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Neurobiology of Disease

Activation of TRPMLI Clears Intraneuronal A3 in
Preclinical Models of HIV Infection
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Antiretroviral therapy extends the lifespan of human immunodeficiency virus (HIV)-infected patients, but many survivors develop
premature impairments in cognition. These residual cognitive impairments may involve aberrant deposition of amyloid 3-peptides
(AB). By unknown mechanisms, A3 accumulates in the lysosomal and autophagic compartments of neurons in the HIV-infected brain.
Here we identify the molecular events evoked by the HIV coat protein gp120 that facilitate the intraneuronal accumulation of AB. We
created a triple transgenic gp120/APP/PS1 mouse that recapitulates intraneuronal deposition of Af3 in a manner reminiscent of the
HIV-infected brain. In cultured neurons, we found that the HIV coat protein gp120 increased the transcriptional expression of BACEI
through repression of PPARy, and increased APP expression by promoting interaction of the translation-activating RBP heterogeneous
nuclear ribonucleoprotein C with APP mRNA. APP and BACE1 were colocalized into stabilized membrane microdomains, where the
B-cleavage of APP and A 3 formation were enhanced. A 3-peptides becamelocalized to lysosomes that were engorged with sphingomyelin
and calcium. Stimulating calcium efflux from lysosomes with a TRPM1 agonist promoted calcium efflux, luminal acidification, and
cleared both sphingomyelin and AS from lysosomes. These findings suggest that therapeutics targeted to reduce lysosomal pH in
neurodegenerative conditions may protect neurons by facilitating the clearance of accumulated sphingolipids and A-peptides.
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Introduction

The use of combinational antiretroviral therapy (cART) has dra-
matically increased the survival of people infected with the hu-
man immunodeficiency virus (HIV). However, several lines of
evidence suggest that accelerated brain aging may accompany
this extended lifespan. Nearly half of HIV-infected individuals
will develop some form of cognitive impairment. The majority of
patients showing deficits in attention, executive functioning,
memory and processing speed that are reminiscent of advanced
age, and overlap with Alzheimer’s disease (AD; Heaton et al.,
2010). Functional MRI data suggest that HIV infection is associ-
ated with premature failure in neuroadaptive mechanisms that
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normally compensate for age-related declines of attention by tap-
ping into reserve, and top-down attentional networks (Chang et
al., 2013). These neuroprocessing deficits may arise from struc-
tural damage that degrades temporal and parietal networks at
faster rates than expected during normal aging (Chang et al.,
2008; Ances et al., 2012a; Holt et al., 2012; Jahanshad et al., 2012).
Structural damage associated with cognitive deficits in HIV-
infected patients can be detected early in the course of infection
and includes increased permeability of the blood—brain barrier,
synaptic and dendritic simplification, white matter damage, glial
activation, and alterations in protein processing with subsequent
accumulation of proteins that may promote neuronal degenera-
tion including amyloid B-peptides (AB; Zhong et al., 2008;
Ramirez et al., 2010; Eugenin et al., 2011; Akay et al., 2012; Bachis
et al., 2012; Ragin et al., 2012; Stubbe-Drger et al., 2012).

There is considerable evidence that A accumulates earlier
than expected by age in the brains of HIV-infected subjects. How-
ever, the AB deposition pattern in HIV appears to be distinct
from AD, in which extracellular senile plaques are a predominant
feature. In the HIV-infected brain, AB accumulates primarily as
diffuse and intraneuronal deposits (Cozzi et al., 1992; Esiri et al.,
1998; Andersson et al., 1999; Green et al., 2000, 2005; Izycka-
Swieszewska et al., 2000; Gelman and Schuenke, 2004; Brew et
al., 2005; Anthony et al., 2006; Ances et al., 2010). These path-
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ological findings are consistent with
negative results obtained with middle-
aged HIV-infected subjects imaged with
the Pittsburg compound B (this probe was
designed to bind AB plaques; Ances et
al., 2010, 2012b). The neuropathogenic
mechanisms which produce this unique
pattern of AP deposition in the HIV-
infected brain are not understood. Based
on considerable data suggesting that the
HIV-1 coat protein gp120 contributes to
the neurodegenerative process in HIV,
and data that the gp120 transgenic mouse
mimics clinical, pathologic, and mecha-
nistic aspects of the HAND 2% we devel-
oped a triple transgenic gp120/APP/PS1
mouse that recapitulates intraneuronal
pathology consistent with accelerated ag-
ing and intracellular AB deposition. Here
we describe a signaling network evoked by
gp120 that results in intracellular accu-
mulation of AB into sphingomyelin and
calcium engorged lysosomes. We further
demonstrate that activation of the muco-
lipin transient receptor potential channel
1 (TRPML1) induces release of intralumi-
nal calcium, with consequent reductions
in endolysosomal pH, sphingomyelin,
and AB.

Materials and Methods

Cell culture and experimental treatments. Pri-
mary rat cortical and hippocampal neuronal
cultures were prepared as described previ-
ously (Xu et al., 2011b). Hippocampal neu-
rons were plated at a density of 150,000
cells/ml and cortical neurons were plated at a
density of 500,000 cells/ml in neurobasal me-
dium supplemented with B27 and 1% anti-
biotic solution (10* U of penicillin g/ml, 10
mg streptomycin/ml, and 25 pg amphoteri-
cin B/ml; Invitrogen). Three hours after cell
plating the medium was completely replaced
and supplemented every 7 d with fresh
medium containing B27. Hippocampal cul-
tures are routinely >98% MAP-2 * neurons,
with the remainder of cells predominantly
GFAP " astrocytes. Cortical cultures were
used between 7 and 10 d, and hippocampal
cultures were used between 14 and 21 d in
vitro. SHSY5Y cells stably transfected with
human APP were cultured in DMEM/F12
nutrient mixture containing 10% heat-
inactivated fetal bovine serum and 1% anti-
biotic solution (104 U of penicillin G/ml, 10
mg streptomycin/ml, and 25 mg amphoteri-
cin B/ml; Sigma-Aldrich). Cells were main-
tained at 37°C in 5% CO, and the culture
medium was changed every 3 or 4 d.

Cell treatments included X4-gp120 (IIIB;
Advanced Bioscience Laboratories), R5-
gpl120 (CM; NIH-AIDS Repository), dual
X4/R5 gpl120 (MN; Immunodiagnostics),
and 4-hydroxynonenal (4HNE; Sigma-Aldrich).
Cultured cells were treated in culture maintenance
medium, unless otherwise indicated.

Bae et al. @ Activation of TRPML1 Clears AB in HIV

J Owt @ APPPSI

2000- x 301M gp120 I gp120/APP/PS1
N - ¥ i
E 15001 g *
= £ 20
[0) =]

N c *
‘o 1000+ ° * *
() =]

z 8 104

& 5001 o

[2

0-
-1.34-1.58 -1.82 -2.06 -2.30
bregma level

Figure1. A deposition is accelerated in gp120/APP/PS1 mice compared with APP/PS1 mice. A, B, Two-month-old wt
and gp120 mice do not show evidence of AB deposition. , D, Diffuse A3 appears in the dentate gyrus of 2-month-old
APP/PS1, and gp120/APP/PS1 mice. E, F, Six-month-old wt and gp120 mice are negative for AS3 deposition. G, H, In
6-month-old APP/PST and gp120/APP/PS1 mice A3 containing plaques are apparent throughout cortical and subcortical
regions. Plaques are more frequent and larger in gp120/APP/PS1 mice compared with APP/PST mice. Arrows show exam-
ples of AB plaques, and insets show magnification of the indicated region. I-L, Sterological counts of plaque size, and
number of plaques by genotype and bregma level. In 6-month-old APP/PS1 mice faint staining of diffuse A3 can been seen
in neuropil, and as small intraneuronal deposits in some cells. M, N, In 6-month -old gp120/APP/PS1 mice prominent
intraneuronal staining is apparent. A single neuron in each panel is outlined. Data are mean = SD; n = 3 mice/group.
ANOVA with Tukey post hoc comparisons; *p << 0.05, **p << 0.01, ***p < 0.001 compared with control.
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Figure 2.

