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An important aspect of adaptive learning is the ability to flexibly use past experiences to guide new decisions. When facing a new decision,
some people automatically leverage previously learned associations, while others do not. This variability in transfer of learning across
individuals has been demonstrated repeatedly and has important implications for understanding adaptive behavior, yet the source of
these individual differences remains poorly understood. In particular, it is unknown why such variability in transfer emerges even among
homogeneous groups of young healthy participants who do not vary on other learning-related measures. Here we hypothesized that
individual differences in the transfer of learning could be related to relatively stable differences in intrinsic brain connectivity, which
could constrain how individuals learn. To test this, we obtained a behavioral measure of memory-based transfer outside of the scanner
and on a separate day acquired resting-state functional MRI images in 42 participants. We then analyzed connectivity across independent
component analysis-derived brain networks during rest, and tested whether intrinsic connectivity in learning-related networks was
associated with transfer. We found that individual differences in transfer were related to intrinsic connectivity between the hippocampus
and the ventromedial prefrontal cortex, and between these regions and large-scale functional brain networks. Together, the findings
demonstrate a novel role for intrinsic brain dynamics in flexible learning-guided behavior, both within a set of functionally specific
regions known to be important for learning, as well as between these regions and the default and frontoparietal networks, which are
thought to serve more general cognitive functions.
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Introduction
Different people learn in different ways; some individuals readily
integrate old and new information to support novel inferences,
while others fail to transfer what they learn to new situations
(Shohamy and Wagner, 2008; van Kesteren et al., 2010; Daw et
al., 2011; Wimmer and Shohamy, 2012; Zeithamova et al., 2012).
Transfer of learning is highly variable even among healthy popu-
lations (Shohamy and Wagner, 2008; Wimmer and Shohamy,
2012). Moreover, transfer is dissociable from other complemen-
tary forms of learning, such as learning based on trial-by-trial
reinforcement (Shohamy and Wagner, 2008; Daw et al., 2011;

Wimmer and Shohamy, 2012; Doll et al., 2014). Prior studies
have shown that variability in transfer is related to differences in
task-evoked brain activation during learning (Shohamy and
Wagner, 2008; Wimmer and Shohamy, 2012). However, a critical
open question is why this variability initially emerges. It is partic-
ularly unclear whether differences in activation merely represent
transient changes related to task demands, or whether they also
reflect intrinsic differences in brain organization.

Flexible learning can be measured using paradigms such as
“sensory preconditioning,” where participants first learn associ-
ations and then make choices about novel options (Brogden,
1939; Port et al., 1987; Wimmer and Shohamy, 2011, 2012; Jones
et al., 2012). Responses to novel options provide an opportunity
for spontaneous transfer of initial associations without requiring
or rewarding it, capturing individual variability in this tendency.
Previous work suggests that transfer may emerge from associative
encoding in the hippocampus (Port et al., 1987; Wimmer and
Shohamy, 2012) or from inference-based processes in the ventro-
medial prefrontal cortex (vmPFC; Jones et al., 2012). However,
beyond a functional role for each region during learning and
decision making, these studies do not address the central ques-
tion of whether variability in transfer behavior relates to stable
variation in functional brain organization.
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To answer this question, we used resting-state fMRI (rs-
fMRI), which provides a stable measure of distributed brain con-
nectivity. We measured transfer with sensory preconditioning
and collected rs-fMRI on a separate day to test whether differ-
ences in behavior related to intrinsic connectivity between re-
gions implicated in transfer, including the hippocampus and the
vmPFC. rs-fMRI has also been used for characterizing large-scale
networks, including the default-mode network (DMN), fronto-
parietal network (FPN), and cingulo-opercular network (CON;
Power et al., 2011; Yeo et al., 2011). Interestingly, there is overlap
between learning-activated regions and a subset of DMN areas—
including the hippocampus and the vmPFC, which may compose
a distinct subnetwork (Andrews-Hanna et al., 2010; Roy et al.,
2012).

