiking neuron is reset to a hyperpo-
larization potential vhyper and remains inactive for a refractory period
trefrac.

In the model, neurons interact with each other through discrete action
potentials, which are defined as a function of the membrane potential, as
shown in the following equation (Eq. 5):

Fi�V� 
 �
0 if V � �min

� V � �min

�max � �min�	

if �max � V � �min

1 if V � �max

Here, Fi ( V) represents the instantaneous spiking probability of neuron i.
�min And �max represent the minimum threshold and the saturation
threshold of the output/probability function, respectively. 	 Defines the
nonlinearity of Fi ( V).

Synaptic plasticity. The synaptic changes between associative fibers in
Pyr cells are implemented as a Hebbian learning rule similar to that
shown by Jensen et al. (1996). In these connections, the synaptic strength
will be enhanced if both presynaptic and postsynaptic neurons fire to-
gether and will be reduced if those neurons do not fire together. Each
Pyr–Pyr connection has a synaptic weight initially set to a random min-
imal value between zero and 0.02, which is �10% of the average maxi-
mum W observed after one training session in our network. The changes
in synaptic enforcement have been long attributed to NMDA receptors
that allow the influx of Ca 2 as well as postsynaptic depolarization (Bliss
and Collingridge, 1993). Here we assume that the postsynaptic depolar-
ization is attributed to back propagation from the action potential of the
postsynaptic cell described by the following equation (Eq. 6):

ipost�t� 

t

�postexp�1 �
t

�post�
where the time course of this depolarization at the postsynaptic neuron
(� post) is 2 ms. On the other hand, the kinetics of NMDA channels
depend on the binding of glutamate on the receptors. In the model, its
time course is described by the following equation (Eq. 7):

bglu�t� 
 exp��
t

�NMDAF��1 � exp��
t

�NMDAr��
where �NMDAf � 7 ms and �NMDAr � 1 ms characterize the receptors’
kinetics. The changes in the synaptic between neurons i and j is described
by the following equation (Eq. 8):

dWij
syn

dt

 �1 � Wij

syn�
ipost�t � tj

fire�bglu�t � tj
fire � tdelay�

�pp

� �0 � Wij
syn�� ipost�t � ti

fire�

�npp �
bglu�t � tj

fire � tdelay�

�pnp �

Here tdelay is the time it takes an action potential to travel from the soma
to the synapses of a recurrent collateral. If ipost and bglu peak together, the
synaptic efficacy between neuron i and j is increased with the character-
istic time �pp, whereas if the synaptic events are asynchronous, synaptic
efficacies are decreased with time �pnp and �npp. For our simulations, �pp,
�pnp, and �npp are 200 ms.

Cholinergic modulation. Cholinergic modulation in the OB increases
the excitability of periglomerular and Mi cells through nicotinic recep-
tors (Ravel et al., 1990; Castillo et al., 1999; Chaudhury et al., 2009) while
increasing granule cell afterdepolarization and reducing afterhyperpo-
larization through muscarinic receptors (Nickell and Shipley, 1988;
Pressler et al., 2007). Previous simulations show that blocking nicotinic
receptors reduces the sparseness in Mi activation. On the other hand,
blocking muscarinic receptors mostly disrupts the network synchroniza-
tion, although the level of sparseness is also slightly reduced. Using the
simplified model of Mi cells described above, we defined four classes of
OB network outputs based on the activation of different cholinergic
receptors (Fig. 3B): (1) when cholinergic modulation is on in both recep-
tor groups (ACh ON), the Mi output activity is highly sparse and syn-
chronized (Fig. 3Bi); (2) when muscarinic receptors are blocked (ACh
ON, Mu OFF), reduction in the Mi synchronization is reduced but its
sparseness remains the same (Fig. 3Bii); (3) when nicotinic receptors are
blocked (ACh ON, Ni OFF), the opposite occurs with OB output exhib-
iting high synchronization but lower sparseness (Fig. 3Biii); (4) finally,
when all receptors are blocked (ACh OFF), both synchrony and sparse-
ness are lower (Fig. 3Biv). To isolate the influence of synchrony and
sparseness on the piriform cortex network (Fig. 3Ciii), the average OB Mi
cell output rate is kept constant across all four conditions, although
cholinergic modulation in the OB may influence the overall firing rate
(Rothermel et al., 2014). As in de Almeida et al. (2013), cholinergic
modulation in the piriform cortex switches the dynamics of the network
between learning (ACh ON) and recalling (ACh OFF) modes (Hasselmo
and Bower, 1992; Barkai and Hasselmo, 1994; Hasselmo and Barkai,
1995). When the system is in learning mode, the synaptic transmission
between autoassociative connections is reduced by 40% (Hasselmo and
Bower, 1992; Hasselmo and Cekic, 1996) and synaptic plasticity is active.
During recall mode, autoassociative connections are fully functional and
plasticity is inactive. Additionally, cholinergic modulation has been
shown to suppress neuronal adaptation of Pyr cells (Haberly and Bower,
1989; Barkai and Hasselmo, 1994). This property is included here as an
outward (hyperpolarizing) current that increases the firing threshold for
recently active Pyr cells when the network is in recall mode. The conduc-
tance changes of the afterhyperpolarization current gi

ahc�t� in cell i are
described in the following equation (Eq. 9):

�ahc
dgi

ahc

dt
� gi

ahc 
 AahcXi

where Xi � 1 in the time-step after neuron i spikes and zero otherwise.
Thus, gahc increases with the constant Aahc and decays with the charac-
teristic time �ahc.

Simulation techniques. All simulations were implemented using the
Matlab programming language, with Euler integration method for the
differential equations with a time step of 0.5 ms. The statistical signifi-
cance of the results was evaluated using two-sample t tests. The source
code of these models can be downloaded from the modelDB website
(Hines et al., 2004) at the link senselab.med.yale.edu/ModelDb/, acces-
sion number 146813. A summary of the parameters used in these simu-
lations can be found in Table 2.