Pharmacological agents included inhibitors of CXCR4 (AMD3100 oc-
tahydrochloride, 10 um; Tocris Bioscience), protein kinase C (PKC; chel-
erythrine chloride, 1 um; Tocris Bioscience), protein kinase A (PKA;
KT5720, 1 um; Tocris Bioscience), protein kinase B (AKT; API-1, 20 um;
Tocris Bioscience), ceramide synthase (Fumonisin B1, 20 um™,), serine
palmitoyl transferase (ISP-1, 10 um; Tocris Bioscience), and a cholesterol
complexing agent (3-cyclodextran, 1.5 mm). The cJun N-terminal kinase
(JNK) pathway was inhibited with the JNK inhibitor IT (SP600125, 20
uM; EMD Millipore), and the interaction between JNK and c¢-Jun was
inhibited with JNK inhibitor III (10 um; EMD Millipore). Drug controls
included a JNK inhibitor Il inactive isomer (20 um; EMD Millipore), and
a JNK inhibitor III inactive isomer (10 um; EMD Millipore). PPARYy
agonists included SR202 (20 um) and T007907 (10 um). Antagonists of
PPARY included Pioglitazone (20 um) and Triglitazone (20 um).

Lysosomal calcium measurement. The lysosomal-targeted calcium in-
dicator GCaMP3-TRPML1 was transfected into primary neurons by
electroporation using two 5 ms pulses at 120 V (BTX ECM830, Harvard
Apparatus) immediately following the isolation of primary fetal neurons.
This indicator has recently been shown to accurately and reliably mea-
sure juxta-lysosomal calcium increases (Shen et al., 2012). Imaging was
performed on mature hippocampal neurons 14-21 d in vitro. Fluores-
cence (F,,) images were acquired with a 40X objective lens using a Zeiss
inverted microscope (Observer Z1), equipped with Apotome for optical
sectioning, and Axiovision 4.8 software. Lysosomal calcium release was
induced with the TRPMLI agonist ML-SA1 (20 um), as previously re-
ported (Shen et al., 2012).

Transgenic mice. Two- and 6-month-old C57BL-6 nontransgenic
(nTg) mice, C57BL-6 mice transgenic for gp120 (gp120tg), transgenic
C57BL-6 mice expressing mutations in human amyloid precursor pro-
tein (APPgyyp; K670N/M671L) and human presenilin 1 (PS1; dE9), and

Microglial cells surround amyloid plaques. Iba-1 staining of (4) wt, (B) gp120, (€) APP/PS1, and (D) gp120/APP/PS1
mouse hippocampus. Insets are magpnifications of the indicated regions. Inmunofluorescent staining showing an A3 immunopo-
sitive plaques (82E1) and microglia (Iba-1) in (E) APP/PS1 and (F) gp120/APP/PS1 mice. G, Sterological quantification of Iba-1-
immunopositive cells for the indicated mouse genotypes. Scale bar, 100 um. ANOVA with Tukey post hoc comparisons.
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gp120/APP/PS1 transgenic mice were used in
these studies. Gp120 mice were obtained from
Dr Lennart Muke (Gladstone Institute, San
Fransicso, CA) and express a GFAP promoter-
driven HIV-1 env gene (HIV-1LAV; Toggas et
al., 1994). HIV-gp120 mice were back-crossed
for >10 generations. APP/PS1 mice were ob-
tained from D Alena Savonenko (Johns Hop-
kins University School of Medicine, Baltimore,
MD) and express APP and PS1 under the con-
trol of prion promoters (Jankowsky et al,
2003). APP/PS1 mice were maintained as a
heterozygote genotype. APP/PS1/gp120 mice
were obtained from first generation pairings of
gp120tg mice with APP/PS1 mice. Mice were
housed in an AAALAC accredited facility on a
12 h light/dark cycle with ad libitum access to
food and water. All procedures were conducted
in accordance with NIH guidelines for the Use
of Animals and Humans in Neuroscience Re-
search and approved by Institutional Animal
Care and Use Committee (Johns Hopkins Uni-
versity School of Medicine).

Immunohistochemical analysis. Mice were
anesthetized and perfused transcardially with
buffered 4% paraformaldehyde (Sigma-Aldrich).
Brains were rapidly removed and fixed for 24 h
with 4% paraformaldehyde, and then cryopro-
tected in 30% sucrose (v/v, Sigma-Aldrich).
Microtome sections (40 wm, HM450; Mikron
Instruments) were cut and preserved at —20°C
with antifreeze solution consisting of 30% su-
crose, 30% ethylene glycol, and 0.05 m PBS.
Endogenous peroxide activity was quenched
with 1% H,O, in TBS (100 mwm Tris-Cl, pH 7.5,
150 mm NaCl), and nonspecific binding sites
blocked with 5% goat serum in TBS containing
0.1% Triton X-100 (Sigma-Aldrich). Antibod-
ies directed against A (82E1, 1:200), and Iba-1
(1:200, WAKO Pure Chemical Industries)
were applied overnight at 4°C. Sections were washed in TBS and incu-
bated for 2 h with the appropriate secondary antibodies (1:2000; Vector
Laboratories). Staining was visualized with diaminobenzidine (Vector
Laboratories). Images were captured on a Zeiss upright microscope
(AXIO Scope.Al) equipped a with a Qimaging Retiga 2000R camera, and
quantified with Openlab 5.0.1 (Improvision, Imaging software) by an
observer blinded to the genotype.

Stereological quantifications of Iba-1+ cells, A plaque size and num-
ber were performed in a one-in-five series (200 wm apart; 5 sections in
total), from the rostral point of bregma —1.22 mm to the caudal point of
bregma —2.80 mm) using Openlab 5.0.1 (Improvision, Imaging). Ste-
reological counts of Iba-1+ cells were performed in a similar manner in
adjacent sections using the optical dissector technique with 200 X 200
wm? as the guard height and a dissector frame area of 100 X 100 um
(Stereo investigator 7.50.4, Microbright Field).

Isolation and quantification of human APB. For intracellular A, cell
lysates were homogenized in RIPA buffer (50 mm Tris-Cl, pH 7.5, 150
mMm NaCl, 10 mm EDTA, 2 mm EGTA, 50 mm NaF, 0.5% SDS, 1%
NP-40) supplemented with protease inhibitor cocktails (Roche Ap-
plied Science). Total protein levels of each sample were measured
using Micro BCA Protein Assay Reagent Kit (Thermo Scientific). Cell
homogenates were centrifuged at 14,000 X g 4°C for 10 min and the
supernatant was collected in a separate tube for analysis. For secreted
AR, cell culture media were collected, centrifuged at 14,000 X g 4°C
for 10 min and supernatant transferred to a new tube. AB1-42 was
quantitatively detected by enzyme-linked immunosorbent assay (In-
vitrogen). Absorbance was read at 450 nm using a spectrophotometer
(SpectraMax M2, Molecular Devices). Standard curves were linear
from 0-1 ng/ml of human AB1-42.
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Figure3.  Sphingolipid accumulation and lysosomal pathology in gp120/APP/PS1 mice. A, B, Heat maps and associated counts of the indicated ceramide and sphingomyelin species forwt, gp120,
APP/SP1, and gp120/APP/PS1 mice showing that multiple-long and very-long chain ceramides were increased in the cortex of the gp120/APP/PST transgenic mice. Data are mean == SEM; n =
5/group. ANOVA with Tukey post hoc comparisons; *p << 0.05, p << 0.01, ***p < 0.001 compared with control, #p << 0.05, ##p << 0.01, ###p < 0.001 compared (Figure legend continues.)
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Quantitative RT-PCR. Total RNA was isolated from primary cortical
cells using the RNeasy Mini Kit (Qiagen). cDNA was synthesized using
total RNA, N6 random primers and SuperScriptIl Reverse Transcriptase
(Invitrogen). cDNA was then mixed with RNase free water, gene-specific
primers, primers for actin, and 2X PCR universal master mix (Applied
Biosystems), RNA was amplified using an ABI 7500 Real Time PCR
system. The gene specific primers used in this study were as follows: APP
(Rn00570673-m1; Applied Biosystems), Beta-secretase 1 (BACEL;
Rn00569988-m1; Applied Biosystems), and actin (00607939S1, Applied
Biosystems). The relative levels of mRNA were calculated using the AACt
method by normalization to the internal control actin.

Western blotting. Cells were washed in cold PBS and scraped in RIPA
buffer (50 mm Tris-Cl, pH 7.5, 150 mm NaCl, 10 mm EDTA, 2 mm EGTA,
50 mm NaF, 0.5% SDS, 1% NP-40) with a protease inhibitor cocktail and
phosphoSTOP (Roche Applied Science). Cell suspensions were soni-
cated, and pelleted by centrifugation at 14,000 rpm for 5 min. Protein
concentrations were determined using the BCA protein assay reagent kit
(Thermo Scientific). A Proteome Profiler Array (RandD) was used to
identify kinases phosphorylated following gp120 treatments. Follow-
ing treatments, cells were lysed with RIPA buffer. Lysates were incu-
bated with membranes overnight at 4°C. Membranes were washed
and incubated with detection antibody conjugated to a streptavidin-
HRP antibody.