Given these findings, we hypothesized that variability in trans-
fer would relate to differences in intrinsic connectivity between
the hippocampus and the vmPFC. We additionally hypothesized
that these regions’ participation in large-scale functional net-
works, particularly the DMN, may be related to transfer. Cru-
cially, our task was designed to test whether connectivity effects
are selective to transfer versus incremental reinforcement-driven
learning measured in the same task.

Materials and Methods
Experimental design. Forty-nine healthy right-handed participants
(mean age, 21.4 � 3.3 years; 30 females) were recruited from Columbia
University and the surrounding community. Each participant under-
went the following two testing sessions: a behavioral session; and a sep-
arate rs-fMRI scan. Informed consent was obtained according to
procedures approved by the Columbia University Institutional Review
Board. Seven participants were excluded from imaging analysis for ex-
cessive motion (see fMRI preprocessing and nuisance regression in Ma-
terials and Methods below), leaving a sample of 42 participants.
Participants were paid $20 for behavioral testing, a percentage of their
earnings from the task, and $20 for the MRI scan.

Task and behavioral analysis. Participants underwent a behavioral test-
ing session outside the scanner, several days before the brain-imaging
session (mean time between sessions, 55.0 � 6.7 h). Testing was con-
ducted first to ensure that all scanned participants had behavioral data
and to screen for MRI contraindications. The transfer paradigm (Fig. 1)
was an adapted version of a previously described sensory precondition-
ing task (Wimmer and Shohamy, 2011, 2012).

The task consists of three phases. In the association phase, participants
made button responses as they were exposed to sequential presentations
of neutral stimuli pairs (faces, denoted S1 and S2). A particular S1 stim-
ulus always preceded its paired S2 stimulus. Participants performed a

cover task responding to “target” upside-down images, which were
aimed at making the encoding incidental. Each of the four pairs was
presented 10 times in pseudo-random order, intermixed with 10 target
trials for 2 s, with a 2 s interstimulus interval and a 4 s intertrial interval.
Participants were not informed of the trial structure.

Next, during the reward learning phase, participants learned to asso-
ciate S2 stimuli with a monetary gain (S2�), a monetary loss (S2�), or a
neutral outcome [S2� (i.e., no win or loss)]. On each trial, an S2 face was
presented, and participants pressed a button to choose to bet or not. The
S2� stimulus led to a reward of $1 [80% of trials (16 of 20 trials)] or
nothing, while the S2� stimulus led to a loss of $0.50 [80% of trials (16 of
20 trials)] or nothing. The S2� stimulus led to neither gain nor loss for all
20 trials. The S2 stimulus from the fourth pair was not presented during
this phase (S2�), providing a control stimulus with no value association
for the subsequent decision phase. Participants were instructed that they
would receive a percentage of their total earnings.

In the critical decision phase, participants were presented with two
face stimuli and instructed to choose the face they thought would be
more likely to win. Participants were instructed that they would not
receive trial-by-trial feedback but that they would be rewarded for a
percentage of their choices. Each choice could lead to a win of $1 or no
reward. Stimuli for choice trials were either two S1 or two S2 faces.
Choices between S1 stimuli consisted of the following five trial types:
positive versus neutral (S1� � S1�); positive versus held out (S1� �
S1�); positive versus negative (S1� � S1�); negative versus neutral
(S1� � S1�); and negative versus held out (S1� � S1�). Analogous
choices were presented for S2 stimuli. Each choice was presented three
times, intermixed in pseudo-random order for 30 total trials.

We computed a transfer score for each participant by averaging the
number of S1� stimuli chosen or S1� stimuli avoided across the five trial
types described above, providing a single estimate of individual differ-
ences in transfer, while limiting the number of comparisons with the
fMRI data. Similar results were obtained using the first principal compo-
nent across S1 pairs, which explained 48.9% of the total variance as mea-
sured by the ratio of eigenvalues and was highly correlated with the mean.
Population-level transfer was compared with chance performance. We
used the same analysis strategy for the S2 choices during the decision
phase, allowing a comparison of “conditioned” versus “transfer” re-
sponses to test the selectivity of any connectivity associations.

