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We developed recently a binge-eating model in which female rats with a history of intermittent food restriction show binge-like palatable
food consumption after 15 min exposure to the sight of the palatable food. This “frustration stress” manipulation also activates the
hypothalamic–pituitary–adrenal stress axis. Here, we determined the role of the stress neurohormone corticotropin-releasing factor
(CRF) in stress-induced binge eating in our model. We also assessed the role of CRF receptors in the bed nucleus of the stria terminalis
(BNST), a brain region implicated in stress responses and stress-induced drug seeking, in stress-induced binge eating. We used four
groups that were first exposed or not exposed to repeated intermittent cycles of regular chow food restriction during which they were also
given intermittent access to high-caloric palatable food. On the test day, we either exposed or did not expose the rats to the sight of the
palatable food for 15 min (frustration stress) before assessing food consumption for 2 h. We found that systemic injections of the CRF1
receptor antagonist R121919 (2,5-dimethyl-3-(6-dimethyl-4-methylpyridin-3-yl)-7 dipropylamino pyrazolo[1,5-a]pyrimidine) (10 –20
mg/kg) and BNST (25–50 ng/side) or ventricular (1000 ng) injections of the nonselective CRF receptor antagonist D-Phe-CRF(12– 41)

decreased frustration stress-induced binge eating in rats with a history of food restriction. Frustration stress also increased Fos (a neuronal
activity marker) expression in ventral and dorsal BNST. Results demonstrate a critical role of CRF receptors in BNST in stress-induced binge
eating in our rat model. CRF1 receptor antagonists may represent a novel pharmacological treatment for bingeing-related eating disorders.
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Introduction
Binge-eating episodes, characterized by excessive intake of an abnor-
mally high amount of food in a short time period, are characteristic
of individuals diagnosed with binge-eating disorders, bulimia ner-
vosa, and binge/purge subtype anorexia nervosa (American Psychi-
atric Association, 2013). Binge eating of caloric-rich palatable food is
also a common behavioral characteristic of obese individuals

(Yanovski, 1993; Hudson et al., 2007). In recent years, investigators
have developed rat models of binge eating to study underlying mech-
anisms (Hagan et al., 2002; Corwin and Buda-Levin, 2004; Avena et
al., 2008; Cottone et al., 2008; Cifani et al., 2009). In our studies, we
use female rats because of the high prevalence of binge-eating disor-
ders in adolescent and young adult females (Kjelsås et al., 2004; Hud-
son et al., 2007).

In our binge-eating model, we expose female rats to three
8-day cycles of food restriction (4 days at 66% of chow intake and
4 days of free feeding) during which we also give them access to
palatable food for 2 h on days 5– 6 and 13–14. On the test day, we
assess palatable food intake for 2 h after 15 min exposure to the
sight of the food (Cifani et al., 2009). This “frustrative nonre-
ward” manipulation (Amsel, 1958) or “frustration stress” manip-
ulation, in combination with cycles of food restriction/refeeding,
causes “binge-like” palatable food consumption during the first
15 min of the 2 h feeding test (Cifani et al., 2009, 2010; Micioni Di
Bonaventura et al., 2012). We operationally define “binge eating”
in our model as significantly higher palatable food consumption
during the 2 h test in the repeated restriction plus frustration
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stress condition than in the other experimental conditions (see
Materials and Methods).

We found previously that the anticonvulsant drug topiramate
(which showed some efficacy in the treatment of binge-eating
disorders in patients (McElroy et al., 2004) and orexin-1 receptor
antagonists decrease stress-induced binge eating (Cifani et al.,
2009; Piccoli et al., 2012). Here, we determined the role of the
stress neurohormone corticotropin-releasing factor (CRF) in
food restriction/frustration stress-induced binge eating in our
model.

CRF mediates behavioral and physiological stress responses
via its effects on both the hypothalamic–pituitary–adrenal (HPA)
axis and extrahypothalamic brain sites (Vale et al., 1981; Bale and
Vale, 2004). We determined the role of CRF in binge eating in-
duced by the combination of cyclic food restriction and stress
because human binge eating is associated with high cortisol levels
(Gluck et al., 2004a,b; Coutinho et al., 2007), and stress-induced
increases in cortisol levels predict sweet food intake (Epel et al.,
2001). Additionally, we found that our frustration stress manip-
ulation increases plasma levels of the stress hormone corticoste-
rone (Selye, 1976), suggesting that this manipulation is stressful
to rats (Cifani et al., 2010). These data are in agreement with
results from early studies demonstrating that the removal of con-
tingent (extinction) or noncontingent food reward (a frustrative
nonreward manipulation; Amsel, 1958) increases plasma corti-
costerone, suggesting that unexpected reward omission induces a
stress-like state (Coe et al., 1983). Finally, Cottone et al. (2009)
demonstrated that withdrawal from intermittent palatable food
access causes withdrawal-like symptoms (decreased motivation
to obtain regular food and anxiety) that are reversed by injections
of the CRF1 receptor antagonist R121919 (2,5-dimethyl-3-(6-
dimethyl-4-methylpyridin-3-yl)-7 dipropylamino pyrazolo[1,5-
a]pyrimidine) (Heinrichs et al., 2002).