Simulation of discrimination learning. To test how learning affects dis-
crimination, we measured how the level of dissimilarity between mem-
ory activations changes over a sequence of training sessions (Fig. 1B).
Initially, we trained the piriform cortex network with two random odor
patterns using the four different input configurations shown in Figure
3B. These previously learned memories would subsequently be recalled
and the similarity (see details below) between the evoked Pyr cell activi-
ties of these two memory patterns measured. Independently of the input
configuration during training, the recall step always uses the ACh OFF
input configuration (Fig. 3Biv), so that we can better isolate the effects of
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learning on the autoassociative connections of the Pyr cells. Over the
course of an experiment, the learning process is subdivided into five
sessions, each comprising 2 s learning cycles for each odor memory and
intended to represent the daily behavioral training sessions.

Analysis. The activation patterns of Mi cells to different odorants can
be described by three different metrics: (1) the level of sparseness of the
odor representation (that is, the selectivity of the activation pattern that a
single odorant elicits in the population of neurons); (2) the level of co-
herence or synchronization of all neurons in the network; and (3) the
average firing rate of the neurons in the network. To quantify the simi-
larity in piriform cortex odor representations, we calculated as the Eu-
clidean distance between the corresponding 100-element activity vectors
O1 and O2, as shown in the following equation (Eq. 10):

DO1O2

 ��

i�1

N

�O1i � O2i�
2

where O1i and O2i are the elements of the activity vectors O1 and O2.
We use the Euclidean distance between odor representations as a

proxy for the discriminability of those odors (Gire et al., 2013). As the
cortical network learns a pair of odorants, the distance between their
representations increases. To quantify cortical learning and compare to
behavioral results, we calculate a cortical PI, or cortical improvement
index as Dpost/Dpre 	 1, with Dpre and Dpost being the distance before and
after training, respectively. If no improvement is seen, the index equals
zero. As the cortical network grows, the index grows from zero upwards.

Results
Role of cholinergic modulation in olfactory
discrimination learning
We examined the role of cholinergic modulation in the main OB
on reward-motivated odor discrimination by infusing cholin-
ergic antagonists directly into the OB of rats performing a two-
alternative choice olfactory discrimination task. Food-deprived
rats were trained to nose-poke, sample an odor, and then respond
by selecting one of two reward ports based on odor identity. Rats
were gradually shaped to perform the task; training on the first
odor set typically lasted �2–3 weeks while training on subse-
quent odor sets occurred more rapidly, on the order of several
days. Following training, rats performed 200 trials per testing
session for five consecutive days each week after receiving either
vehicle (saline) or cholinergic antagonist drug infusions directly
into the main OBs bilaterally. We assessed performance on the
acquisition of 13 odor sets (Table 1) in each of the treatment
conditions; no rat was run more than once on a five-session
sequence using the same odor set. The average performance of all
rats in the task, pooled across odor sets, is shown in Figure 4Ai.
Saline-infused control rats consistently improved in their ability
to discriminate between novel odors over the course of several
days, with performance reaching an asymptotic value of �85%
by session 4. Infusion of a mixture of cholinergic antagonists
(MLA, 19 mM; scopolamine, 22 mM) before behavioral testing
resulted in impaired performance, although rats infused with the
muscarinic receptor antagonist scopolamine alone or in combi-
nation with the nicotinic receptor antagonist MLA showed more
severe deficits than rats infused only with MLA (Fig. 4Ai).

To compare overall results between drug treatments, we com-
puted a PI (see Materials and Methods), which summarizes rats’
performance across the five-session testing sequence (Fig. 4Aii).
The PI indicates if the rats learn the discrimination: if they re-
spond randomly in all five sessions (50% correct), the PI equals
zero; if they respond perfectly (100% correct), the PI equals
one. A one-way ANOVA of PI yielded a significant effect of
drug treatment (F(3,48) � 8.34, p � 0.001), with post hoc tests
revealing a significantly smaller PI in scopolamine-infused and
combination-infused rats compared with saline-infused controls

(p � 0.001). However, the PIs for both of these drug treatment
groups were significantly 
0 (p � 0.005), indicating that learn-
ing was not completely abolished over the five-session testing
sequence. Despite the trend for MLA-infused rats to perform
worse than saline-infused controls, the PIs for these two groups
were not statistically different (p � 0.063). Inspection of the plots
in Figure 4Ai,Aii suggests that this negative result may be due in
large part to the high variability in performance observed in
MLA-infused rats.

Computational modeling shows a similar overall effect of
blocking muscarinic and/or nicotinic receptors in the OB on cor-
tical discrimination performance (Fig. 4B). In the model, we sim-
ulated the two-alternative choice behavioral experiment by
alternatively presenting the piriform cortical model with one of
two odors. We quantified cortical discriminability by computing
the Euclidean distance between the cortical network activation
patterns for each odorant (Gire et al., 2013); the cortical PI shown
in the graphs corresponds to the change in discriminability over
the course of training. Simulations were performed separately
using each of four distinct OB cholinergic configurations, defined
by the levels of sparseness and coherence in OB network outputs
(Fig. 3B,C), which correspond to the four pharmacological drug
treatment groups studied in the behavioral experiments (de
Almeida et al., 2013). For each configuration, 250 pairs of odors,
randomly chosen, were used to train the network.

As the cortical network learns an odor pair during training,
the distance between neural representations increases, indicating
that cortical odor representations are rendered less similar to
each other (Fig. 4Bi). On average, when either of the OB cholin-
ergic receptors are blocked, cortical discrimination learning is
slowed down and does not reach the same asymptotic perfor-
mance as the model with fully modulated OBs (Fig. 4Bi). These
results suggest that modulation of odor representations in the OB
affects learning in the olfactory cortex. Overall, simulation results
correspond to behavioral findings in that cortical learning is most
impaired when muscarinic receptors or both receptor types are
blocked (Fig. 4Bii). Note that in the simulations, the effect of
learning is determined after each training session by measuring
the distance between the two learned odor representations,
whereas in the experimental data we measure the average number
of correct trials over the complete session. In other words, simu-
lation results show the final discrimination, whereas behavioral
results show the average discrimination for each session. As a
result, learning after session 1 is comparatively higher in simula-
tions under control conditions (Fig. 4Bi) than in experimental
data (Fig. 4Ai).