To ensure that participants did not have pre-existing preferences for
the stimuli, images were selected based on pretask ratings. Finally, a
recognition memory test for S1–S2 pairs was administered after the ex-
periment to test whether subjects’ transfer responses were related to ex-
plicit awareness of task structure.

MRI acquisition. Participants returned for an rs-fMRI scan that en-
abled us to assess intrinsic connectivity. We acquired two series of 104
interleaved T2*-weighted, single-shot, gradient echo, echoplanar func-
tional images on a 3T Philips MRI scanner with an eight-channel head
coil. Sequence parameters were as follows: TR, 3000 ms; TE, 30 ms; flip
angle, 84°; array, 80 � 80; 41 slices; effective voxel resolution, 3 mm 3.
Participants were told they would be in the scanner for �30 min and to
remain still with their eyes open looking at a fixation cross, which was back-
projected and visible through a mirror mounted on the head coil. A high-
resolution T1-weighted MPRAGE image was acquired for registration.

fMRI preprocessing and nuisance regression. Preprocessing of fMRI data
was performed using the Functional MRI of the Brain Software Library
(www.fmrib.ox.ac.uk/fsl). Brain Extraction Tool (BET) was used to
skull-strip anatomical and functional images (Smith, 2002). The first
three volumes were removed to account for saturation effects. Functional
images were slice-time corrected, motion corrected to the median image
using trilinear interpolation with 6 df (Jenkinson et al., 2002), spatially
smoothed with a 5 mm full-width at half-maximum Gaussian kernel,
grand-mean scaled, and high-pass filtered with frequency f 	 0.01 Hz.
Functional scans were coregistered with anatomical images and linearly
transformed to a standard template (T1 Montreal Neurological Institute
template, voxel dimensions of 4 mm 3) using FLIRT (Jenkinson et al.,
2002).

Subject-level functional data were further preprocessed with a nui-
sance regression using FILM with local autocorrelation implemented in

Figure 1. Task design. The learning and transfer task consisted of the following three
phases: association phase, reward phase, and decision phase. A, In the association phase, par-
ticipants viewed a series of four pairs of S1 and S2 face stimuli while performing a cover task. B,
In the reward phase, participants learned that S2 stimuli led to monetary gain (S2�), monetary
loss (S2�), or no outcome (S2�) through instrumental conditioning. C, In the decision phase,
participants chose between pairs of S1 or pairs of S2 stimuli. The learning of directly reinforced
associations (“conditioning”) was measured as participants’ tendency to choose S2� and to
avoid S2�. Transfer was measured as participants’ tendency to choose S1� and to avoid S1�,
reflecting the transfer of learned value from S2 to S1 stimuli.
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FEAT (Woolrich et al., 2001). Given the well established effects of move-
ment on functional connectivity (Power et al., 2012; Satterthwaite et al.,
2012), we used a recently proposed extended regression technique shown
to successfully control for motion artifact in connectivity measures (Sat-
terthwaite et al., 2013). Thirty-six nuisance variables (time series for CSF,
white matter, whole-brain, and six motion parameters, the first temporal
derivative of each time series, and the square of each time series and its
derivative) were regressed against the spatially smoothed and high-pass-
filtered data from initial pre-preprocessing. Each model also included
single spike regressors for any time point where relative motion was 	2
SDs from the global mean across subjects. Any subject with 	20% of
time points in any scanning session “scrubbed” in this manner was ex-
cluded from further analysis, resulting in a final sample of 42 of 49
participants. The residual time series from each regression were then
low-pass filtered at f � 0.08 Hz. For each subject, the filtered time series
from both sessions were concatenated, resulting in 202 time points for
each region of interest (ROI) and network of interest.

Connectivity analyses. To define regions and networks of interest, we
performed a spatial independent component analysis (sICA), imple-
mented in MELODIC. The implementation of probabilistic sICA with
MELODIC seeks to maximize the independence of latent spatial compo-
nents (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC). For this analysis,
we temporally concatenated all sessions and subjects into a 2D matrix, as
this does not assume consistency of temporal patterns across subjects or
sessions.