Here, we first determined the effect of systemic injections of
R121919 on binge eating in our model. We also determined the
role of CRF receptors in bed nucleus of the stria terminalis
(BNST) in binge eating and whether the frustration stress manip-
ulation increases BNST neuronal activity, as assessed by the neu-
ronal activity marker c-Fos (Morgan and Curran, 1991). We
studied the BNST because of the role of CRF in this brain area in
food consumption (Ciccocioppo et al., 2003), stress responses
(Davis et al., 2010), and stress-induced drug seeking (Erb and
Stewart, 1999; Erb et al., 2001; Bossert et al., 2013).

Materials and Methods
Subjects and diet composition
Female Sprague Dawley rats (Charles River; total n � 296; 200 –225 g at
the beginning of the experiments) were used. Rats were housed under a
12 h light/dark cycle (lights on at 8:00 A.M.) with access to food and water
ad libitum for 2 weeks before the experiments. They were kept in a room
at constant temperature (20 –22°C) and humidity (45–55%). Rats were
housed individually in metal cages (30 � 30 � 30 cm). All experiments
were performed in accordance with the European directive 86/609/EEC
governing animal welfare and protection, which is acknowledged by Ital-
ian Legislative Decree (number 116, January 27, 1992). The experiments
were also performed in accordance with the Guide for the Care and Use of
Laboratory Animals (eighth edition).

The rats were given standard rat food pellets (4RF18; Mucedola; 2.6
kcal/g). The highly palatable food (3.63 kcal/g) was a paste prepared by
mixing Nutella (Ferrero) chocolate cream (5.33 kcal/g; 56, 31, and 7%
from carbohydrate, fat, and protein, respectively), ground food pellets
(4RF18), and water in the following w/w percent ratio: 52% Nutella, 33%
food pellets, and 15% water. Standard pellets were offered inside a me-
tallic grid container that was hung on the anterior wall of the cage. The
highly palatable food diet was offered in a coffee cup; the handle of the

cup was inserted into the metallic grid of the anterior wall of the cage and
fixed to the wall.

Drugs
The selective CRF1 receptor antagonist R121919 (Keck et al., 2001; Hei-
nrichs et al., 2002) was synthesized by Kenner C. Rice (National Institute
on Drug Abuse, Bethesda, MD). R121919 was dissolved in 1 M HCl (10%
of final volume) and then diluted with a vehicle of 20% (w/v)
2-hydroxypropyl-�-cyclodextrin (Sigma-Aldrich); the pH of the solu-
tions was adjusted to 4.5 with NaOH. R121919 was injected subcutane-
ously (2 ml/kg) at doses of 10 or 20 mg/kg (Funk et al., 2007; Cottone et
al., 2009).

The nonselective CRF receptor antagonist D-Phe-CRF(12– 41) (Men-
zaghi et al., 1994) was purchased from Bachem and dissolved in saline.
The drug was injected bilaterally into the BNST at doses of 10, 25, or 50
ng/rat (0.5 �l/side) or into one of the lateral ventricles (1 �l) at doses of
100, 300, or 1000 ng/rat (Shaham et al., 1997; Erb et al., 1998; Erb and
Stewart, 1999; Lê et al., 2002). We used D-Phe-CRF(12– 41) for intracranial
injections, because the R121919 solution clogged the 22 gauge injectors,
and therefore we could not inject the CRF1 receptor antagonist into the
BNST.