For Western blots the proteins were separated by SDS-PAGE and
transferred to immune-Blot PVDF membranes (Bio-Rad). Membranes
were preblocked for 1 h in the presence of 5% nonfat milk and incubated
overnight at 4°C with primary antibodies to APP (1:1000, Cell Signaling
Technology), BACE1 (1:1000, Millipore), JNK (1:1000, Cell Signaling
Technology), pJNK (1:1000, Cell Signaling Technology), GSK (1:1000,
Cell Signaling Technology) or AKT (1:1000, Cell Signaling Technology),
in TBS containing 0.1% Tween 20. Membranes were washed in TBS and
exposed to the appropriate horseradish peroxidase-conjugated second-
ary antibody (1:2000; Cell Signaling Technology). Immunoreactive pro-
teins were visualized by chemiluminescence (Millipore) using a QBOX
imaging system (Syngene). Densitometric analysis was performed using
Alpha view (Alpha Innotech).

Immunofluorescence and quantitation. Lipid raft membrane microdo-
mains were identified using a cholera toxin subunit B conjugated to
AlexaFluor 555 that binds the ganglioside GM1 (CTB-555; Invitrogen;
Wheeler et al., 2009). CTB-555 (1 ng/ml) was incubated with neurons for
10 min at 37°Cin a 5% CO, atmosphere. Media was rapidly removed and
cells were fixed with ice-cold 4% paraformaldehyde in TBS. Membranes
were permeabilized and nonspecific binding was blocked for 1 h at room
temperature in TBS containing 0.1% Triton X-100, 2.5% normal goat
serum and 2.5% normal horse serum. Cells were incubated with primary
antibodies: APP (1:1000, Cell Signaling Technology), BACE1 (1:1000,
Calbiochem), AB (82E1, 1:500, IBL), EEA1 (1:500, Calbiochem), LC3
(1:500 Cell Signaling Technology), LAMP1 (1:200, Calbiochem), or
Rab11 (1:500, Cell Signaling Technology) overnight at 4°C. Slides were
washed with TBS and incubated for 2 h at room temperature with the
appropriate secondary antibodies conjugated to AlexaFluor 488, or Al-
exaFluor 546 (1:1000; Invitrogen). Immunopositive puncta on dendritic
branches were imaged with a 100X objective by optical sectioning using
structure illumination (Carl Zeiss). Fluorescence quantitation was per-
formed using methods similar to those previously described (Xu et al.,
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(Figure legend continued.) with gp120. C, Representative electron microscopy images showing
ultrastructural analysis of endolysosomal phenotypes in brain tissues from the indicated geno-
type. Lysosomes in wt mice show typical electron dense lysosomal inclusions. In gp120 mice,
lysosomes are enlarged and contain lipid inclusions known as lipofuscin. Although lysosomes
appear to be phenotypically normal in APP/PS1 mice, they are enlarged, partially fused, and
contain lipofuscin in gp120/APP/PST mice. Insets, are magpnifications of the indicated region.
Scale bars: 2 M in main figure and 1 .M in insets. D, Quantitative analysis of lysosomal size
expressed as percentage of lysosomes with size <<0.4 m ? (white bars) compared with lyso-
somes >>0.4 um? (black bars) for the indicated genotypes. Data are mean * SEM of 45— 60
cells in each of three independent experiments per condition. ANOVA with Tukey post hoc
comparisons; *p << 0.05, **p < 0.01, ***p << 0.001 compared with wt.
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2011b). Colocalization was confirmed by three-dimensional reconfigu-
ration of z-stack images using orthogonal views. All images for quantifi-
cation were taken with identical settings, and performed on a single plane
of focus through the brightest point. Quantifications were performed
within 100 wm of the soma, and dendritic areas were calculated for each
region of interest. The number of pixels with individual or colocalized
fluorescence per square micrometer was determined using Axiovision
(4.8.2) imaging software (Carl Zeiss). Each immunopositive signal was
normalized to background fluorescence and to area by tracing the outline
of the dendrite. A minimum of 21 cells from at least three separate cul-
tures was quantified for each experimental condition.

qPCR and RIP analysis. Following treatment, cells were lysed in RIPA
buffer, disrupted by sonication, and centrifuged at 10,000 X g for 15 min
at 4°C. After three washes and digestion with DNase I and proteinase K,
supernatants were incubated with protein A-sepharose beads coated us-
ing primary antibodies directed against heterogeneous nuclear ribonu-
cleoprotein C (hnRNP C; 1:500; Santa Cruz Biotechnology) or control
IgG (Santa Cruz Biotechnology). For ribonucleoprotein immunopre-
cipitation (RIP) analysis, RNA present in ribonucleoprotein complexes
was isolated using Triazol (Invitrogen), reverse-transcribed using ran-
dom hexamers and SSII reverse transcriptase (Invitrogen), and assayed
for abundance of transcripts by real-time, quantitative PCR (qPCR)
analysis using SYBR Green PCR master mix (Applied Biosystems). Gene-
specific primer sets (forward and reverse primers, respectively) were GC-
CAAAGAGACATGCAGTGA and AGTCATCCTCCTCCGCATC for
APP mRNA, TGCACCACCAACTGCTTAGC and GGCATGGACT-
GTGGTCATGAG for GAPDH mRNA, and GGACTTCGAGCAA-
GAGATGG and AGCACTGTGTTGGCGTACAG for ACTB mRNA
(encoding B-Actin).

Measurement of sphingolipids. Total lipids from samples were prepared
according to a modified Bligh and Dyer procedure (Haughey et al., 2004).
The chloroform layer was removed into a glass storage vial, flushed with
nitrogen until dry and stored at —20°C until use. The dried layer was
dissolved in 200 ul methanol containing internal standards (ceramide
d18:1/C12:0 and sphingomyelin d18:1/C12:0). Lipid analyses were per-
formed on a high-pressure liquid chromatograph coupled electrospray
ionization quadrupole tandem mass spectrometer (API3000; AB/Sciex)
operated in the positive mode using methods similar to those used in
previous studies (Bandaru et al., 2007, 2011).

Results

Intracellular Af3 accumulation is accelerated in gp120/APP/
PS1 transgenic mice

To determine the influence of gp120 on A formation we created a
triple transgenic line of mice that express gp120 together with mu-
tant forms of human APP and PS1 that cause early onset inherited
AD. AR deposition was not detected in 2-month-old wild-type (wt)
or gp120tg mice, but was apparent in the hilus region of APP/PS1
and gp120/APP/PS1 mice (Fig. 1A-D). AB deposition was not seen
in 6-month-old wt or gp120tg mice (Fig. 1 E, F; because the amino
acid sequence of mouse A differs from that of human A, mice do
not normally develop AB plaques in their brain at any age). How-
ever, the number and size of A3 deposits was increased in 6-month-
old triple transgenic gp120/APP/PS1 mice compared with double
transgenic APP/PS1 mice (Fig. 1G—J). Diffuse AS staining was in-
creased in the cortex and hippocampus of gp120/APP/PS1 mice
compared with APP/PS1 mice and, notably, in gp120/APP/PS1 mice
diffuse intraneuronal A3 staining was readily apparent, appearing as
granular cytoplasmic deposits in the soma and neurites (Fig. 1IK=N).
The number of microglial cells in hippocampus and cortex were not
differentamong wt, gp120, APP/PS1, and gp120/APP/PS1 mice, and
there was no morphological evidence for global microglial activa-
tion. However, activated microglia were commonly found in and
around amyloid plaques, and thus microglia with an activated phe-
notype were more frequent in gp120/APP/PS1 mice compared with
APP/PS1 mice due to the increased plaque load (Fig. 2A-G).
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HIV-gp120induces A3 formation and perturbs clearance. A, Secreted and intracellular levels of AB1—42 in SHSY5Y cells stably expressing human APP were determined by ELISA 24 h

after media change. B, Intracellular distribution of A3 (82E1) in early endosomes (EEA1), recycling endosomes (Rab11), lysosomes (LAMP2), and autophagosomes (LC3) were determined by
quantitative immunofluorescence. C, D, Cells were treated for 24 h with the indicated concentrations of X4-gp120. Secreted and intracellular concentrations of A{31-42 were determined by ELISA. Insets
show results for heat inactivated (hi) X4-gp120 (500 pM). E, Colocalization of A3 with EEA1, Rab11, LAMP2, and L3 was quantified 12 and 24 h after exposure to (Figure legend continues.)
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Figure 5.  Ap localizes to lysosomes in neuronal cells exposed to gp120. Representative fluorescent images from SHY5Y cells