Next, regions from within one of the resulting networks, a putative
subcomponent of the default mode network, labeled here as the ventral
medial network (VMN), were chosen for preliminary within-network
analysis based on their association with transfer in previous reports
(Jones et al., 2012; Wimmer and Shohamy, 2012; Zeithamova et al.,
2012). The DMN, FPN, and CON (Table 1) were included for between-
network analyses examining the relationship between transfer and their
connectivity with the hippocampus and vmPFC, based on previous as-
sociation with the performance of cognitive tasks (Dosenbach et al.,
2008; Fornito et al., 2012).

All ROIs and networks were functionally defined based on group-level
ICA effects. For connectivity analysis within the ventral medial compo-
nent, we isolated discrete functional ROIs using anatomical boundaries
from the Harvard-Oxford atlas where available. Thus, the hippocampus
and striatum ROIs were defined based on overlap between group-level
VMN effects and anatomical masks of these regions derived from the
Harvard-Oxford atlas, with a threshold probability of 25%. For the
vmPFC, given its lack of clear anatomical demarcation, and taking ad-
vantage of its robust position in the VMN, the ROI was defined by thresh-
olding the VMN component at Z 	 7, providing a region consistent with
those in prior reports (Kumaran et al., 2009; van Kesteren et al., 2010).
DMN, FPN, and CON were defined by thresholding their respective
component Z statistics until there was no overlap between the networks.
Mean time series were then extracted from all regions and networks for
each subject.

Within the VMN, we computed pairwise correlations among five re-
gions: left and right hippocampus, left and right ventral striatum, and
vmPFC. The correlation coefficients for each pair were Fisher Z trans-
formed. Average pairwise connectivity was used to characterize the net-
work structure. We tested the correlation between pairwise connectivity
and transfer score for each set of regions (yielding 10 region–region
pairs). The resulting correlations were corrected for multiple compari-
sons using a parametric bootstrap approach, in which we selected ran-
domly from a 10-dimensional normal distribution with the same means
and covariances as the VMN connectivity matrices across subjects. These
42 � 10 matrices were generated 10,000 times, with each column then
correlated with composite transfer score, to calculate the familywise error
(FWE) rate for a given correlation. In addition, to probe the selectivity of
any effects to transfer, we correlated pairwise connectivity with first-
order conditioning performance, using both a parametric test (Meng et
al., 1992) and a nonparametric bootstrap to examine the difference be-
tween these overlapping correlations.

Because of their significance for learning-based transfer (see Results),
we computed connectivity between both the left hippocampus and

vmPFC and the following three intrinsic connectivity networks: DMN,
FPN, and CON. These correlations were Fisher Z transformed and were
included in separate linear models for each intrinsic network, predicting
the transfer score. To isolate the individual effects of the network partic-
ipation of each region, regressors for each of these three models included
connectivity between the hippocampus and the network of interest, and
connectivity between the vmPFC and the network of interest, as well as a
nuisance regressor of hippocampus–vmPFC connectivity.

Results
The sICA revealed a number of components reflecting well char-
acterized intrinsic connectivity networks, consistent with previ-
ous reports (Beckmann et al., 2005; Zuo et al., 2010; Fornito et al.,
2012). Supporting the notion that the hippocampus, vmPFC, and
ventral striatum compose a distinct subcomponent of the default
mode network, our sICA analysis estimated this VMN as a sepa-
rate component (Fig. 2A). Correlation analyses revealed signifi-
cant connectivity between the vmPFC and all other regions
extracted from the VMN. We also found significant interhemi-
spheric connectivity for both the hippocampus and ventral stria-
tum. These results allowed us to test whether connectivity within
this network related to transfer tested on a separate day.