Intracranial surgery and injections
Rats were anesthetized by intramuscular injections of tiletamine chlora-
hydrate (200 mg/kg) and zolazepam chlorahydrate (200 mg/kg; Virbac);
the rats were also given a prophylactic dose of rubrocillin (200 �l/rat;
Farmaceutici Gellini Spa) to prevent postsurgery infections. For BNST
injections, bilateral cannulas (22 gauge; Unimed) were stereotaxically
implanted and cemented to the skull with jeweler’s screws and dental
cement. The Paxinos and Watson (2005) coordinates were as follows:
anteroposterior (AP), �0.3 mm from bregma; mediolateral (ML), 1.4
mm from the sagittal suture; and dorsoventral (DV), 6.0 mm from the
skull surface (Nijsen et al., 2001; Ciccocioppo et al., 2003; Fendt et al.,
2005; Lungwitz et al., 2012). For ventricular injections, a single cannula
was implanted into one of the lateral ventricles. The Paxinos and Watson
(2005) coordinates were as follows: AP, �1.0 mm from bregma; ML, 1.8
mm from the sagittal suture; and DV, 2.0 mm from the skull surface. A
stainless-steel blocker the same length of the cannula was placed into the
guide cannula at the end of surgery. To verify accurate cannula placement
in the ventricles, the rats received an intracerebroventricular injection of
100 ng/rat angiotensin II (Johnson and Epstein, 1975); only rats that
showed a clear dipsogenic response (at least 6 ml of water in 5 min) were
used in the experiments (4 of the 72 rats were excluded).

BNST or ventricular injections of D-Phe-CRF(12– 41) or its vehicle were
made with Harvard infusion pumps, using 10 �l Hamilton syringes con-
nected to the injectors (Unimed) via polyethylene-10 tubing; the tip of
the injector was 1.2 mm (for BNST) or 2.5 mm (for lateral ventricle)
below the end of the guide cannulas. Injections lasted 1 min, and injectors
were left in place for 1 additional minute before being replaced with
cannula blockers. At the end of the experiments, the rats were deeply
anesthetized and decapitated, and their brains were removed, snap fro-
zen in �40°C isopentane, and stored at �80°C. Subsequently, the brains
were sliced into coronal sections (30 �m) and stained with cresyl violet.
The sections were then examined for cannula placements under a micro-
scope. After histology, we excluded 12 of the 80 rats from the analysis
because of placements outside the dorsal or ventral BNST.

Fos immunohistochemistry
The Fos-immunoreactive (IR) procedure is based on our previous stud-
ies (Bossert et al., 2011, 2012; Nair et al., 2011; Cifani et al., 2012). Ninety
minutes after the start of the frustration stress manipulation or no stress,
the rats were deeply anesthetized with isoflurane (80 s) and perfused
transcardially with 100 ml of 0.1 M PBS, followed by 400 ml of 4% para-
formaldehyde in 0.1 M sodium phosphate, pH 7.4. The brains were re-
moved, postfixed in 4% paraformaldehyde for 2 h, and transferred to
30% sucrose in 0.1 M sodium phosphate, pH 7.4, for 48 h at 4°C.

The brains were subsequently frozen in powdered dry ice and stored at
�80°C until sectioning. Coronal sections of 40 �m thickness, �0.26 mm
posterior from bregma (Paxinos and Watson, 2005), containing the ven-
tral and dorsal BNST were cut on a cryostat (Leica), collected in cryopro-
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tectant (20% glycerol and 2% dimethylsulfoxide in 0.1 M sodium
phosphate, pH 7.4), and stored at �80°C until additional processing.
Free-floating sections were washed (three times for 10 min each) in PBS,
incubated for 1 h in blocking buffer 3% normal goat serum (NGS) in PBS
with 0.25% Triton X-100 (PBS-Tx), and incubated overnight at 4°C with
the anti-c-Fos primary antibody (c-Fos sc-52, Lot F2209; Santa Cruz
Biotechnology) diluted 1:4000 in blocking buffer.

The sc-52 antibody was raised against amino acids 3–16 of human
c-Fos: SGFNADYEASSSRC. Sections were then washed in PBS and incu-
bated for 2 h with the biotinylated anti-rabbit IgG secondary antibody
(BA-1000; Vector Laboratories) diluted 1:600 in 1% NGS in PBS-Tx.
Sections were washed in PBS and incubated in avidin– biotin–peroxidase
complex (ABC Elite kit, PK-6100; Vector Laboratories) in PBS contain-
ing 0.5% Triton X-100 for 1 h and washed in PBS.

Sections were developed in 3,30-diaminobenzidine for 4 min, washed
in PBS, mounted onto chrome-alum/gelatin-coated slides, and air dried.
The slides were dehydrated through a graded series of alcohol (30, 60, 90,
95, 100, and 100% ethanol), cleared with Citrasolv (Thermo Fisher Sci-
entific), and coverslipped with Permount (Sigma). Bright-field images of
the BNST were digitally captured using a CCD Camera (Photometrics
Coolsnap; Roper Scientific) attached to a Zeiss Axioskop 2 microscope
using a 10� objective. Labeled Fos-IR nuclei from one to two sections
from the left and right hemispheres of each rat under different experi-
mental conditions were automatically counted using IPLab software
(version 3.9.4 r5; Scanalytics) for Macintosh. Image capture and quanti-
fication of Fos-positive nuclei were conducted in a blind manner (by
C.C.).