Muscarinic receptor blockade generally impairs odor
discrimination learning while nicotinic receptor blockade
impairs learning of perceptually highly similar odorants only
Previous studies of olfactory discrimination learning in insects
and rodents have demonstrated an interaction between task dif-
ficulty, OB network dynamics, and behavioral outcomes (Beshel
et al., 2007; Doucette et al., 2011). In particular, disruption of
normal OB dynamics by local application of antagonists to cho-
linergic (Mandairon et al., 2006b; Chaudhury et al., 2009), nor-
adrenergic (Doucette et al., 2007; Mandairon et al., 2008), or
GABAergic receptors (Stopfer et al., 1997; Lepousez and Lledo,
2013) impairs the discrimination of similar odorants while spar-
ing discrimination of dissimilar odorants. Based on these previ-
ous results, we hypothesized that the variability in performance
across odor sets, especially in rats infused with MLA, would be
more severe for difficult discrimination tasks involving percep-
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tually similar odors. As an example, Figure 5Ai,Aii shows perfor-
mance curves for two odor sets in each of the four treatment
conditions. Performance following MLA infusions is highly vari-
able, resulting in performance comparable to saline controls at
one extreme (Fig. 5Ai) and, at the other extreme, chance perfor-
mance across all five test sessions (Fig. 5Aii). The PIs for these two
odor sets are 0.523 and 0.056, respectively. Saline-treated rats also
treat these two odor pairs differentially, suggesting a difference in
degree of difficulty. These behavioral results are mimicked by the
model in which blockade of nicotinic receptors had a strong effect
on some, but not all, odor pairs (Fig. 5Bi,Bii).

To explicitly test the hypothesis that odor pair difficulty, or
perceptual similarity, was at the root of the inconsistent effect of
nicotinic receptor blockade, we first ran an independent experi-

ment to determine the perceptual similarity between each pair of
odors in our battery of odor sets. Eight naive rats performed an
olfactory dishabituation task that probed rats’ capacity to spon-
taneously discriminate between two odors (Cleland et al., 2002).
We habituated rats to one odor of an odor set by repeatedly
exposing them to the odor and subsequently quantified the nov-
elty response upon presentation of the second odor in the odor
set. Figure 6Ai displays the average investigation time in each of
the habituation and probe trials, collapsed across the 13 odor
pairs tested. For all odor pairs, the investigation time during the
last habituation trial is significantly smaller than during the first
habituation trial (paired t tests, p � 0.05), indicating the forma-
tion of a habituation memory. The specificity of the memory was
assessed by comparing investigation times on two probe trials in

Figure 4. OB cholinergic modulation affects behavioral performance and cortical discrimination. A, Behavioral results. Ai, Average performance (�SEM) as a function of test session for
saline-infused, scopolamine-infused, MLA-infused, and combination mixture-infused rats, pooled across odor sets (n � 13). Aii, Average PI (�SEM) for each of the four treatment groups. Rats
infused with scopolamine alone or in combination with MLA have significantly lower PIs than saline-infused rats, whereas the difference between MLA-infused and saline-infused rats is not
significantly different. B, Computational results. Bi, Average change in cortical discrimination (measured relative to Euclidean distance between odor pairs before training) following training using
different bulbar network configurations. In the control condition with all bulbar ACh receptors on, corresponding to saline condition in behavioral experiments, rats attain higher levels of
discrimination than all other simulations. Bii, Cortical PI (degree of improvement in odor discrimination in the cortical network) for networks trained with the four bulbar configurations. Similar to
behavioral results, networks trained with bulbar ACh on perform better than networks trained on inputs from the bulbar network with any combination of blocked ACh receptors.
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which either the habituated odor (Fig. 6Ai, Hab) or a novel odor
(Fig. 6Ai, Novel) comprising the second odor in the odor set was
presented. Figure 6Aii displays the investigation times during the
two probe trials for each of the 13 odor sets. Rats exhibit a large
novelty response for some odor sets, as evidenced by the large
increase in investigation time on the novel probe trial, whereas
for other odor sets there is only a modest increase in investigation
time on the novel probe trial (cf. Fig. 6Aii, odor sets 5 and 11). To
quantify perceptual similarity of the two odors in each pair, we
calculated a behavioral dissimilarity index using the investigation
times on the probe trials (Cleland et al., 2002). Across odor sets,
we observed a bimodal distribution of behavioral dissimilarity
indices (Fig. 6Aiii). We classified odor sets as perceptually similar
or dissimilar based on this distribution. Dissimilar odor sets (Fig.
6Aiii, open circles) have large dissimilarity indices (
0.4), indi-
cating that rats exhibit a robust novelty response when probed
with the second odor, whereas similar odor sets (Fig. 6Aiii, filled
circles) have a small dissimilarity index (�0.4) because rats ex-
hibit a weak novelty response. For dissimilar odorants, rats’ in-

vestigation was significantly higher for novel versus habituated
odor (p � 0.05); for similar odorants the investigation times were
not different (p 
 0.05).