On the separate behavioral session, participants showed ro-
bust learning of direct S2� outcome associations trained during

Table 1. Regions comprising each component included in connectivity analyses

Region
Size
(voxels)

Maximum
Z

MNI coordinates

x y z

VMN
vmPFC/hippocampus/VStr 2003 17.5 �6 42 �12
L frontal pole 17 3.86 �34 10 �36
Posterior cingulate 10 3.46 �6 �54 12
R cerebellum 10 3.63 42 �42 �28

DMN
L angular gyrus 1214 9.04 �54 �62 20
R angular gyrus 1103 8.04 58 �58 20
Dorsal medial prefrontal cortex 769 9.84 2 54 24
Posterior cingulate cortex 150 6.66 2 �54 32
L cerebellum 71 6.1 �26 �78 �36
R cerebellum 63 5.28 26 �78 �36
L middle frontal gyrus 39 5.04 �42 10 48
R middle frontal gyrus 17 3.48 13 35 26
Frontal pole 15 4.17 2 62 �12

L FPN
L middle/inferior frontal gyrus 1963 14.8 �50 14 32
L superior lateral occipital cortex 899 13 �34 �70 44
L middle temporal gyrus 434 9.74 �58 �46 �12
R cerebellum 359 8.21 34 �70 �44
R superior lateral occipital cortex 81 5.37 34 �66 44
R middle/inferior frontal gyrus 60 4.63 46 30 16
R middle temporal gyrus 38 5.05 8 21 14

R FPN
R middle/inferior frontal gyrus 2303 11.5 46 22 36
R superior lateral occipital cortex 1096 13.3 46 �54 48
L cerebellum 461 10 �38 �70 �40
R middle temporal gyrus 285 7.52 62 �46 �12
L superior lateral occipital cortex 140 4.71 33 18 31
R thalamus 19 4.07 19 31 21

CON
dACC/frontal pole/L anterior insula 3003 13.1 �26 50 20
R anterior insula 126 5.58 50 14 �4
R cerebellum 121 6.41 38 �58 �32
L cerebellum 80 6.17 �38 �58 �32
L angular gyrus 35 4.26 �58 �50 32
R caudate 35 4.37 14 22 0
R angular gyrus 26 4.47 62 �42 28

Components were thresholded at Z 	 3.1, extent 	10 for inclusion in this table. Coordinates are reported in MNI
space. L, left hemisphere; R, right hemisphere; dACC, dorsal anterior cingulate cortex; Vstr, ventral striatum.
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the reward phase of sensory precondition-
ing, evidenced by their average tendency
to choose the S2� and avoid the S2� stim-
uli during the decision phase [88.8 �
2.0% (mean � SE), t(41) � 19.04, p �
0.0001; Fig. 2B]. Average transfer scores
were significantly greater than chance
(58.9 � 3.9%, t(41) � 2.3, p � 0.01, one-
tailed; Fig. 2B). A recognition memory
test revealed no significant explicit mem-
ory for the S1–S2 associations (mean accu-
racy, 22.6 � 3.5%; not different than
chance, 25%), and the correlation be-
tween explicit memory for these pairs and
transfer did not differ from chance (r(40) �
0.11, p � 0.49). These findings replicated
prior results (Wimmer and Shohamy,
2011, 2012), indicating that any transfer
in the current study was implicit and not
the result of strategic reasoning. Addition-
ally, transfer was orthogonal to first-order
conditioning (r(40) � 0.02, p � 0.93). As
anticipated, transfer was highly variable
across participants, ranging from 16.7%
to 100% (Fig. 2B); thus, some participants
generalized all learned associations, while
others showed little to no transfer.

We next tested the central question of
whether transfer behavior relates to vari-
ability in intrinsic network connectivity
(Fig. 2C). Of the 10 correlations among
VMN regions (Table 2), only vmPFC con-
nectivity with the left hippocampus
showed a significant transfer correlation
(r(40) � �0.42, p � 0.02 FWE corrected). This correlation was
negative, with lower connectivity related to higher transfer (Fig.
2D). A trend in the same direction was found for vmPFC connec-
tivity with the right hippocampus (r(40) � �0.29, p � 0.06, un-
corrected), indicating that this effect is not lateralized.