stably expressing human APP exposed to (4) control, (B) X4-gp120 (250 pm), (C) R5-gp120, (D) X4/R5gp120 (250 pm), (E) 4HNE (10
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(Figure legend continued.) X4-gp120 (250 pwm). F, G, Secreted and intracellular AB1-42 was
quantified 24 h after exposure to the indicated concentrations of R5-gp120 by ELISA. H, Colo-
calization of A3 with EEAT, Rab11, LAMP2, and LC3 was quantified 12 and 24 h after exposure
to R5-gp120 (250 pm). 1, J, Secreted and intracellular levels of AB1-42 were determined by
ELISA 24 h after exposure to the indicated concentrations of X4/R5-gp120. K, Colocalization of
AB with Rab11, LAMP2, and L(3 was quantified 12 and 24 h after exposure to X4/R5-gp120
(100 pm). L, M, AB1-42 secretion and intraneuronal deposition were quantified by ELISA in
neuronal cells treated with 4-HNE for 24 h (100 nM). N, Immunofluorescent quantification of
AP colocalized with Rab11, LAMP2, and L3 24 h after exposure to 4-HNE (100 nM). Data are
mean = SEM of at least 21 cells, and three independent experiments per condition. ANOVA
with Tukey post hoc comparisons; *p << 0.05, **p << 0.01, ***p << 0.001 compared with
corresponding control.
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Sphingolipidomic analyses of cortex
showed that multiple ceramides, dihydro-
ceramides, monohexosyl ceramides, and
sphingomyelins were increased in gp120/
APP/PS1 compared with wt mice. Only a
few of these lipid species were increased in
gp120 or APP/PS1 compared with wt
mice (Fig. 3A, B). Because sphingolipido-
ses are commonly associated with lipid ac-
cumulations in lysosomes, we used
scanning electron microscopy to image
subcellular compartments. Small electron
dense organelles consistent with lyso-
somes were found in neurons of wt mice.
In gp120 mice, electron dense lysosomes
were often enlarged and contained lipid
inclusions. Although the morphology of
lysosomes in APP/PS1 was similar to wt
mice, lysosome enlargement with lipid
inclusions were frequently found in
gp120/APP/PS1 compared with gp120
mice (Fig. 3C). These inclusions are
consistent with intracytoplasmic lipo-
fuscin, a cross-linked and oxidized lipo-
protein aggregate that is a characteristic
feature of neuronal cells in the aged
brain (Gray and Woulfe, 2005; Riga et
al., 2006). Lipofuscin accumulation in-
terferes with lysosome degradation, and
is a site for the intracellular accumula-
tion of AP peptides (Brunk and Terman,
2002; Gray and Woulfe, 2005; Goémez-
Ramos and Asuncion Moran, 2007). Thus,
gp120 and to a greater extent gp120/APP/PS1
mice, show neuropathologies consistent with
lysosome dysfunction.

LC3

HIV-gp120 increases A3 production
and reduces its clearance from neurons
Human neuronal (SH-SY5Y) cells ex-
pressing APP constitutively produce Af3,
with a predominance of AB;_,, (hereafter
referred to as AB). In a 24 h period we
found that ~1/3 of AB,_,, was exported
into the media and 2/3 was intraneuronal
(Fig. 4A). In these basal conditions 9.58 =
6.26% of intraneuronal AB was localized
to EEA1+ early endosomes, 0.93 = 1.77%
to Rab11+ recycling endosomes, 17.48 *+
7.32% to Lamp2+ lysosomes, and 3.27 £ 1.25% to LC3+ au-
tophagosomes (Fig. 4B). Using this human neuronal culture sys-
tem, we determined whether gp120 perturbed the production
and/or trafficking of AB. Because CXCR4 (X4), CCR5 (R5), and
dual (X4/R5) tropic HIV have each been implicated in the neu-
ropathogenesis of HIV (Gabuzda et al., 1998; Gorry et al., 2001;
Gray et al., 2009), we initially screened forms of gp120 that pref-
erentially use X4 (gp120IIIB), R5 (gp120CM), or are dual tropic
(gp120MN). SY5Y cells expressing human APP were treated in
reduced serum (2%). X4 gp120 produced small increases in the
secretion of AP at doses =100 pm (Fig. 4C), and dose-related
intracellular deposition of Af (Fig. 4D) that localized primarily
to lysosomes and autophagosomes (Fig. 4E). R5 gp120 increased
the secretion of AB at concentrations =250 pm (Fig. 4F), and



11492 - J. Neurosci., August 20, 2014 - 34(34):11485-11503

Bae et al. @ Activation of TRPML1 Clears AB in HIV

A B C .
> 95(0- *
2 250 2 2500, Poxox 2 40 v 5 %
B oo o 5z 0o 3 ? Z X
@®© *g 2000+ 8 304 * ;
& 1501 ® 15001 e
L] 8 ® 201
o 1001 % 10001 3
[3) o S 10-
o 501 8 5001 g1
3 — A —_— ¢ —
0 10 50 100 250 5001000 0 10 50 100250 5001000 0 10 50 100 250 5001000
gp120 (pM) gp120 (pM) gp120 (pM)
N
r\Q/
D E 8 F
2.0 O > .
o 00(\ '\ @0 %0<< £ 150
Z 9 15 =
O 1.91 =
T < BACET e S s 8 B 100
< Q=
LT.I c 10 B-CHN  ———— 2 §
o2 © ]
I 205 BACE1 (% control) 5 X 90
o o o S 2]
0.0 < o 2 2 9 A 0
\\ \\ © ,\q, con
\. )
gp120 Fkk IS
& \°° gp120 AMD+gp120
06 SDF-1
G )
o 1.57
= *
(@)} *
=10
> .
2
©
S 0.5
o 0.04—
Q
00(\ r\(]/
S
Figure6. Induction of BACE1 transcriptional activation by gp120-mediated suppression of PPAR+y. Figures show (4) o<-secretase (B) 3-secretase, and (C) y-secretase activity in primary neurons

treated for 6 h with the indicated dose of gp120 (10 —1000 pm). D, qPCR results showing BACE1 mRNA for the indicated time points following control or gp120 exposures. E, Representative Western
blot showing BACE1 protein levels in primary neurons treated for 6 h with gp120 (250 pm), or SDF 1cx (20 nw), or pretreated for 30 min with the CXCR4 inhibitor AMD 3100 (10 um) before the addition
of gp120. Densitometric analyses of BACE1 protein expression for the indicated conditions are normalized to 3-actin. F, 3-secretase activity measured in neurons treated with gp120 (250 pw) for
6h, or pretreated for 30 min with AMD3100 (AMD, 10 ), the PKA inhibitor KT5720 (KT; 1 um), or the PKCinhibitor chlerythrine (Chel; T um) before additions of gp120. G, PKA phosphotransferase
activity was measured in primary neurons treated with gp120 (250 pm) for 6 h. ANOVA with Tukey post hoc comparisons; *p << 0.05, **p << 0.01, ***p < 0.001 compared with the corresponding

control or time 0; #p << 0.05, ##p << 0.01, ###p << 0.001 compared with gp120.

increased intracellular AB deposition in a concentration-
dependent manner (Fig. 4G), with early and sustained increases
in endosomes, transient increases in lysosomes, and slow accu-
mulation in autophagosomes (Fig. 4H ). X4/R5 gp120 at the high-
est concentration (500 pm) significantly increased A secretion
(Fig. 4I), and increased the intracellular deposition of A3 at con-
centrations =100 pm (Fig. 4]), producing early and sustained
increases in endosomes, with slow accumulations in lysosomes
(Fig. 4K). The lipid peroxidation product 4HNE, also increased
AP production, but distinct from the effects of gp120, a majority
of this AB was secreted into the culture medium (Fig. 4L), in
conjunction with intracellular increases (Fig. 4M ), and lysosome
deposition (Fig. 4N). Representative immunofluorescence im-
ages for each of these conditions are shown in Figure 5. Heat-

denatured gp120 did not alter the production or distribution of
AP (Fig. 5). All subsequent experiments used X4-gp120 (hereaf-
ter referred to as gp120). Although R5 strains of HIV produc-
tively infect microglia and macrophages, X4 strains of HIV play
important roles in the pathogenesis of HIV-associated neurocog-
nitive disorders (HAND). X4 and dual trophic strains of HIV
have been isolated from brain, and monocytes infected with X4
HIV intermittently traffic into the CNS. This monocyte transmi-
gration is enhanced when the blood brain barrier is compromised
during HIV infection, inflammation, drug abuse, or immune re-
constitution inflammatory syndrome (Liu et al., 2000; Gorry et
al., 2001; Miller et al., 2004; Gray et al., 2005; El-Hage et al., 2006;
Dhillon et al., 2008; Fischer-Smith et al., 2008; Ramirez et al.,
2009; Yao et al., 2011).