We next examined behavioral performance on the odor ac-
quisition task separately for dissimilar and similar odor sets (Fig.
7A,B). We observed a dissociation in the effects of muscarinic
and nicotinic blockade on task performance for dissimilar versus
similar odor sets. Namely, when muscarinic receptors were
blocked using scopolamine alone or in combination with MLA,
animals performed worse than saline controls on both dissimilar
and similar odor set acquisition. On the other hand, when nico-
tinic receptors were blocked with MLA, animals were severely
impaired on the acquisition of similar odor sets, but performed
comparably to saline-infused rats for dissimilar odor sets. We
quantified these effects by computing the PI for each of the drug
treatments separately for similar and dissimilar odor sets and
subjecting the data to a two-way ANOVA. Results showed a sig-
nificant interaction between drug treatment and odor set simi-
larity (F(8,3) � 3.43, p � 0.025). Post hoc tests revealed that rats

Figure 5. Nicotinic receptor blockade varies across odor sets. A, Behavioral results. Performance as a function of test session for the four treatment groups on two individual odor sets (Ai, odor set
7; Aii, odor set 9). Each curve represents data obtained from one rat; the four curves in each panel, representing the four drug conditions, were obtained from different rats. The effects of MLA infusion
are highly variable, ranging from no noticeable effect (Ai) to complete impairment (Aii). B, Computational results. Performance on two individual odor sets depicted as change in discrimination
between the odors in the pair across test sessions when cortical network is trained with bulbar input in each of the four network configurations. Note that in one odor pair (Bi) performance under
nicotinic receptor blockade is similar to that of controls, whereas in a second odor set (Bii), performance under the same condition is notably impaired.
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infused with either scopolamine alone or in combination with
MLA had significantly smaller PIs than saline-infused rats for
both dissimilar (p � 0.001) and similar (p � 0.005) odor sets. On
the other hand, the PI for MLA-infused rats was significantly smaller
compared with saline-infused controls for similar (p � 0.001) but
not dissimilar odor sets (p � 0.30). As observed in the pooled results
(Fig. 4Aii), the PIs for scopolamine and combination-infused rats
were significantly 
0 for dissimilar odor sets (p � 0.01, both
treatments), indicating that rats were indeed learning to discrim-
inate the odors, albeit at a slower rate than saline-infused con-
trols. However, when the odors had high perceptual similarity, all
three drug treatments resulted in PIs that were not significantly
different from zero, suggesting that rats were not learning at all
over the five-session testing sequence. These results suggest that
OB muscarinic receptors play a critical role in odor discrimina-
tion acquisition, in general, whereas nicotinic receptors are im-

portant only when there is substantial perceptual overlap
between odorants.

To directly compare behavioral results with simulations using
the computational model, we needed to first quantitatively define
the notion of dissimilarity for simulated odor input patterns.
Previous experiments in our laboratory have shown that behav-
ioral similarity measured using a habituation/dishabituation par-
adigm can be related to the pairwise overlap between odor
activation patterns at the input of the OB (Linster et al., 2001;
Cleland et al., 2002; Mandairon et al., 2006a; Youngentob et al.,
2006). Odors used in the present experiment fell into two catego-
ries on the previously measured curves: �0.4 dissimilarity and

0.4 dissimilarity (Fig. 6C; Cleland et al., 2002). Figure 6C shows
how perceptual similarity is related to pairwise overlap between
glomerular activation of odors [as measured by deoxyglucose
(2DG) mapping; Johnson and Leon, 2000; Johnson et al., 2002].

Figure 6. Determining perceptual similarity of odor sets. A, Behavioral approach. Ai, Average investigation time (�SEM) pooled across odor sets for each 50 s odor exposure trial in the olfactory
habituation task. One odor from an odor set was randomly assigned as the habituation odor, and was presented during four 50 s trials (H1–H4) separated by 5 min intervals, followed by two 50 s
probe trials in which animals were presented the same odor (Hab) or the second odor in the pair (Novel), in random order. Aii, Average investigation time (�SEM) on the two probe trials (Hab and
Novel) for each of the odor sets. Aiii, Behavioral dissimilarity index for each odor set, averaged across rats (�SEM). Data are displayed in ascending order; labels on the abscissa correspond to the odor
sets in Aii and Table 1. Odor sets were classified into similar (filled circles) and dissimilar (open circles) groups based on the behavioral dissimilarity index. B, Example simulated bulbar input patterns
for similar and dissimilar odorants. The graphs show a heat map of a 10 � 10 representation of olfactory sensory neuron (OSN) responses to three odorants with varying degrees of similarity. These
are representative of patterns chosen to simulate similar and dissimilar odorants in the model. Note that in these heat maps, the odor responses are artificially ordered for ease of visualization (see
Materials and Methods); in the actual simulations, the spatial distribution of active OSNs is random. Heat maps are calculated from the average OSN firing rates during odor stimulation for each
odorant; warmer colors correspond to higher firing rates. Pattern dissimilarity was calculated as the Euclidean distance between two 100-dimensional vectors of average response rates, as specified
in Materials and Methods. C, Correspondence between behavioral dissimilarity index and bulbar odor response patterns (reproduced with permission from Cleland et al., 2002). The graph shows the
behavioral dissimilarity index measured using a habituation/dishabituation task and an odor–reward associative task (Cleland et al., 2002) in response to aliphatic acids of varying carbon chain
length, as a function of the dissimilarity measured from 2DG activation maps in response to these same odorants (Johnson et al., 1999). Each data point shows the average behavioral dissimilarity
index as a function of the average 2DG dissimilarity index. Data from two types of behavioral experiments are depicted (1 nonassociative and 1 associative; for details, see zharv;10Cleland et al.,
2002); the lines represent regression lines for each experiment. Red circles indicate the range of behavioral dissimilarities used in the present experiments (Aiii), which defined the odor activation
dissimilarities used in the corresponding simulations (B). Odorants used in the present experiments can be divided into two classes of dissimilarity (C, red circles; Aiii, dark and light circles) and
simulation odorants were chosen to have the corresponding degree of overlap (B, 0.272 and 0.904).
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We can therefore define, as we have done in previous modeling
studies, simulated odorants at the input of the OB with relative
dissimilarities similar to those measured experimentally (Man-
dairon et al., 2006a) for computational purposes. In the compu-
tational model, we calculated the dissimilarity between pairs of
odorants at the input of the OB, which corresponds to the dis-
similarity measure used for the 2DG patterns (Fig. 6C; Johnson et
al., 1999; for example, see Fig. 6B). To compare to behavioral
results, we chose two classes of odor pairs; examples with their
corresponding dissimilarity measures are shown in Figure 6B.
These levels of dissimilarity correspond approximately to those
measured in 2DG experiments for odor pairs with behavioral
dissimilarity indices comparable to those in the present study.