We then tested whether connectivity among the vmPFC, hip-
pocampus, and large-scale networks of interest (Table 1; Figs. 3,
4) was related to transfer. Connectivity between the core DMN
and both the hippocampus and the vmPFC was significantly re-
lated to transfer (Fig. 3; DMN connectivity with the hippocam-
pus: � � �0.48, p � 0.0002; DMN connectivity with vmPFC:
� � 0.26, p � 0.02; adjusted r 2 � 0.32, p � 0.0002). Connectivity
between the hippocampus and the DMN was negatively associ-
ated with transfer, while connectivity between the vmPFC and
the DMN was positively associated with transfer. Both effects
remained significant when including hippocampus–vmPFC con-
nectivity in the model as a nuisance covariate. In keeping with the
position of the vmPFC as a network hub (Buckner et al., 2008;
Roy et al., 2012; Sreenivas et al., 2012), its connectivity with the
FPN was also significantly negatively associated with transfer
(Fig. 4; � � �0.38, p � 0.02, adjusted r 2 � 0.20). This effect
remained significant when including hippocampus–vmPFC con-
nectivity as a nuisance covariate. There were no significant effects
of connectivity between the cingulo-opercular network and ei-
ther the hippocampus or vmPFC.

Finally, we tested the selectivity of the above effects to transfer.
To control for the possibility that this pattern of results broadly
reflects attentional or learning tendencies, we repeated the anal-
yses using each participant’s conditioning score (i.e., the propor-

tion of choosing S2� and avoiding S2�), which reflects direct
learning of stimulus– outcome associations from the reward
learning phase. Importantly, the correlation between hippocam-
pus–vmPFC connectivity and learning was selective to transfer,
and was not found for conditioning (r(40) � �0.02, p � 0.90,
uncorrected). Moreover, a direct comparison of the two overlap-
ping correlations (Meng et al., 1992) was significant (Z � �1.85,
p � 0.03, one-tailed); this difference was also significant when
tested using a nonparametric bootstrap to account for non-
normality of behavioral performance. These results provide evi-
dence for the specific contributions of this network to transfer.
Associations with between-network connectivity were also spe-
cific, as follows: conditioning did not relate to DMN connectivity
with either the vmPFC or the hippocampus (hippocampus: � �
�0.02, p � 0.85; vmPFC: � � �0.01, p � 0.85; adjusted r 2 �

Figure 2. Connectivity between the hippocampus and the vmPFC negatively correlates with transfer. A, Ventral medial net-
work. Spatial ICA revealed an intrinsic functional connectivity network consisting of the ventromedial prefrontal cortex, bilateral
striatum, and bilateral hippocampus. Interindividual variability in pairwise connectivity between regions of this VMN allowed us to
test the relationship between within-network connectivity and value transfer. Images thresholded at Z � 3.1 and resampled to 2
mm 3 for display purposes, and are shown in radiological convention. B, Behavioral performance during the decision phase.
Average scores for first-order conditioning and transfer were both significantly above chance. Subjects exhibited a large amount of
variability in transfer behavior. Bars represent means and 95% CIs, and points show individual subject scores. C, The Z-transformed
distribution of correlation between the left hippocampus and vmPFC across participants. The y-axis represents the number of
participants. D, Connectivity between the left hippocampus and vmPFC is significantly negatively correlated with transfer. A trend
in the same direction was found for the right hippocampus (see text and Table 2).

Table 2. Correlations between behavioral transfer and intrinsic functional
connectivity between ROIs

vmPFC

Hippocampus Caudate

Right Left Right Left

vmPFC �0.29 �0.42* 0.02 0.09
Hippocampus

Right �0.29 �0.18 �0.06 �0.18
Left �0.42* �0.18 �0.07 �0.21

Caudate
Right 0.02 �0.06 �0.07 0.29
Left 0.09 �0.18 �0.21 0.29

Values in each cell represent the correlation of transfer with intrinsic functional connectivity between the ROIs listed
in the corresponding row and column. Only connectivity between the vmPFC and the left hippocampus ROIs is
significantly related to transfer behavior, r(40) � �0.42, pFWE � 0.05.
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�0.05, p � 0.96). The same was true for the effect of vmPFC–
FPN connectivity on learning (� � �0.06, p � 0.52, adjusted
r 2 � �0.06).