Bae et al. e Activation of TRPML1 Clears A in HIV J. Neurosci., August 20, 2014 - 34(34):11485-11503 « 11493

A B
Control gp120 0 025 05 1 2 4 6h
LA R T ) B0 2000 0000 e ——
cree D cs0e vr00 — — - pJNK
:: ::oo ::.. S8 20 seee
. o S8 S0 000 _acti
88 4000 0000 L = — B-actin
LA L T T T "8 rr i seee
o ) JNK density (:10rma|iied to B-:cﬁn) . pJINK density (normalized to g-actin)
Qeo--n---oo9??9999°
L
eeee ceee i El
seee iee se00 e | i 273
eS80 S0 0009 %00 | : -
SO0 S0 'YL L) LR BN J
eese 00 e0se O
C D
0 025 05 1 2 4 6h 0 025 05 1 2 4 6h
'. pGSK N — s s vy supop. PAKT
e d — — —
T D G D CE— G c— B-actin B-aCtln
GSK density (normalized to p-actin) PGSK density (normalized to B-actin) AKT density (normalized to -actin) PAKTdensity (normalize_cl fo/p-actiny R
3 8 g 8 3 3 8 8 o 3 8 2 ° 8 8 8
@ s S 2 g 2 g ; g 3 I 1 1 ] o} - : 1
09 09 K24 o3
) Hokk < ek Q Q
3% 2 % i 3
2z 2 s @ S
2 ® 3 © = v = 7
k 4
; 4 & &
E & F %& G &
\o N A N '\,\Qa
v QP Q\‘f’ q\‘?c’\’ P QQ\QS X v O P N\
¢ R R R ® R ¢ R R
e —— o INK — e s wm GSK ——
L “—apJNK _—= pGSK w— e oo s DAKT
[ wccon SR . —
—— e c— e (3-2CtiN B-actin e ———3-2C1iN
JNK density (normalizef to B-actin)_‘ GSK density (normalized to B-actin) AKT density (nomalized to p-actin)
2 g 5 g s B &8 8 =3 8 = g 3 3
Wit: con
gp120
APP/PS1 9p120 * gp120
APP/PS1/gp120 APPIPS1 ¥k APP/PS1
APP/PS1/gp120 *kk APP/PS1/gp120
pJNK density (normalized to p-actin) pGSK density (normalized to p-actin) pAKT density (normalized to p-actin)
o 8 8 & 8 é g ‘$’ g
wt cond l
ap120 b gp120 gp120
APP/PS1 ohk APP/PS1 APP/PS1
APP/PS1/gp120 i APP/PS1/gp120 APP/PS1/gp120:
Figure7. HIV gp120 activated a restricted set of kinases. A, Proteome profiler array to identify phosphorylated kinases in primary neurons under control conditions and following gp120 (100 pm)

treatment for 30 min. The indicated spots refer to kinases confirmed by the corresponding Western blots. The expression and phosphorylation of (B) ¢-JNK, (€) GSK, and (D) AKT were confirmed in
neurons treated with gp120 (100 pm) for the indicated time points. Protein expression and phosphorylation of (E) INK, (F) GSK, and (G) AKT were also confirmed in hippocampus from 6-month-old
mice of the indicated genotypes. Data are mean == SD for at-least n = 3 independent experiments per condition. ANOVA with Tukey post hoc comparisons; *p << 0.05, **p << 0.01, ***p < 0.001
compared with the corresponding control; #p << 0.05, ##p << 0.01, ###p << 0.001 compared with gp120.



11494 - ). Neurosci., August 20, 2014 - 34(34):11485-11503

A B
gp120

2° © > "%Q
S ¢ W& NS

s R K

PINK o e
el —
INK - ——— INK ==

B-aCHin —— c—

B-actin WEG_-GC—

pJNK (% coontrol)
pJNK (% coontrol) = S &
2 N g 3 < < < i
e i 2 < ? con
cont
gp120 ok gp120 o
AMD gp120 + SP it
AMD + gp120 #ith
KT
KT + gp120 it
Chel
Chel + gp120 ok
C gp120 D o Q)(Q‘\oz );\&0%
O ———, N 3 v
N N N NN Q
PN NS NS € R QR O
¥ ¥

BACE T i st

p-actin e -

BACE1 " S SN S

B-GCHN m— —— — —

BACE1 (%control) BACE1 (% control)

o ) o S o = o S
T_ 2 2 2 9 e £ £ 9 >
con con
9P1§g e gp120 ok
Piog
SP +gp120 it gp120+Piog it
o Trog
JI 120 Sk
L gPAPI gp120+Trog Hit
API + gp120 - SR .
TOO ok
E Q\'LQ
N N
2 o
D ¥ L
SIPGIR- SRR
& ® W ¥

BACE] i pus o et
B-aClN e — c— c—

BACE1 (% control)

[N -
o o a
o o o o

con

gp120
APP/PS1
APP/PS1/gp120

002

Figure 8.  HIV gp120 promotes the release of BaceT transcriptional repression through induction of the MAP kinase pathway
and PPARy. 4, Representative Western blot showing total INK and pJNK protein expression in cells treated for 30 min with gp120
(250 pm), or pretreated with AMD 3100 (10 M), KT 5720 (1 M), or Chelerythrine (1 M) for 30 min before gp120 treatments.
Quantitative densitometricanalysis of Western blots showing pJNK for the indicated treatments. B, Representative Western blot and
densitometric analysis showing total INK and pJNK in cells treated for 30 min with gp120 (250 pw) or pretreated with the JNK inhibitor
SP600125 (SP, 20 um) for 30 min before gp120. €, Representative Western blot and densitometric analysis showing BACET protein levelsin
primary neurons treated with gp120 (250 pw) for 6 h, or pretreated with SP600125 (SP; 20 rum), a peptide inhibitor that blocks the
interaction of INK with JUN (JI,;; 10 rum), or an inhibitor of AKT (APL; 20 zu) for 30 min before gp120. D, Representative Western blot and
densitometric analysis showing BACE1 protein levels in neurons treated with gp120 (250 pu) for 6 h, or pretreated for 30 min with the
agonists of PPAR-y Pioglitazone (Piog; 10 rum) and Triglitazone (Trog; 20 rum) before gp120 treatments. Neurons were exposed to antag-
onists of PPARy SR202 (SR; 20 wm) and T007907 (T00; 10 wm) for 6 h in the absence of gp120. E, Representative
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HIV gp120 enhances f3- and y-secretase
processing of APP

We next focused on determining if and how
gp120 increases amyloidogenic processing of
APP. APPisalarge type I transmembrane pro-
tein that can be differentially processed by ei-
ther o~ (nonamyloidogenic pathway), or 3-
(BACE) followed by -y-secretase (amyloido-
genic pathway that generates Af3). HIV gp120
did not alter a-secretase activity in cultured
primary cortical neurons at any concentration
tested (Fig. 6A), but concentration-depen-
dently increased BACE and ‘y-secretase activi-
ties with minimal effective concentrations in
the 10-100 p™ range (Fig. 6 B,C). Because
BACE is the rate-limiting enzyme in Af3 pro-
duction, we focused on identifying the mech-
anisms by which gpl20 modified BACE.
BACEl mRNA (Fig. 6D) and protein levels
(Fig. 6E) were increased within 6 h following
exposure to gp120 exposure and remained el-
evated for at least 24 h. A small molecule an-
tagonist of CXCR4 (AMD3100) prevented
gp120 from increasing BACE1 activity. How-
ever, the endogenous agonist of CXCR4,
SDF-1a had no effect on BACEI protein ex-
pression (Fig. 6E). Inhibition of CXCR4 and
PKA, but not PKC prevented gp120 from in-
creasing BACE activity (Fig. 6F), and gp120
induced a rapid increase in PKA phospho-
transferase activity (Fig. 6G), suggesting that
increased BACE1 protein expression was me-
diated by PKA signaling. This atypical activa-
tion of PKA by gpl20 signaling through
CXCR4 has been previously reported (Masci
etal., 2003; Xu etal., 2011a,b).