As observed behaviorally, computational modeling shows a
dissociation in the role of nicotinic and muscarinic receptors with
odor set dissimilarity. We separately analyzed cortical learning
for 250 similar and dissimilar odor sets (defined according to the
analysis in Fig. 6B,C). Figure 7C shows the cortical PI for each of
the OB network configurations, corresponding to the four drug
treatments, separately for dissimilar and similar odor sets.

Blocking muscarinic receptors impairs cortical discrimina-
tion, in general (i.e., regardless of odor set similarity); on the
other hand, following nicotinic receptor blockade, cortical dis-
crimination is impaired only when odor sets are highly overlap-
ping in their peripheral representations. Note that the cortical
discrimination index compares distances between cortical odor
representations before and after learning, whereas the behavioral
PI measures learning over the course of 5 training days. The large
difference in behavioral and computational effects of nicotinic
receptor blockade for similar odorants (Fig. 6B, MLA; Fig. 7C, Ni
OFF) arises partially from this difference in metric. Overall, given
the metrics chosen, odor learning is not as severely affected by
nicotinic receptor blockade in the model compared with behav-
ioral results.

Control experiments
To ensure that rats were not using information other than odor
cues from the pair of test odors (such as auditory cues from the
solenoid valves or odor contamination) to solve the task, we
tested six rats in the acquisition task for five consecutive sessions

Figure 7. Role of bulbar cholinergic receptors in acquisition of novel odor discrimination problems depends on perceptual similarity of odors. Ai, Average performance (�SEM) as a function of
test session for rats performing the acquisition task using dissimilar odor sets (n � 9). Note the high performance in MLA-infused rats. Aii, Average performance (�SEM) as a function of test session
for rats performing the acquisition task using similar odor sets (n � 4). Note the low performance in MLA-infused rats. B, PI for each of the drug treatment groups plotted separately for dissimilar
and similar odor sets. *p � 0.005, **p � 0.001. C, Simulated cortical PI for networks trained with bulbar input under the four experimental conditions for odor inputs with low (dissimilar) and high
(similar) overlap. Similar to behavioral results, the effect of turning off nicotinic receptors depends on odor set similarity, such that the cortical network exhibits poorer discrimination of similar odors
following removal of bulbar nicotinic receptors.
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using identical odors [(�)-limonene, 0.2% dilution in mineral
oil] loaded into different ports in the olfactometer. The PI was
not significantly different from chance performance (p � 0.951),
indicating that rats were unable to learn based on extraneous
cues.

To test for ceiling effects of drug dosages, we tested acquisition
following infusion of the combination treatment at one-fifth the
original concentration (scopolamine, 4.4 mM; MLA, 3.6 mM) in a
subset of rats (n � 6) and odor pairs (Table 1). The average
performance of rats receiving the low-dosage combination infu-
sion was somewhat worse than that of saline controls, although it
was substantially higher than performance of rats infused with
the high dosage of cholinergic antagonists (Fig. 8Ai). An ANOVA
on PI yielded a significant effect of drug treatment (F(2,15) �
14.52, p � 0.001) with post hoc tests revealing that the PI was
significantly smaller in rats receiving the high-dosage infusion
compared with both saline-infused controls (p � 0.002) and rats
receiving the low-dosage infusion ( p � 0.001). The modest
decrease in PI observed in rats receiving the low-dosage infu-
sion did not reach statistical significance when compared with
saline controls ( p � 0.136; Fig. 8Aii). These data are consistent
with previous studies from our laboratory demonstrating

more severe behavioral impairments in
olfactory discrimination following OB
infusion with increasing concentration
of cholinergic antagonists (Mandairon
et al., 2006b; Devore et al., 2012).

To test if cholinergic receptor blockade
created nonspecific impairments in odor
perception or processing, we tested rats
that were fully trained on an odor pair
with cholinergic receptor blockade after
learning only. The experimental para-
digm was identical to the acquisition task,
except that rats received saline infusions
before sessions 1– 4 and only received in-
fusions of cholinergic antagonists before
the fifth session. Thus, rats were allowed
to acquire the discrimination problem for
4 d before we tested the influence of cho-
linergic antagonists on discrimination
performance. We restricted our pharma-
cological manipulations to either block-
ade of nicotinic receptors with 19 mM

MLA or blockade of muscarinic receptors
with 22 mM MLA but not both in combi-
nation. Figure 8B shows the results for the
cohort of rats participating in this study
(n � 4). Cholinergic modulation in the
OB appeared to play little role in discrim-
ination performance after learning, as
scopolamine-treated animals, MLA-
treated animals, and saline-infused con-
trols performed similarly during session 5.
These observations were confirmed by a
two-way ANOVA on the ratio of perfor-
mance on sessions 4 and 5, which yielded
no significant main effects of odor type
(p � 0.963) or drug (p � 0.845). These
results show that while learning of novel
odor sets can be impaired by manipula-
tion of bulbar ACh receptors, odor per-
ception and processing is not, since fully

trained rats showed no impairment when ACh receptors are
blocked.

Effect of bulbar modulation on cortical processing in the
computational model
Looking more closely at the odor representations learned by the
OB/cortical network, we can gain insight into the mechanisms
underlying the behavioral impairment observed when bulbar
cholinergic receptors are manipulated. The distance (or dissimi-
larity) between odor activation patterns at the output of the OB is
modulated by ACh. Figure 9A (top) shows example 10 � 10 heat
maps of Mi cell output patterns in response to dissimilar (Fig. 9A,
left, middle) and similar (Fig. 9A, middle, right) odorants. The
average distance between similar and dissimilar patterns under
the different network modes is shown in Figure 9Bi; the graph
shows the pairwise Euclidean distances relative to that of two
dissimilar odorants at the input to the OB. Any change from this
distance is due to bulbar computations. Clearly, cholinergic
modulation in the OB enhances the contrast between odor rep-
resentations, as evidenced by the relative increase in Euclidean
distance at the output of the bulb when the bulbar network is fully
modulated (Fig. 8Bi, compare OB output ACh ON, OB input).