Binge-eating experimental procedure
In the experiments described below, different groups of female rats were
exposed (or not exposed) for 24 day to three 8-day cycles of food restric-
tion (66% of chow intake on days 1– 4 and free feeding on days 5– 8 of
each cycle) during which they were given access to palatable food for 2 h
during the light cycle between 10:00 A.M. and 12:00 P.M. (2 h after the
onset of the light cycle) on days 5– 6 and 13–14 of the first two cycles
(total of four exposures). On the binge intake test day, we assessed pal-
atable food intake for 2 h immediately after exposure to frustration stress
(Cifani et al., 2009). The stress manipulation consisted of 15 min expo-
sure to the coffee cup containing the palatable food that was placed inside
a metallic grid container and hung up on the anterior wall of the cage.
The rats could see and smell the palatable food but could not access it.
During this 15 min period, the rats engaged in repeated movements of
the forepaws, head, and trunk, suggesting that they were attempting to
reach the palatable food. The rats were exposed (or not exposed) to the
stress manipulation between 10:00 A.M. and 12:00 P.M. After 15 min, the
palatable food cup was placed inside the cage, and food intake was deter-
mined for 2 h. During the test session, we measured food intake 15, 30,
60, and 120 min after frustration stress or no stress exposure.

Immediately after testing, we collected vaginal smears and analyzed
them under a microscope to assess the ovarian phase. We determined the
estrous cycle phase in a blind manner to the experimental conditions. We
found previously that stress-induced binge eating in our model is not
observed during the estrous phase (Micioni Di Bonaventura et al., 2010).
Therefore, we excluded rats that were in this phase from the experiments
(a total of 66 of the 296 rats used in the experiments were excluded for
this reason). Palatable food intake at 15 min and 2 h of the vehicle-
injected rats that were in estrous in the restriction plus stress condition
across Experiments 1 and 3 was 47.6 � 5.5 and 95.2 � 3.2 kcal/kg,
respectively (n � 5). These values were significantly lower ( p values
�0.05) than those of vehicle-injected rats that were not in estrous in the
restriction plus stress condition in Experiment 1 (135.2 � 4.3 and
158.0 � 10.5, respectively, n � 7), Experiment 3 BNST injections
(138.5 � 8.6 and 167.7 � 7.8, respectively, n � 8), and Experiment 3
intracerebroventricular injections (120.1 � 6.2 and 145.9 � 10.4, respec-
tively, n � 7).

Experiment 1: effect of the CRF-1 receptor antagonist R121919 on
stress-induced binge eating
In Experiment 1, we determined the effect of systemic injections of
R121919 on frustration stress-induced binge-like eating in our model.

We used 108 rats that we divided into 12 groups (n � 9 per group) in a 2
(history of intermittent food restriction: no, yes) � 2 (stress during test-
ing: no, yes) � 3 (R121919 dose: 0, 10, 20 mg/kg) factorial design. We
exposed the rats to three consecutive 8-d cycles of intermittent food
restriction or no restriction during which we also gave them access or no
access to the palatable food for 2 h/d on days 5, 6, 13, and 14 (see above).
Subsequently, on day 25, we exposed or did not expose the rats to 15 min
of frustration stress immediately before the 2 h palatable food consump-
tion test. We injected the rats with vehicle or R121919 60 min before the
2 h palatable food access.

Experiment 2: effect of frustration stress on Fos expression
in BNST
In Experiment 2, we determined whether frustration stress increases Fos
expression in ventral and dorsal BNST. We used 36 rats (n � 9 per group)
in a 2 (history of intermittent food restriction: no, yes) � 2 (frustration
stress during testing: no, yes) factorial design. We exposed or did not
expose the rats to 3 consecutive 8-d cycles of intermittent food restriction
during which we also gave them access to the palatable food for 2 h/d on
days 5, 6, 13, and 14 (see above). On day 25, we exposed or did not expose
the rats to the 15 min frustration stress manipulation and extracted their
brains (after anesthesia and perfusion) 90 min later for subsequent Fos
immunohistochemistry assays. We did not assess binge eating in these
groups, because we wanted to assess the “pure” effect of the stress ma-
nipulation of BNST neuronal activity without the potential impact of
food intake during testing on neuronal activity.