A phosphokinase array using lysates
from control and gp120-treated primary
rodent cortical neurons suggested that
¢-JNK, glycogen synthase kinase B (GSK),
and AKT could be effectors downstream
of PKA activated by gp120 (Fig. 7A). The
phosphorylation of JNK and GSK, but not
AKT was confirmed by individual West-
ern blot analyses (Fig. 7B—D). We further
confirmed these findings in vivo where in-
creased phosphorylation of JNK and GSK,
but not was apparent in gp120, APP/PSI,
and APP/PS1/gp120 (Fig. 7E-G). Inhibi-
tion of CXCR4 and PKA, but not PKC
prevented gpl20 from increasing the
phosphorylation of JNK (Fig. 8A). Inhibi-
tion of JNK activation prevented gp120
from increasing the phosphorylation of

<«

Western blot and densitometric analysis of BACE1 protein lev-
els in hippocampus for the indicated genotypes of 6-month-
old mice. Data are mean = SD for at least n = 3 independent
experiments per condition. ANOVA with Tukey post hoc com-
parisons; *p << 0.05, **p << 0.01, ***p << 0.001 compared
with the corresponding control; #p << 0.05, ##p < 0.01,
#it#p < 0.001 compared with gp120.
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Figure9.

Increased APP production by gp120is linked to increased interaction of the translation enhancer hnRNP Cwith APPmRNA. 4, Time course (0 —24 h) showing APP mRNA levels in SHSY5Y

cells stably expressing human APP exposed to gp120 (250 pu) for the indicated time points. B, Representative Westen blot, and densitometric quantification showing immature (lower band; i) and
mature (upper band; m) APP protein levels in cells exposed to gp120 (250 pwm) for the indicated treatment times. €, Representative Western blot, and densitometric quantification of neuronal cells
exposed to gp120 (250 pwm) for 6 h, or pretreated with AMD3100 (AMD, 10 rum), KT5720 (KT, 1 um), chlerythrine (Chel, T rum), SP600125 (SP, 20 am), API-1 (AP, 20 wum), or DAPTA (5 nm) 30 min
before gp120 treatments. D, RIP analysis of APP mRNA associated with hnRNP C. At the times indicated following treatment with gp120, hnRNP C was immunoprecipitated using anti-hnRNP C
antibody (IgG was used in control parallel immunoprecipitations) and the levels of APP mRNA present in the IP materials were quantified by RT-gPCR analysis. Data were calculated as the levels of
APP mRNA relative to GAPDH mRNA in each IP sample. hnRNP IP results were then normalized to IgG IP. Data are the means == SEM from n > 3 independent experiments per condition. E,
Representative Western blot and densitometric quantification of APP from hippocampus of 6-month-old mice with the indicated genotypes. ANOVA with Tukey post hoc comparisons; *p << 0.05,
**p < 0.01, ***p < 0.001 compared with the corresponding control; #p << 0.05, ##p << 0.01, ###p << 0.001 compared with gp120.

JNK (Fig. 8B), and from increasing BACE1 protein levels (Fig.
8C). Although JNK is known to increase BACEI expression
through the immediate early response transcription factor cJun
(Guglielmotto etal., 2011), inhibiting the interaction of JNK with
cJun did not prevent gp120 from increasing BACE1 mRNA and
protein levels, nor did inhibiting AKT (Fig. 8C). These data sug-
gest that gp120 increased BACEI protein expression through a
mechanism that involved PKA signaling to JNK that was inde-
pendent of the transcriptional influence of cJun.

The Bacel gene promoter contains a putative binding site for the
peroxisome proliferator-activated receptor y (PPARvy), a nuclear
receptor protein that functions as a transcription factor. Activa-
tion of PPARy causes repression of Bacel gene promoter activity,
whereas reduction of PPARY levels leads to increases of BACE1
mRNA (Sastre et al., 2006). Because JNK MAP kinase is known to
have an inhibitory effect on PPARvy (Bhatt et al., 2012), we rea-
soned that gp120 induction of Bacel transcription could involve
JNK inhibition of PPARYy. Two different agonists of PPARy
blocked gp120 from increasing BACE1 mRNA and protein levels
in primary rodent cortical neurons (Fig. 8D). The involvement of
PPAPRYy was confirmed using two different PPAR+y antagonists

that each mimicked the effect of gp120 to increase BACE1 mRNA
and protein levels (Fig. 8D). These data suggest that gp120 pro-
moted the release of Bacel transcriptional repression through
induction of the MAP kinase pathway that inhibited PPARY.
BACEL1 expression was likewise increased in gp120 transgenic
mice, in APP/PS1/gp120 mice, but not in APP/PS1 mice, suggest-
ing that increased BACE1 expression was largely driven by gp120
(Fig. 8E).

HIV gp120 increases APP protein production by removal of a
translational block

In human SY5Y cells HIV-gp120 did not alter APP mRNA levels
at any time following gp120 treatments (Fig. 9A), but increased
immature and mature APP protein levels within 3 h following
stimulation compared with controls (Fig. 9B). Following gp120
exposures, APP remained increased for up to 6 h following expo-
sure to gp120, then declined (Fig. 9B), presumably due to pro-
cessing of APP to AfB. Inhibition of CXCR4, PKA, and JNK, but
not CCRS5, PKC, or AKT prevented gp120 from increasing APP
(Fig. 9C), suggesting that gp120 increases APP protein production
via JNK MAP kinase signaling. However, because the effects on APP
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Figure 10.  The association of APP with BACET is stabilized in lipid raft membrane microdomains following treatment with gp120. Representative images are 100X magnifications of primary
neurons. At the bottom of each image are shown enlargements of the indicated neurite. Immunofluorescent images showing BACE1, CTX555 immunopositive membrane microdomains (lipid rafts), merged
images, and orthogonal views for (A) control and (B) cultures treated for 6 h with gp120 (250 pw). Colocalized BACET and CTX555 appear yellow in merged images. C, (Figure legend continues.)
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were independent of transcriptional modulation, we postulated that
JNK-regulated APP production at a posttranscriptional stage.

The near parallel increases in immature and mature forms
of APP suggest that gp120 did not promote the maturation of
APP (which involves O-linked glycosylations; (Thinakaran
and Koo, 2008; Fig. 9B). These data suggest that gp120 regu-
lates APP protein expression at a post-transcriptional stage
before maturation. It was recently discovered that the hnRNP
C promotes APP translation through displacement of the
RNA-binding translational inhibitor Fragile X mental retarda-
tion protein (FMRP; Rajagopalan et al., 1998; Lee et al., 2010).
Therefore, we measured the interaction of APP mRNA with
the translation-activating RBP hnRNP C by using the RIP
assay. After immunoprecipitation using either an anti-hnRNP
C antibody or control IgG, levels of APP mRNA were mea-
sured in the bound material by reverse transcription followed
by RTPCR. The association of APP mRNA with hnRNP C was
calculated as the enrichment of APP mRNA in hnRNP C IP
relative to the IgG IP samples. RIP analysis revealed that gp120
robustly and transiently increased the interaction of hnRNP C
with APP mRNA (Fig. 9D), suggesting that gp120 increased
APP by promoting the association of hnRNP C with APP
mRNA. We confirmed increased expression of APP in vivo.
We found that APP protein expression was increased in in
mice transgenic for gp120 compared with controls (Fig. 9E).
As expected there was a large increase in APP expression in
APP/PS1 mice, which was reduced in APP/PS1/gp120 mice
(Fig. 9E), presumably reflecting increased processing of APP
to AB.