Figure 8. Behavioral control experiments. A, Dose–response curve for dissimilar odor sets. Ai, Average performance (�SEM) as
a function of test session for rats performing the novel odor acquisition task using dissimilar odor sets (n � 6 odor sets) and
receiving either a high dosage of cholinergic antagonists (scopolamine, 22 mM; MLA, 19 mM), a low dosage at one-fifth the original
concentration (scopolamine, 4.4 mM; MLA, 3.6 mM), or saline infusions. Aii, PI for each of the drug treatment groups. **p � 0.005,
***p � 0.001. B, Control for impairment of general odor processing and perception. The graph shows the average performance as
a function of daily sessions for three experimental groups. All groups received saline infusions for the first 4 d of training, followed
by a fifth day in which they received either saline, scopolamine (22 mM), or MLA (19 mM) infusions. These graphs indicate that once
an odor discrimination task has been acquired, manipulation of bulbar cholinergic modulation does not affect discrimination
performance.
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The effects of nicotinic receptor modulation in the OB can be
measured as overall changes in Mi cell response rates to a given
odorant (Fig. 3), rather than changes in the temporal aspects of
Mi cell spiking. Nicotinic receptor blockade results in a bulbar
output pattern that resembles the input, effectively negating bul-
bar contrast enhancement (Fig. 9Bi). Thus, for similar odors, the
bulbar outputs project highly overlapping patterns of activity to
the piriform cortex, i.e., the number of bulbar outputs (cortical

inputs) responding to a pair of similar odorants is higher. The
cortical attractor network, when trained on a pair of odorants,
exhibits changes in association fiber connectivity that lead to
more specific representations for each odorant: Pyr cells that are
odor responsive are more active, signal-to-noise ratio is im-
proved, and the odor representations become sparser and more
distinct (de Almeida et al., 2013). In the context presented here,
the more similar the representations conveyed to the cortex, the

Figure 9. Odor processing and learning in olfactory network. A, Heat maps depicting 10 � 10 arrays of odor response patterns in the OB and piriform cortex. Each image shows the average
responses of Mi cells or Pyr cells during a 2 s odor presentation with warmer colors representing higher responses. Each column shows responses to one simulated odor. The odors in the left and
middle columns together form a dissimilar pair, while the odors in the middle and right columns constitute a similar odor pair, according to the definitions in Figure 5. Odor representations conveyed
to the OB are processed in the OB network to create bulbar output. The three upper rows show examples of bulbar output patterns under control conditions (ACh ON) and partial receptor blockade
conditions (Ni OFF or Mu OFF). In the bulb, average response patterns are modulated by nicotinic, but not muscarinic, receptor activation. Bulbar output patterns are conveyed to the cortical network
(PC before learning), where these are modulated by synaptic plasticity in the cortical association fibers (PC after learning). In the piriform cortex, neural response patterns are transformed by learning.
Learned patterns in response to OB patterns under the different drug conditions are shown in the last three rows of panels. Note that learning under control conditions (ACh ON) leads to well defined
and separated pairs of odor patterns, whereas learning with Ni OFF (in the OB) creates high-overlap pattern and learning with Mu OFF (in the OB) leads to very reduced learning. B, Average change
in pairwise distances between dissimilar and similar bulbar output patterns relative to the distance between these patterns at the input to the OB. Any changes within a category are due to bulbar
processing. The graph shows distances between odor representations conveyed to the bulb (OB input), and at the output of the OB under full or partial modulation (OB output). Bulbar output
representations are rendered more dissimilar when nicotinic receptors are active (OB output, ACh ON, Mu OFF). In contrast, at this level of representation— based on firing rate only— blockade of
muscarinic receptors does not affect bulbar output (OB output, Mu OFF). C, Average change in pairwise Euclidean distance of simulated cortical representations for dissimilar and similar odorants
relative to the prelearning distance between dissimilar odorants. The graph shows pairwise distances between cortical odor representations before learning (Pre learning) or after learning with
bulbar modulation on (Post learning, OB Ach ON) or partially on (Ni OFF, Mu OFF). Cortical learning of dissimilar odorants is only impaired by blockade of muscarinic receptors in the OB (OB Mu OFF),
whereas cortical learning of similar odorants is impaired by blockade of both muscarinic and nicotinic receptors (Ni OFF, Mu OFF).
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less cortex can render these more distinct through its internal
learning process. The graph in Figure 9Bii shows the pairwise
Euclidean distances between odor representations in the cortical
network after learning relative to the distances evoked before
learning. Any changes in distance measured is due to the learning
process in the cortical network. Even with fully modulated bulbar
inputs, the network exhibits somewhat impaired learning when
highly similar odorants are presented (Fig. 9A, Bii) as observed
behaviorally with saline-infused control rats (Fig. 7B). However,
when similar odorants are rendered even more similar at the OB
output because of nicotinic receptor blockade in the OB, the
cortical network cannot rescue these representations, similarly to
rats with nicotinic receptors blocked when presented with similar
odorants (Fig. 9B). When the network is trained with bulbar
inputs during blockade of nicotinic receptors, the cortical repre-
sentations change less relative to before odor learning. The cor-
tical network is still able to resolve the OB projection patterns for
dissimilar odorants, but discrimination in the cortex is impaired
for similar odorants as a result of the highly overlapping projec-
tion patterns.

Both behaviorally and in the model, modulation of musca-
rinic receptors affects processing of all odors regardless of odor
similarity. Overall activation patterns when measured as average
firing rates evoked by odor presentations are not modulated by
muscarinic receptors (Fig. 9A). As a consequence, the distances
between bulbar output patterns are not changed by blockade of
muscarinic receptors (Fig. 9Bi). Instead, muscarinic receptor
modulation changes the dynamics of the OB network and with it
the synchrony of spikes among responsive bulbar Mi cells (de
Almeida et al., 2013; Li and Cleland, 2013). This effect is indepen-
dent of odor identity and hence changes the coherence of cortical
inputs for both similar and dissimilar odorants. Although aver-
age firing rate patterns conveyed to the piriform cortex are not
changed (Fig. 9Bi), the synchrony in piriform cortex inputs is
disrupted and learning in the piriform cortex network is im-
paired for both similar and dissimilar odor pairs (Fig. 9Bii).