Experiment 3: effect of BNST and ventricular injections of
D-Phe-CRF(12– 41) on stress-induced binge eating
In Experiment 3, we determined the effect of BNST and ventricular in-
jections of the nonselective CRF receptor antagonist D-Phe-CRF(12– 41)

on stress-induced binge-like eating in our model.
BNST injections. We used 80 rats that were divided into eight groups

(n � 10 per group). Four groups were not exposed to cycles of food
restriction or frustration stress and were tested for the effect of D-Phe-
CRF(12– 41) injections (0, 10, 25, and 50 ng/side) on palatable food intake
during the 2 h test on day 25. Four other groups were exposed to three
cycles of food restriction and frustration stress and were tested for the
effect of D-Phe-CRF(12– 41) injections (0, 10, 25, and 50 ng/side) on stress-
induced palatable food intake during the 2 h test on day 25. We injected
D-Phe-CRF(12– 41) 30 min before the 2 h palatable food access (15 min
before the beginning of the frustration stress for the stress groups).

Ventricular injections. We used 72 rats that we divided into eight
groups (n � 9 per group). Four groups were not exposed to cycles of food
restriction or frustration stress and were tested for the effect of D-Phe-
CRF(12– 41) injections (0, 100, 300, and 1000 ng) on palatable food intake
during the 2 h test on day 25. Four other groups were exposed to three
cycles of food restriction and frustration stress and were tested for the
effect of D-Phe-CRF(12– 41) injections (0, 100, 300, and 1000 ng) on stress-
induced palatable food intake during the 2 h test on day 25. We injected
D-Phe-CRF(12– 41) 30 min before the 2 h palatable food access (15 min
before the beginning of the frustration stress for the stress group).

Statistical analysis
We report the results as mean � SEM. We analyzed the data with facto-
rial ANOVAs using the factors described in Results. We used Bonferro-
ni’s post hoc tests to follow up on significant interaction or main effects
( p � 0.05) from the factorial ANOVAs. We analyzed the data with Systat
version 10.0 (Systat Software).

Results
Effect of the CRF1 receptor antagonist R121919 on
stress-induced binge eating
Body weight (days 1–24)
In Figure 1A, we show the timeline of the experimental proce-
dure, and in Figure 1B, we show body weight fluctuations during
the three 8-day cycles during which we either exposed or did not
expose the rats to food restriction on days 1– 4 of each cycle (66%
of regular chow availability). As in our previous studies (Cifani et
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al., 2009, 2010), we found that the rats lost weight during the
4-day food restriction period and regained it during the subse-
quent 4-day free-food period. On the test day (day 25) of Exper-
iment 1 and the other experiments (data not shown), the body
weight of the rats in the restricted and nonrestricted groups was
not significantly different.

Palatable food test (day 25, vehicle group)
We found that, in rats with a history of intermittent food restric-
tion, exposure to 15 min frustration stress increased palatable
food consumption during the first 15 min of the feeding test on
day 25; this stress manipulation had no effect on food intake in
rats that were not food restricted during the first 24 days of the
experiment. During the remaining time of the 2 h test (minutes
15–120), no compensatory changes in palatable food consump-
tion were observed (Fig. 2C). The statistical analysis, which in-
cluded the between-subjects factors of history of intermittent
food restriction (no, yes) and frustration stress during testing
(no, yes), and the within-subject factor of session time (0 –15,
15–30, 30 – 60, 60 –120 min) showed a significant interaction be-

tween the three factors (F(3,72) � 16.7, p � 0.01). Post hoc tests
confirmed a significant (p � 0.05) increase in food consumption
only at the 0 –15 min time point and only in rats with a history of
food restriction, followed by frustration stress. These data are in
agreement with our previous studies on the effect of our experi-
mental manipulations on binge-like eating in our rat model (Ci-
fani et al., 2009, 2010; Micioni Di Bonaventura et al., 2012; Piccoli
et al., 2012).