The association of BACE1 with APP is stabilized in
membrane microdomains

Amyloidogenic processing of APP occurs preferentially in mem-
brane microdomains enriched in cholesterol and ceramides,
where APP and APP-processing proteins are concentrated (Lee et
al., 1998; Parkin et al., 1999; Wahrle et al., 2002; Ehehalt et al.,
2003; Marlow et al., 2003; Kawarabayashi et al., 2004; Watanabe
etal.,2004). Several recent reports have demonstrated the impor-
tance of membrane microdomains in regulating secretase activi-
ties and A formation, and we recently demonstrated that gp120
increases the size and stabilizes the structure of membrane mi-
crodomains in neurons (Tamboli et al., 2005, 2011b; Chi et al.,
2007; Okada et al., 2008; Mao et al., 2010; Xu et al., 2011b; Ogawa
etal, 2011). Thus, we considered whether gp120 could enhance the
formation of A by stabilizing the spatial location of BACE1 with
APP within membrane microdomains. HIV-gp120 increased the
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(Figure legend continued.) Quantitation of fluorescence for BACE1, lipid rafts, and BACE1 colo-
calized to lipid rafts for the indicated concentrations of gp120. Representative immunofluores-
cent images show APP, and CTX555 immunopositive lipid rafts for (D) control and (E) cultures
treated for 6 h with with gp120 (250 pwm). Colocalized APP and CTX555 appear yellow in merged
images. F, Quantitation of fluorescence for APP, lipid rafts, and APP colocalized to lipid rafts for
the indicated concentrations of gp120. Representative images showing APP, BACE1, and
merged images for (G) control and (H) neurons treated for 6 h with gp120 (250 pwu). Colocalized
APP and BACET appear yellow in merged images. /, Quantitation of colocalized APP and BACET.
J, BACE activity in primary neuronal cultures treated for 6 h with gp120 (250 pm), or pretreated
with fumonisin 31 (Fum, 10 M), or myriocin (Myr, 10 wum) followed by gp120. K, Secreted and
intracellular A31-42 measured by ELISA in cells treated with gp120 (250 pm) or with gp120in
the presence of B-cyclodextrin (5 mu). Quantitative data are mean = SEM for at leastn = 3
independent experiments per condition. ANOVA with Tukey post hoc comparisons; *p << 0.05,
**p < 0.01, ***p < 0.001 compared with the corresponding control.
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size and stabilized the structure of GM1+ lipid rafts, increased
the expression of BACE1 (Fig. 10A-C) and APP in primary ro-
dent neurons (Fig. 10D-F). APP and BACE1 were colocalized in
these membrane microdomains (Fig. 10G-I). Preventing the sta-
bilization of membrane microdomains through inhibition of de
novo ceramide formation with the serine palmitoyl transferase inhibi-
tor myriocin, or salvage ceramide pathways with Fumonisin B1 pre-
vented gpl120 from increasing B-secretase activity (Fig. 10]). Thus,
gp120 promotes the formation and stabilization of a membrane mi-
croenvironment that favors A3 production.

Activation of the TRPMLI1 channel clears sphingomyelin and
A from lysosomes

In primary neurons, gp120 increases the formation of ceramide
and sphingomyelin (Haughey et al., 2004; Xu et al., 2011b). When
overproduced, sphingomyelin accumulates in endolysosomal/
lysosomal compartments, inhibits TRP channels, and blocks ly-
sosome calcium release (Shen et al., 2012). The accumulation of
luminal calcium inhibits hydrogen ion transport and increases
lysosome pH. Even small increases in luminal pH can disrupt
derivative capacity, as lysosome hydrolases have low pH optima.
Thus, we reasoned that the accumulations of AB in lysosomes
following gp120 treatments may involve the buildup of sphingo-
myelin, and calcium in lysosomes with a consequent increase in
luminal pH. We expressed the lysosomal calcium release indica-
tor GCaMP3-TRPMLI in primary neurons, and stimulated lyso-
some calcium release with the TRPMLI1 agonist ML-SA1 in
calcium free buffer. The specificity of this probe to measure lyso-
some calcium release was recently published (Shen et al., 2012).
ML-SA1 induced lysosome calcium release was doubled follow-
ing 6 h treatments with gp120 compared with untreated control
neurons (Fig. 11A-G). HIV-gp120 had no effect on ionomycin-
induced increases in GCaMP3-TRPMLI fluorescence, demon-
strating that the observed experimental differences were not due
to variances in transfection efficiency or performance of the cal-
cium probe (Fig. 11C, F,G). These findings suggest that lysosmal
calcium content was higher in gp120-treated cells. The ML-SA1
induced release of lysosome calcium rapidly induced endolyso-
somal acidification in both control and gp120 treated conditions
(Fig. 11H,I). Next, we determined whether activation of
TRPMLI could facilitate the clearance of lysosome sphingomy-
elin and AB deposits. HIV-gp120-induced deposition of sphin-
gomyelin (Fig. 12A-F), and AB (Fig. 12G-M ) were both cleared
following treatment with ML-SA1. These results demonstrate
that under pathogenic conditions which mimic interneuronal A3
deposition in the HIV-infected brain, stimulating lysosome cal-
cium release with a TRPML1 agonist promoted luminal acidifi-
cation and the clearance of intraneuronal sphingomyelin and AS.

Discussion

Examination of autopsy brains from HIV-infected patients sug-
gests that A3 deposition is accelerated in this population (Esiri et
al., 1998; Green et al., 2005; Achim et al., 2009). However, brain
imaging studies with the AB-binding agent ''C-Pittsburg com-
pound B (''C-PiB) have thus far been inconclusive (Ances et al.,
2010, 2012b). Differences in the patterns of AB deposition in AD
compared with HIV may help explain these discrepant findings.
Although soluble and intraneuronal AB are commonly found in
AD, senile plaques are the defining neuropathological observa-
tion (Haass and Selkoe, 2007). The pattern of AB deposition in
HIV appears to be distinct from AD, with A readily apparent as
intraneuronal deposits located in the soma and axonal processes
of neurons, with relatively small numbers of defined plaques
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Figure11.  Calcium rapidly accumulates in the lysosomes of neurons treated with gp120. Representative images are of primary
neurons transfected with the single wavelength genetically encoded calcium indicator GCaMP3-TRPML1. Representative images
show peak lysosomal calcium release for the indicated conditions and corresponding differential interference contrast images
(DIC). Time-lapse images were acquired at baseline, and following simulation with the TRPML1 agonist ML-SA1 (10 gum) in (A—C)
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(Esiri et al., 1998; Green et al., 2005;
Achim et al., 2009). Because ''C-PiB was
developed to identify AB plaques (Klunk
et al., 2004; Wang et al., 2004), this com-
pound may not efficiently bind intracellu-
lar forms of AB commonly found in HIV.

A number of other demographic and
clinical factors are also likely to influence
the deposition patterns of A in HIV pa-
tients including genetic susceptibility, age,
dyslipidemia, illicit drug use, and ART,
each of which have been demonstrated to
influence the production and/or clearance
of AB (Cutler et al., 2004; Bandaru et al.,
2009; Anthony et al., 2010; Giunta et al,,
2011; Soontornniyomkij et al., 2012;
Tanzi, 2012; Liu et al., 2013). For example,
history of ART appears to increase the
likelihood that A3 deposits will be present
(Green et al., 2005). Although the exact
mechanisms for this potential drug inter-
action are not currently known, all classes
of ART medications increase the forma-
tion and release of A peptides (Giunta et
al,, 2011).

AP peptides are readily formed in the
brains of healthy individuals, but are also
efficiently cleared from the CNS (Edland
and Galasko, 2011). The clearance of AB is
impaired in AD, and AB accumulates in
the extracellular space in oligomeric, and
fibril forms (Mawuenyega et al., 2010).
The formation of AB plaques requires an
initial seeding event that involves forma-
tion of an ordered core, and a conforma-
tional shift from a a-helix-rich structure
to B-sheet-rich structure that readily oli-
gomerizes (Come et al., 1993). This pro-
cess of fibril formation occurs most
efficiently at the exterior surface of the
plasma membrane, when A is bound to
the ganglioside GM1 (Kakio et al., 2003).
Thus, the impairment of A clearance in
AD appears to be after secretion of A
peptides into the extracellular space. In
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control cells, or (D—F) neurons treated with gp120 (100 pw) for
6 h. G, Quantitation of maximal fluorescence intensity for the
indicated conditions showing that ML-SA1-induced calcium
release from lysosomes was increased following pretreatment
with gp120. Applications of the calcium ionophore ionomycin
produced similar maximal calcium increases in response to
ML-SAT, suggesting that the probe was similarly expressed in
all cells. Data are mean == SEMof 21 cells/condition from three
separate experiments. ANOVA with Tukey post hoc compari-
sons; ***p < 0.001 compared with control; ###p << 0.001
compared with gp120. H, Data from time-lapse experiments
showing that ML-SA1 produced a rapid decline in endolyso-
somal pH. /, Summary data showing that gp120 increases en-
dolysosomal pH, and that ML-SAT reduces pH in control and
gp120 pretreated cultures. Data are mean = SEM of three
cultures/condition. ANOVA with Tukey post hoc comparisons;
**p < 0,01, ***p < 0.001.
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Figure 12. Activation of TRPMLT clears sphingomyelin and AS from lysosomes. Representative fluorescent images from
SHSY5Y cells stably expressing human APP showing the sphingomyelin binding protein lysenin, the lysosomal associated mem-
brane protein 1 (Lamp-1), DIC, and the merged images for (A) control, (B) cells treated for 6 h with gp120 (250 pwm), and (C) cells

J. Neurosci., August 20, 2014 - 34(34):11485-11503 * 11499

contrast, impairments of A clearance in
HIV occur at the cytoplasmic level, and
appears to involve deficits in endolyso-
somal trafficking.