To understand how disrupting synchrony in the inputs to the
cortex impairs learning, we must examine the cortical output in
more detail. Figure 10 illustrates the differences in nicotinic and
muscarinic receptor blockade in the bulb on cortical processing.

Figure 10. Learning in the cortical network. Ai–Ci, Raster plots of Pyr cell firing before learning in response to a sample odor under the three modulatory conditions: (A) ACh ON, (B) ACh ON/Ni
OFF, and (C) ACh ON, Mu OFF. Aii–Cii, Raster plots of Pyr cell firing after learning of the same odor. Note that Pyr cell firing is enhanced after learning with bulbar nicotinic receptors off, but not with
muscarinic receptors off. Aiii–Ciii, Example activity of two Pyr cells in the network, one undergoing changes in response to learning and the other not. Aiv–Civ, Heat maps of synaptic weights in the
model (100 � 100) before and after learning for each condition. The heat maps show synaptic weights between all pairs of Pyr cells before and after odor learning with warm colors indicating higher
synaptic weights. D, Graph of average synaptic weights normalized relative to the highest weight reached during learning. E, Average change in Pyr cell firing rate during learning relative to the rate
before learning under each condition.

Devore, de Almeida et al. • Bulbar Cholinergic Modulation Regulates Cortical Learning J. Neurosci., August 20, 2014 • 34(34):11244 –11260 • 11257



Figure 10A illustrates processing under control conditions. Piri-
form cortex Pyr cells respond to odor input before learning (Fig.
10Ai) and their responses are strengthened after learning because,
in addition to bulbar input, cells also receive strong inputs from
other Pyr cells via associational connections (Fig. 10Aii). Figure
10Aiii shows spiking responses of two Pyr cells before and after
learning (vertical dashed line); the cell in the upper part of the
panel is modulated by learning while the one below is not. Figure
10Aiv shows heat maps of the synaptic weights in the cortical
network before and after learning. Figure 10B,C illustrates what
happens when nicotinic or muscarinic receptors are blocked in
the OB model. In the case of nicotinic receptor blockade, no
obvious differences in cortical neural responses can be observed
(Fig. 10Bi,Bii,Biii), neither before nor after learning. Synaptic
weight changes are evident and asymptote at similar levels than
those observed for control conditions (Fig. 10D). In contrast,
when bulbar muscarinic receptors are blocked, cortical cells do
not respond as strongly to bulbar input and learning does not
progress (Figs. 10Ci,Cii,Ciii). Because multiple coincident Mi cell
inputs are required to generate a cortical Pyr cell action potential
(Davison and Ehlers, 2011; de Almeida et al., 2013), reducing the
synchrony of the Mi cell outputs by blocking muscarinic recep-
tors results in an overall decrease in the activation of piriform
cortical Pyr cells (Fig. 10Ci) and therefore less plasticity at asso-
ciational synapses (Fig. 10Cii–Civ,D). Synaptic weights do not
attain levels similar to control simulations (Fig. 10D), and neither
do cortical average firing rates (Fig. 10E). Thus, blocking musca-
rinic receptors in the OB appears to regulate the rate of learning
by changing the synchrony of incoming odor information. Hence
all odors are equally affected and discrimination learning does
not happen, as evidenced by reduced synaptic weight changes and
reduced changes in cortical sparseness.

Discussion
Cholinergic modulation of neural circuits is thought to play a
critical role in learning and memory (Hasselmo et al., 1992; Sarter
and Bruno, 1997; Hasselmo and Giocomo, 2006). We here inves-
tigated the role of cholinergic modulation in the main OB on
reward-motivated odor discrimination learning by infusing cho-
linergic antagonists directly into the OB of rats performing a
two-alternative choice olfactory discrimination task. Results
demonstrate that rats infused with saline consistently improved
in their ability to discriminate between novel odors over the course
of several days, whereas rats infused with cholinergic receptor antag-
onists generally exhibited impaired performance (Fig. 4A). How-
ever, the extent of behavioral impairment depended on what type
of receptors were blocked as well as on the perceptual difficulty of
the odor discrimination task (Fig. 7B). Namely, rats generally
exhibited impaired performance when muscarinic receptors
were blocked by infusion of scopolamine alone or in combina-
tion with the nicotinic receptor antagonist MLA. On the other
hand, rats infused with MLA alone were impaired only for tasks
in which the odor pairs were perceptually similar and hence more
difficult to discriminate. Control experiments indicated that im-
pairments are not due to a general decrease in olfactory percep-
tion: rats in which cholinergic receptors were blocked subsequent
to the acquisition of an odor discrimination (under saline) per-
formed similarly to saline controls when tested on recall of the
discrimination problem (Fig. 8B). These controls show that odor
perception per se is not modulated significantly by the drugs used
here, while acquisition of an odor discrimination is. Drugs are
infused locally into the OB at a volume assumed to be re-

stricted to the OB (Mandairon et al., 2006b); however, diffu-
sion out of the OB cannot be strictly ruled out.