Effect of R121919
We found that systemic injections of R121919 in rats with a his-
tory of intermittent food restriction decreased frustration stress-
induced increases in palatable food consumption during testing
on day 25 (Fig. 2A). In contrast, R121919 injections had no effect
on palatable food intake in the no-stress groups independent of
the feeding conditions (restriction, no restriction) during the first
24 d or in rats exposed to stress during testing but had no previous
experience with food restriction. The statistical analysis, which
included the between-subjects factors of history of intermittent
food restriction (no, yes), stress during testing (no, yes), and

Figure 1. Increased palatable food intake in rats with a history of intermittent food restriction that were exposed to frustration stress before the feeding test. A, Timeline of the experimental
procedures for the food nonrestricted (top) and restricted (bottom) rats. B, Mean � SEM body weight (grams) of female rats exposed or not exposed to repeated intermittent cycles of food
restriction/refeeding. C, Mean � SEM palatable food intake at different time points during testing (left) and total 2 h food intake (right) in the vehicle-injected rats in Experiment 1. *p �
0.05, different from the other three groups; n � 6 – 8 per group.
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R121919 dose (0, 10, 20 mg/kg), and the within-subjects factor of
session time (0 –15, 15–30, 30 – 60, 60 –120 min), showed a sig-
nificant interaction between the four factors (F(6,213) � 4.0, p �
0.01). Subsequent two-way ANOVAs within each group
showed a significant interaction of R121919 dose with session
time in the intermittent food restriction plus frustration stress
group (F(2,20) � 4.29, p � 0.05) but not in the other groups
( p values �0.1). Post hoc group differences are indicated in
Figure 2.

Experiment 2: effect of frustration stress on Fos expression
in BNST
We found that, in rats with a history of intermittent food restric-
tion on days 1–24, exposure to 15 min of frustration stress on day
25 increased Fos immunoreactivity in both dorsal and ventral
BNST (Fig. 3B,C). The statistical analysis, which included the
between-subjects factors of history of intermittent food restric-
tion (no, yes) and stress during testing (no, yes), and the within-
subjects factor of BNST region (dorsal, ventral), showed a
significant interaction between intermittent food restriction his-
tory and stress during testing (F(1,22) � 19.0, p � 0.01). Post hoc
group differences are indicated in Figure 3.

Experiment 3: effect of BNST and ventricular injections of
D-Phe-CRF(12– 41) on stress-induced binge eating
In rats with a history of intermittent food restriction, BNST in-
jections of low D-Phe-CRF(12– 41) doses (25 and 50 ng) and ven-
tricular injections of a significantly higher dose of the drug (1000
ng) decreased frustration stress-induced palatable food intake
during the first 15 min of testing (Fig. 4A,B). BNST or ventricular
injections of D-Phe-CRF(12– 41) had no effect on palatable food
consumption in rats that were not exposed to food restriction and
frustration stress.

BNST injections
The statistical analysis, which included the between-subjects fac-
tors of group condition (no food restriction plus no stress, food
restriction plus stress) and D-Phe-CRF(12– 41) dose (0, 10, 25, 50
ng/side), and the within-subjects factor of session time (0 –15,
15–30, 30 – 60, 60 –120 min), showed a significant interaction
between the three factors (F(9,132) � 6.7, p � 0.01). Post hoc group
differences are indicated in Figure 4.

Ventricular injections
The statistical analysis, which included the between-subjects fac-
tors of group condition (no food restriction plus no stress, food
restriction plus stress) and D-Phe-CRF(12– 41) dose (0, 100, 300,
1000 ng), and the within-subjects factor of session time, showed a
significant interaction between the three factors (F(9,135) � 2.2,
p � 0.05). Post hoc group differences and the time course of food
intake during testing are indicated in Figure 4.

Discussion
As in our previous reports (Cifani et al., 2009, 2010), we found
that exposure to frustration stress selectively induced binge-like
palatable food eating during the first 15 min of the test session in
female rats with a history of repeated cycles of food restriction.
More importantly, we found that systemic injections of the CRF1
receptor antagonist R121919 and BNST or ventricular injections
of the nonselective CRF receptor antagonist D-Phe-CRF(12– 41)

selectively blocked frustration stress-induced binge eating after a
history of food restriction. The effective D-Phe-CRF(12– 41) dose
for ventricular injections (1000 ng) was substantially higher than
the effective doses for BNST injections (25–50 ng/side). Addi-
tionally, a history of food restriction plus frustration stress in-
duced a selective increase in Fos immunoreactivity in ventral and
dorsal BNST. Together, these data indicate a critical role of BNST
CRF systems in frustration stress-induced binge eating. Addi-
tionally, the observation that blockade of CRF receptors in the
BNST completely reversed stress-induced binge eating in our
model indicates a critical role of extrahypothalamic CRF systems.
This conclusion is in agreement with a large body of research
indicating that the role of CRF in the behavioral effects of drugs of
abuse, including escalation of drug intake, protracted withdrawal
symptoms, and stress-induced reinstatement, is attributable to
activation of extrahypothalamic CRF systems, independent of the
known role of CRF within the HPA axis (Shaham et al., 2000;
Heilig and Koob, 2007; Koob, 2008; Shalev et al., 2010; Bruijn-
zeel, 2012; Mantsch et al., 2014).