Principal component analysis of the
CSF proteome of HIV patients suggested
that the severity of cognitive impairment
in HIV-infected individuals is related to
the integrity of complex signaling net-
works which govern neuroplasticity, cell
survival, and innate immunity, with APP
as a central contributing node (Angel et
al., 2012). APP is a large type I transmem-
brane protein that can be sequentially
processed by either a- or B-secretases fol-
lowed by y-secretase. The cleavage of APP
by a-secretase precludes A generation,
as the cleavage site is within the AB do-
main. The a-cleavage of APP releases a
large soluble ectodomain called sAPP«a
that has been implicated in neuronal
survival, neurite outgrowth, synaptic
maintenance, and plasticity (Roch et al.,
1994; Morimoto et al., 1998; Bell et al.,
2008; Bailey et al., 2011). Cleavage by
B-secretase releases a soluble APP ectodo-
main (sAPPf), and a membrane-bound
99-residue C-terminal fragment (Estus
et al., 1992; Seubert et al., 1993). Subse-
quent cleavage of C99 fragment by the
y-secretase complex (comprised of prese-
nilin, nicastrin, APH-1, and PEN-2) liber-
ates AB-peptides. The y-secretase cleaves
at two primary sites of APP producing
AB1-40 or AB1-42 (Walsh and Selkoe,
2007). Current evidence suggests that the
a-cleavage of APP occurs outside of lipid
rafts, where the a-secretase ADAMIO is
exclusively located (Harris et al., 2009).
Amyloidogenic processing of APP is
thought to occur primarily in lipid rafts
where all relevant proteins appear to be
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treated for 3 hwith gp120 then stimulated for 3 h with ML-SA1
in the continued presence of gp120. Colocalized lysenin and
Lamp-1 appear yellow in merged images. Quantitative immu-
nofluorescence for (D) lysenin, (E) Lamp-1, and (F) lysenin co-
localized with Lamp-1 show that pretreatment with gp120
increased and ML-SA1 treatment reduced the amount of sph-
ingomyelin localized to lysosomes. Representative fluorescent
images showing A3 (82E1), Lamp-2, DIC, and the merged im-
ages for (G) control, (H) cells treated for 24 h with gp120 (250
pm), and (/) cells exposed to gp120 for 24 h followed by 6 h
with ML-SAT in the continued presence of gp120. Colocalized
AB and Lamp-2 in merged images appear yellow. Quantita-
tive immunofluorescence for (J) AB, (K) Lamp-2, and (L) AB
colocalized with Lamp-2 show that gp120 increased, and ML-
SA1 decreased the amount of AB localized to lysosomes.
Quantitative fluorescence data are mean = SEM of 30-50
cells per experimental condition obtained from three indepen-
dent experiments. ANOVA with Tukey post hoc comparisons;
*¥p < 0.01, ***p < 0.001 compared with control; ##p <
0.01, ###p < 0.001 compared with gp120.
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concentrated including: BACEI, presenilins, nicastrin, APH-1,
PEN-2,and APP (Leeetal., 1998; Parkin et al., 1999; Wahrle et al.,
2002; Ehehalt et al., 2003; Marlow et al., 2003; Kawarabayashi et
al., 2004; Watanabe et al., 2004). Thus, an increased stabilization
of membrane microdomains by gp120 involving the enhanced
formation of ceramide (Jana and Pahan, 2004; Xu et al., 2011b)
may be an initiating event that facilitates the formation of AS.
Indeed, metabolic perturbations that result in accumulations of
ceramide in brain and CSF occur early in the course of HIV-
infection, and worsen with the onset or progression of cognitive
impairment (Haughey et al., 2004; Bandaru et al., 2010; Mielke et
al., 2010). These observations are consistent with our current
findings that show gp120 increases AB production by stabilizing
the interaction of APP with BACE1 in membrane microdomains.
Inhibiting the formation of ceramide or disrupting the structure
of lipid rafts prevented gp120 from increasing Af3 production,
suggesting that therapeutics which target ceramide metabolism
may block these early events that lead to aberrant processing of
APP. These data also suggest that the increased processing of APP
to AB in the setting of HIV-infection could decrease neu-
rotrophic support by reducing a-secretase processing of APP to
the trophic product sSAPPa. Although the effects of HIV infection
on the production of sSAPPa remain to be determined, dystrophic
neurites and dendritic pruning consistent with a reduced trophic
environment are common neuropathological features associated
with HAND (Pelle et al., 2008; Gelman et al., 2012; Desplats et al.,
2013).

A peptides are generated from the sequential cleavage of APP
by B- and y-secretases during endocytic trafficking. This AB can
enter into recycling compartments and secreted, or can be de-
graded in lysosomes and autophagosomes (Small and Gandy,
2006) (Koo and Squazzo, 1994). Endolysosomal trafficking in-
volves the formation, fusion and fission of vesicles. This biophys-
ical process can be perturbed by alterations in the lipid content of
membranes. In particular, increases in the content of ceramide or
sphingomyelin can promote stiffness of membranes, and slow or
prevent fusion and fission events, as evidenced by genetic disor-
ders of lipid metabolism (Futerman and van Meer, 2004). In
lysosomal storage disorders A accumulates in endolysosomal
compartments (Yamazaki et al., 2001; Keilani et al., 2012;
Mattsson et al., 2012). Sphingolipid storage negatively affects the
autophagic metabolism of APP and increases A3 production
(Tambolietal.,,2011a,b). Thus, HIV-associated accumulations of
ceramide and sphingomyelin may promote the intraneuronal ac-
cumulation of AB by slowing or preventing fusion and fission
events that are required for endolysosomal trafficking. This con-
clusion is consistent with enlargements in lysosomal systems and
impairments in autophagy that have been reported in autopsy
brains from HIV-infected subjects, in simian immunodeficiency
virus-infected microglia (Gelman et al., 2005; Alirezaei et al.,
2008; Zhou etal., 2011; Fields et al., 2013), and in brains of gp120
and APP/PS1/gp120 mice from the current study. These data
suggest that therapeutics designed to restore lysosome function
could protect the CNS in HIV-infected patients.

TRPMLLI is located to late endosomal/lysosomal compart-
ments. This cation channel is required for the formation and
transport of vesicles to the trans Golgi network, and for the ref-
ormation of lysosomes from the late endosomal/lysosomal hy-
brid organelles and autolysosomes (Piper and Luzio, 2004;
Treusch etal., 2004; Thompson et al., 2007). Because these mem-
brane fusion and fission events are dependent on the release of
luminal calcium (Piper and Luzio, 2004), neuropathological
events that perturb TRPMLI function could have profound ef-
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fects on the endolysosomal system. Indeed, neurodegeneration is
a prominent feature of mucolipidosis type 4, a genetic disorder
caused by a deficiency in TRPMLI1 (Sun et al., 2000). Likewise,
neuronal damage and cell death are readily apparent in TRPMLI1
KO mice and in TRPML flies (Treusch et al., 2004; Shen et al.,
2012). Although the endogenous regulators of TRPMLI are not
known, it was recently demonstrated that sphingomyelin nega-
tively regulates TRPMLI and that inducing calcium release with
agonists of TRPMLI reduced lysosome storage. In addition to
regulating fusion and fission events TRPMLI1 is important for
regulating lysosome pH. Calcium can accumulate in the intralu-
minal space when cellular energetics are compromised, or when
sphingomyelin is overproduced (Wang et al., 2006; Lloyd-Evans
etal., 2008; Shen et al., 2012). This buildup of positive charges in
the intraluminal space can prevent acidification by impairing H *
transport. By releasing the buildup of positive charges in the in-
traluminal space, TRPMLI1 agonists ease the ionic gradient thus
allowing luminal acidification through restoration of H™ trans-
port (Shen et al.,, 2012). Indeed, the TRPMLI agonist ML-SA1
cleared calcium, sphingomyelin and Af from lysosomal com-
partments in neurons with evidence of lysosome storage induced
by HIV gp120.

The findings from this study suggest that therapeutics de-
signed to restore lysosome function may protect the CNS in HIV-
infected patients. Because deficits in lysosome function are
common to a number of neurodegenerative conditions, further
development and testing of TRPMLI agonists in vivo may reveal
neuroprotective effects with application for a variety of neurode-
generative conditions.
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