Using a modified version of a recently developed computa-
tional model of cholinergic processing in the OB and piriform
cortex (de Almeida et al., 2013), we simulated the two-alternative
choice task and found that the observed behavioral results were
directly related to changes in cortical discrimination. To capture
known effects of ACh on OB processing, we defined four modes
of OB network output that differed along two dimensions,
sparseness and coherence (Fig. 3B). Simulated nicotinic receptor
blockade switched the network from high to low sparseness,
while leaving coherence unchanged, whereas simulated musca-
rinic receptor blockade conversely switched the network from
high to low coherence without altering sparseness. Under control
conditions (i.e., with full cholinergic modulation), cortical dis-
crimination improved as the network learned the new odor rep-
resentations (Fig. 4B). In parallel to the behavioral results, the
average change in cortical discrimination was profoundly re-
duced by disrupting cholinergic processing in the OB, with the
extent of impairments related both to perceptual difficulty as well
as to what feature of the OB network activity was disrupted (Fig.
7C). An in-depth examination of the computations performed by
the model demonstrated that the same outcome (i.e., a decrease
in the Euclidean distance in cortical odor representations) could
arise from distinct underlying mechanisms. Together, these re-
sults suggest that muscarinic receptor blockade results in a bona
fide learning impairment that can be attributed to the decreased
activation of pyramidal cells. On the other hand, the behavioral
impairment following nicotinic receptor blockade might not be
due to the inability of the cortex to learn per se, but rather may be
perceptual in nature and can be attributed to the inability of the
cortical network to resolve highly overlapping inputs.

Our finding that muscarinic receptors are important for ol-
factory memory acquisition is consistent with other studies in
which muscarinic receptors have been blocked systemically
(Chapuis and Wilson, 2013; Pavesi et al., 2013). Chapuis and
Wilson (2013) observed profound learning impairments in the
acquisition of novel odor discrimination problems following sys-
temic blockade of muscarinic receptors by scopolamine; the im-
pairment was similar when the blockade was restricted to the
piriform cortex. In the present study, we observed profound im-
pairments in learning even when muscarinic blockade was re-
stricted to the OB. While the results of cortical muscarinic
blockade can be readily interpreted given what is known about
the role of cholinergic transmission in mediating cortical synap-
tic plasticity (Hasselmo and Bower, 1992; Hasselmo and Barkai,
1995), it was not immediately obvious how blocking muscarinic
receptors in the bulb impairs learning. Our computational mod-
eling results suggest that the impairment arises because the bul-
bar outputs (i.e., the cortical inputs) are less synchronous (Fig. 3;
de Almeida et al., 2013), leading to weaker responses in cortical
neurons (de Almeida et al., 2013), which results in slower learn-
ing at association synapses in the cortex (Fig. 9). Our results,
together with those of Chapuis and Wilson (2013), show that
cholinergic modulation regulates olfactory learning by effecting
cellular and network-level changes simultaneously in multiple
structures along the olfactory pathway.

On the other hand, the present results contradict previous
studies suggesting that reward-based olfactory discrimination
learning does not depend on cholinergic modulation in the OB
(Mandairon et al., 2006b). Using a digging paradigm in which
rats acquire novel discrimination problems in as few as one or
two trials, Mandairon et al. (2006b) found no significant effect of
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blocking bulbar cholinergic receptors on the acquisition of novel
olfactory discrimination problems. In the present study, where
rats take hundreds of trials to learn the association between odors
and reward ports, we observed profound effects of blocking cho-
linergic receptors. Interestingly, this discrepancy in the role of
bulbar cholinergic receptors across behavioral paradigms paral-
lels observations made following blockade of bulbar noradrener-
gic (NA) receptors. To be specific, Mandairon et al. (2008) found
only a modest impairment in learning in a digging-based para-
digm following blockade of bulbar NA receptors, whereas Douc-
ette et al. (2007) observed complete abolishment of learning in a
Go/No-Go operant paradigm when blocking bulbar NA recep-
tors. It is possible that the discrepancy between behavioral para-
digms arises from differences in the duration of odor exposure on
each trial—animals performing a digging-based task may be ex-
posed to the odor for much longer, facilitating rapid learning.
Such differences highlight the importance of bulbar cholinergic
modulation with increasing task difficulty, which parallels obser-
vations in other modalities (Sarter et al., 2005; Robinson et al.,
2011). Difficulty in olfactory behavior can be achieved by using
low-concentration odors (Mandairon et al., 2006b), requiring
animals to remember odors across time delays (Ravel et al., 1994;
Devore et al., 2012), or requiring animals to associate an odor
with a reward that is both spatially and temporally remote from
the odor stimulus (present study). Moreover, it is possible that
processing of information downstream of the OB has some de-
pendence on the specific behavioral paradigm (Scalia and Win-
ans, 1975). Going forward, it will be important to study how
information processing in different downstream circuits is influ-
enced by bulbar neuromodulation.

In our model, synchrony among OB outputs was increased via
muscarinic cholinergic receptor activation on granule cells. In the
intact bulbar circuit, there are numerous cellular mechanisms
that govern the dynamics of granule cells (Trombley and Shep-
herd, 1992; Halabisky et al., 2000; Pressler and Strowbridge, 2006;
Balu et al., 2007; Pressler et al., 2007; Nai et al., 2010). Our behav-
ioral results complement a growing number of studies suggesting
that manipulations that alter fast oscillatory activity in the OB,
presumably by altering the granule cell network, impair odor
discrimination learning (Stopfer et al., 1997; Doucette et al.,
2007; Mandairon et al., 2008; Lepousez and Lledo, 2013). In gen-
eral, results from these studies indicate that olfactory discrimina-
tion learning is impaired when synchrony among OB outputs is
disrupted. The present modeling results suggest that such dis-
crimination impairments arise because Pyr cells in the cortex are
less active and therefore exhibit slower plasticity dynamics. Al-
though a recent in vivo study has demonstrated that olfactory
cortical neurons are indeed sensitive to the precise timing of in-
puts from the OB (Haddad et al., 2013), it remains to be tested
whether olfactory cortical neurons are generally less responsive
when the synchrony among active bulbar network outputs is
disrupted.

Two-alternative choice discrimination behavior has been
linked to olfactory cortical processing (Miura al., 2012; Gire et al.,
2013; Chapuis and Wilson, 2013). The results of the present study
suggest that performance in two-alternative choice odor discrim-
ination is directly related to the discriminability of cortical odor
representations, and that cholinergic modulation in the OB reg-
ulates both the contrast and strength of these representations.
Overall, our results suggest that a critical function for cholinergic
signaling to the OB is to preprocess the signals impinging on the
olfactory cortical network to facilitate the formation of robust
cortical odor representations to guide behavior.
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