Our data extend previous results on the role of CRF1 re-
ceptors in binge eating in a different rat model (Cottone et al.,
2009). However, in contrast to our findings that implicate
BNST CRF receptors in stress-induced binge eating, Iemolo et
al. (2013) reported, using their binge-eating model, that the
critical site for CRF modulation of binge eating is central
amygdala, not BNST. A question for future research is whether

Figure 2. Systemic injections of the CRF1 receptor antagonist R121919 decreased frustration stress-induced binge eating in rats with a history of intermittent food restriction. Mean � SEM
palatable food intake (kilocalories per kilogram) during the first 15 min (left) and the total 2 h (right) test session. The rats were injected with R121919 (0, 10, or 20 mg/kg, s.c.) 60 min before the
start of the test session and exposed or not exposed to 15 min frustration stress before the test session. *p � 0.05, different from the vehicle condition; n � 6 – 8 per group. #p � 0.05, different
from the other three vehicle groups.
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the central amygdala plays a role in stress-induced binge eat-
ing in our rat model. Our data also extend previous reports on
the effect of systemic injections of CRF1 receptor antagonists
on stress-induced reinstatement of drug and food seeking
(Shaham et al., 1998; Lê et al., 2000; Ghitza et al., 2006; Hans-
son et al., 2006; Bruijnzeel et al., 2009; McReynolds et al.,
2014). Additionally, a critical site for CRF modulation of
stress-induced reinstatement of drug seeking or conditioned

place preferences is the BNST (Erb and
Stewart, 1999; Erb et al., 2001; Wang et
al., 2006). Finally, our data extend a
large body of research on the role of
BNST CRF in stress and anxiety re-
sponses (Davis et al., 2010; Silberman
and Winder, 2013).

One methodological issue to consider
is whether the effect of the CRF receptor
antagonists on stress-induced binge eat-
ing in our model is attributable to nonse-
lective effects on feeding behavior. This
possibility is unlikely because, as seen in
Figures 2 and 4, the CRF receptor antago-
nists had no effect on palatable food in-
take in rats not exposed to frustration
stress during testing or rats without a pre-
vious history of food restriction regardless
of exposure to stress. This pattern of re-
sults with the CRF receptor antagonist is
different from our previous results in
which we found that the selective sero-
tonin reuptake blocker fluoxetine or the
mixed serotonin–noradrenaline reuptake
blocker sibutramine decreased both stress-
induced binge eating and palatable food in-
take without stress exposure (Cifani et al.,
2009). Our data are in agreement with a re-
cent report of Parylak et al. (2012), which
showed that systemic injections of R121919
had no effect on binge-like eating in female
rats not exposed to stress in a different
binge-eating model.

Another methodological issue to con-
sider is that the effect of D-Phe-CRF(12– 41)

BNST injections on stress-induced binge
eating might be attributable to ventricular
diffusion and consequently an effect of the
drug in distal brain areas (Johnson and
Epstein, 1975; Wise and Hoffman, 1992).
The BNST is in very close proximity to the
lateral ventricle (Fig. 4C). Additionally,
after central drug injections, the drug in-
variably diffuses dorsal to the injection
site because of a pressure gradient (Wise
and Hoffman, 1992). Therefore, it is
highly likely that, after our BNST injec-
tions, D-Phe-CRF(12– 41) reached the ven-
tricles. However, it is unlikely that the
effect of D-Phe-CRF(12– 41) BNST injec-
tions on palatable food intake is attribut-
able to ventricular diffusion. As can been
seen in Figure 4B, a dose of D-Phe-CRF(12–

41) (300 ng/rat), which is higher than our
effective BNST doses (25 and 50 ng/side or
50 and 100 ng/rat) was ineffective. Addi-

tionally, even the highest ventricular dose (1000 ng/rat) was
somewhat less effective than the highest BNST dose (100 ng/rat;
see 2 h food intake data in Fig. 4A,B).