Discussion
Individuals vary in the extent to which they leverage past learning
when faced with novel choices. The sensory preconditioning par-
adigm provides a unique opportunity to explore the stable neural
basis of variability in the tendency to transfer spontaneously,
even in contexts where it provides no explicit benefit. Here we

find that individual variability in the
transfer of learning is related to intrinsic
connectivity between the hippocampus
and the vmPFC, measured during rest
and on a separate day. Further, we find
that individual differences in this behav-
ior are also related to overall connectivity
between these regions and the DMN
and FPN. While multiple studies have
demonstrated a relationship between
task-evoked activation and differences in
transfer (Shohamy and Wagner, 2008;
Wimmer and Shohamy, 2012; Wimmer et
al., 2012; Zeithamova et al., 2012), these
studies do not address the potential role of
intrinsic functional brain organization.
Based on these studies, variability in
transfer could have related solely to task-
evoked patterns of brain activity, and not
to intrinsic connectivity. The finding of a
link between these two measures advances
our understanding of the role of network
connectivity in behavioral variability, and
suggests that stable and intrinsic aspects of
functional brain organization can explain
individual differences in the transfer of
learning.

These results thus demonstrate a
novel link between intrinsic connectiv-
ity and complex measures of learning.
Further, their specificity to transfer of
value as opposed to first-order condition-
ing indicates a relationship between
resting-connectivity and behavior that is
particular to regions involved in a given
domain. While we used sICA to function-
ally isolate intrinsic networks, the selec-
tion of VMN regions was based on the a
priori hypothesis that connectivity be-
tween regions known to be involved in
transfer would be related to variability in
this behavior. While much rs-fMRI re-
search has focused on commonalities in
normal populations, here we exploit the
fact that individual connectivity is itself
highly variable in healthy adults (Kahn
and Shohamy, 2013) and show that this
variability has implications for learning
behavior.

Previous studies have separately high-
lighted roles for the hippocampus and the
vmPFC in a wide range of behaviors that
involve memory-guided learning (Port et
al., 1987; Dusek and Eichenbaum, 1997;

Myers et al., 2003; Greene et al., 2006; Kumaran et al., 2009; van
Kesteren et al., 2010; Schoenbaum et al., 2011; Wimmer and
Shohamy, 2012; Zeithamova et al., 2012). Together, these regions
are thought to contribute to the formation and use of flexible
representations that guide transfer behavior. In the sensory pre-
conditioning paradigm, we previously found in humans that hip-
pocampus activation during learning is related to subsequent
transfer (Wimmer and Shohamy, 2012). Jones et al. (2012) sep-
arately demonstrated the necessary role of a homolog to human

Figure 3. Intrinsic DMN connectivity with the vmPFC and the hippocampus is associated with transfer. A, DMN as revealed by
spatial ICA. B, C, Intrinsic functional connectivity between the DMN and the hippocampus (B) and the vmPFC (C) was significantly
related to transfer of learned value. Regression lines are from linear models containing DMN– hippocampus and DMN–vmPFC
connectivity as predictors. Both effects remained significant when including vmPFC– hippocampus connectivity as a covariate, and
both effects are selective to transfer.

Figure 4. VMPFC connectivity with the frontoparietal network is negatively associated with transfer. A, Frontoparietal network.
B, Plot showing negative relationship between value transfer and vmPFC–FPN connectivity. The regression line was computed
from a linear model containing FPN– hippocampus and FPN–vmPFC connectivity as predictors. This effect remained significant
when including vmPFC– hippocampus connectivity as a covariate and is specific to transfer.
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medial orbitofrontal cortex in transfer behavior using the same
paradigm in rodents. The current results suggest that the strength
of connectivity between the hippocampus and vmPFC at rest
explains a significant portion of the variability in this kind of
transfer and links across these pieces of evidence in different spe-
cies performing the same task.