Another issue to consider is the CRF receptor type that medi-
ates the effect of BNST D-Phe-CRF(12– 41) injections on stress-
induced binge eating in our model. D-Phe-CRF(12– 41) is a
nonselective CRF receptor antagonist (Menzaghi et al., 1994) that

Figure 3. Frustration stress during testing increased neuronal activity in ventral and dorsal BNST in rats with a history of
intermittent food restriction. A, Representative photomicrograph of BNST (5�); black squares indicate the area of Fos quantifi-
cation for dorsal and ventral BNST. B, Mean � SEM number of Fos-IR nuclei per square millimeter in dorsal BNST (left) and
representative photomicrographs of Fos-IR nuclei in dorsal BNST (right; 10�) 90 min after frustration stress or no stress exposure.
C, Mean � SEM number of Fos-IR nuclei per square millimeter in ventral BNST (left) and representative photomicrographs of
Fos-IR nuclei in ventral BNST (right; 10�) 90 min after frustration stress or no stress exposure. *p � 0.05, different from the other
3 groups; n � 6 – 8 per group. Scale bar, 100 �m.
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binds to both the CRF1 and CRF2 recep-
tor subtypes (Behan et al., 1996). How-
ever, we suspect that BNST D-Phe-
CRF(12– 41) injections likely decreased
stress-induced binge eating because of the
action of the drug on CRF1 receptors.
This is because CRF1 expression in the
different divisions of the BNST is higher
than CRF2 expression (Van Pett et al.,
2000). Additionally, we found that BNST
injections of D-Phe-CRF(12– 41) mimicked
the effect of systemic injections of the se-
lective CRF1 receptor R121919 on stress-
induced binge eating. However, in the
absence of additional studies on the effect
of a selective CRF2 receptor antagonist, such
as astressin2-B (Zorrilla et al., 2013a), or
gene knockdown of the CRF2 receptor
(Lebow et al., 2012), it cannot be con-
cluded conclusively that BNST CRF1 re-
ceptors mediate stress-induced binge
eating in our model.

In conclusion, we demonstrated that
systemic injections of R121919, a small-
molecule CRF1 receptor antagonist that
readily crosses the blood– brain barrier
(Heinrichs et al., 2002), blocked frustra-
tion stress-induced binge eating without
affecting food intake without stress expo-
sure. We have also identified a key role of
CRF receptors in BNST in frustration
stress-induced binge eating after a history
of food restriction and demonstrated that
neurons in both ventral and dorsal BNST
are selectively activated, as assessed by Fos
immunoreactivity, by the frustration
stress manipulation. Our positive injec-
tion sites were located in both the ventral
and dorsal BNST (Fig. 4C). The two BNST
subregions are known to have different af-
ferent and efferent projections and to play
a role in different physiological and be-
havioral functions (Ju et al., 1989; Aston-
Jones et al., 1999; Cassell et al., 1999; Davis
et al., 2010; Crestani et al., 2013). Thus, a
question for future research is whether
CRF transmission in ventral and dorsal
BNST plays distinct or similar roles in
stress-induced binge eating in our model.

Finally, to the degree that our rat
model is relevant to the human condition,
our results may have clinical implications
for the treatment of stress-related binge-
eating disorders. Over the past decade, a
number of CRF1 receptor antagonists
have passed toxicity screening and were
tested in clinical trials for their efficacy in
the treatment of anxiety and depression
(Holsboer and Ising, 2008; Zorrilla and
Koob, 2010); CRF1 receptor antagonists
are also currently being considered for po-
tential pharmacological treatment of drug

Figure 4. BNST and ventricular injections of the CRF receptor antagonist D-Phe-CRF(12– 41) decreased frustration stress-induced
binge eating in rats with a history of intermittent food restriction. A, BNST injections. Mean � SEM palatable food intake (kilocal-
ories per kilogram) during the first 15 min (left) and the total 2 h (right) test session. *p � 0.05, different from the vehicle
condition; n � 6 – 8 per group. #p � 0.05, different from the vehicle no restriction plus no stress group. B, Lateral ventricle
injections. Mean � SEM palatable food intake (kilocalories per kilogram) during the first 15 min (left) and the total 2 h (right) test
session. *p � 0.05, different from the vehicle condition; n � 6 – 8 per group. #p � 0.05, different from the vehicle no restriction
plus no stress group. C, Approximate placements (millimeters from bregma) of injector tips in BNST of the 52 rats included in the
statistical analysis (Paxinos and Watson, 2005).
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addiction (Sinha et al., 2011; Zorrilla et al., 2013b). Evidence for
the efficacy of CRF1 receptor antagonists in psychiatric disorders
has not yet been documented, and several clinical trials for de-
pression and anxiety reported negative results (Zorrilla and
Koob, 2010; Zorrilla et al., 2013b). Against this background, our
data and those of Cottone, Sabino, and colleagues (Cottone et al.,
2009; Iemolo et al., 2013) suggest a potential novel use of CRF1
receptor antagonists in the treatment of stress-related binge-
eating disorders.
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