The current results indicate that the correlation between hip-
pocampal–vmPFC connectivity and transfer is negative, such
that participants transferring the most are those with the weakest
connectivity. The direction of this effect is consistent with a re-
cent proposal about how connections between the hippocampus
and the vmPFC relate to the incorporation of new memories into
existing abstract frameworks, called “schemas.” Schemas also
capture an element of flexible memory-guided behavior, and
studies show that the extent to which an individual will generalize
a schema to new events is negatively correlated with hippocam-
pus–vmPFC connectivity (van Kesteren et al., 2010). Such find-
ings are consistent with neurobiological evidence of dynamic
changes in hippocampal–prefrontal circuits during learning
(Doyère et al., 1993; Takita et al., 1999) and have led to the pro-
posal that the vmPFC may serve as a gateway to hippocampal
learning (van Kesteren et al., 2012). Given the convergence be-
tween our results and previous findings, it is possible that the
negative relationship we show reflects an overlapping learning
mechanism to that proposed by van Kesteren et al. (2012). If
prefrontal gating supports multiple forms of transfer, intrinsic
connectivity between the hippocampus and vmPFC could be a
marker of the tendency to transfer learning across a range of
tasks. If so, then it would be expected that groups who show
decreased transfer, such as patients with schizophrenia (Ivleva et
al., 2012), may actually display increased vmPFC– hippocampus
connectivity at rest.

Sensory preconditioning provides a measure of implicit
transfer of value across learned associations. The findings we
report are broadly relevant for other classes of paradigms that test
transfer or generalization of knowledge (for review, see Kumaran
and McClelland, 2012), many of which involve generalization of
stimulus–stimulus associations outside the domain of reward
learning. Yet other related processes have been examined within
the context of reward-based decision making, in studies of the
neural and cognitive mechanisms underlying learning about
structured regularities in the environment, referred to as “model-
based” reinforcement learning (Daw et al., 2005, 2011; Hampton
et al., 2006). This type of learning relies on prospective models of
environmental contingencies that can flexibly guide decision
making, as opposed to the rigid and feedback-dependent updat-
ing of action or stimulus value, referred to as “model-free” learn-
ing (for review, see Doll et al., 2012). Current evidence suggests
that there is significant individual variability in the respective
weights placed on these types of learning (Daw et al., 2011). Al-
though memory-based generalization and model-based frame-
works vary in their origins, there is evidence for shared behavioral
mechanisms (Doll et al., 2014). Furthermore, emerging findings
across these domains reveal an important role for the hippocam-
pus and vmPFC (McDannald et al., 2011; Zeithamova et al., 2012;
Bornstein and Daw, 2013). Together with the current results, this
suggests that variability in intrinsic functional connectivity
between the hippocampus and the vmPFC may relate to a
broader range of stable learning behaviors that involve a com-
mon mechanism.

In the present study, we purposefully measure intrinsic con-
nectivity in the absence of a task to address questions regarding
variability in transfer behavior regardless of task-evoked activity.

In general, the link between activation evoked by task demands
and spontaneous fluctuations remains an open question. Emerg-
ing evidence suggests that resting and evoked activity may nega-
tively interact (He, 2013). Such a tradeoff between baseline and
event-related connectivity presents a challenge to drawing infer-
ences between these two conditions. These questions are impor-
tant for interpreting studies of intrinsic connectivity, and should
be tested in future studies that directly compare evoked and base-
line conditions.

Learning and memory research has historically focused on
distinguishing the roles of discrete and functionally specific
nodes. The present findings indicate an important but unex-
plored role for large-scale functional networks in complex learn-
ing behavior. Our results highlight the relationship between
learning and intrinsic connectivity within a ventral-medial com-
ponent of the default network centered on the hippocampus and
the vmPFC, regions known to be involved in a host of flexible
learning behaviors. In addition, we demonstrate that broader
connectivity between these regions and the DMN and FPN,
whose functions are currently much less clear, also relates to
transfer. Together, these findings raise the possibility that com-
munication between localized brain regions involved in specific
cognitive functions and distributed domain-general networks
may play an important role in learning. These results also suggest
that this approach has potential implications for the use of rs-
fMRI to further our understanding of individual differences in a
range of basic learning behaviors. Because variation in these pro-
cesses is likely to underlie complex behavioral traits, these results
hold additional promise for answering questions about stable
differences in complex behavior that are central to research in
education as well as studies of clinical populations.
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