
External Validity in Policy Evaluations that Choose Sites
Purposively

Robert B. Olsen,
Abt Associates

Larry L. Orr,
Johns Hopkins Institute for Policy Health

Stephen H. Bell, and
Abt Associates

Elizabeth A. Stuart
Johns Hopkins Bloomberg School of Public Health

Abstract

Evaluations of the impact of social programs are often carried out in multiple “sites,” such as

school districts, housing authorities, local TANF offices, or One-Stop Career Centers. Most

evaluations select sites purposively following a process that is nonrandom. Unfortunately,

purposive site selection can produce a sample of sites that is not representative of the population

of interest for the program. In this paper, we propose a conceptual model of purposive site

selection. We begin with the proposition that a purposive sample of sites can usefully be

conceptualized as a random sample of sites from some well-defined population, for which the

sampling probabilities are unknown and vary across sites. This proposition allows us to derive a

formal, yet intuitive, mathematical expression for the bias in the pooled impact estimate when

sites are selected purposively. This formula helps us to better understand the consequences of

selecting sites purposively, and the factors that contribute to the bias. Additional research is

needed to obtain evidence on how large the bias tends to be in actual studies that select sites

purposively, and to develop methods to increase the external validity of these studies.
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INTRODUCTION

In recent years, a great deal of attention has been paid to the internal validity of impact

evaluations—i.e., whether the evaluation yields an unbiased estimate of the impact of the

policy or program in the studied sites. Much less attention has been paid to external validity
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—i.e., whether the evaluation yields an unbiased estimate of the impact of the program on

the population or populations of policy interest.

Impact evaluations of social programs are often carried out in multiple “sites,” such as

school districts, housing authorities, local TANF offices, or One-Stop Career Centers.

Ideally, in each impact evaluation, sites would be selected randomly from the population of

interest, and all selected sites would agree to participate. Under this scenario, the resulting

sample would be formally representative of the population from which it was selected. As a

result, the study findings would have high external validity in the sense that they provide

unbiased estimates of the impacts of the policy or program for the population of policy

interest.

In practice, most impact evaluations select sites purposively using a nonrandom process. In

these evaluations, the samples are not designed to represent a well-defined population in the

formal statistical sense. Furthermore, in many of these evaluations, some or many of the

selected sites choose not to participate in the evaluation. Therefore, in the typical impact

evaluation, the resulting impact estimates may not be generalizable to the primary

population of policy interest.

For some evaluations, this may not be a problem. In particular, efficacy trials are typically

designed to assess whether the program can work under favorable circumstances, not

whether the program does in fact work under more typical conditions. Therefore, efficacy

trials are not designed to produce results that are generalizable to any population of policy

interest.

However, many impact evaluations are clearly intended as effectiveness studies to inform

policy decisions. Furthermore, many impact evaluations that are not clearly designated as

either efficacy trials or effectiveness studies may be perceived to provide the best available

evidence on the effect of a program or intervention. When these studies are based on

purposive samples of sites, the generalizability of the study findings to broader populations

of interest is uncertain.

In evaluations of government programs and policies, the primary population of policy

interest (hereafter referred to as “the population of interest” for simplicity) generally consists

of all individuals who are potentially affected by the policy decision that the study findings

are intended to inform. If these individuals are spread across multiple sites, the population of

interest covers all sites that include these individuals (e.g., all cities with homeless people or

all welfare offices that provide child care assistance to welfare mothers).

To inform policy decisions, policymakers need evidence on the impacts of the program or

policy on the population of interest, however it is defined. When evaluations produce

evidence from samples that are not representative of the population of interest, there is a

disconnect between the evidence needed for policy and the evidence produced by our

evaluations. This disconnect can lead evaluations to provide misleading evidence to

policymakers when the impacts in study sites differ substantially from the impacts in the

other sites in the population of interest.
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It is important to recognize that purposive site selection can only lead to misleading impact

estimates for the population of interest if the impacts vary across sites (as we show formally

later in this paper). To the best of our knowledge, no comprehensive synthesis of the

evidence on treatment effect heterogeneity for social policy interventions has been

conducted. At the same time, there are plenty of examples of research studies that have

found variation in impacts across sites. For example, Greenberg et al. (2003) found

significant variation in impacts across sites in two large-scale evaluations of welfare-to-work

programs: the National Evaluation of Welfare-to-Work Strategies (Hamilton and Brock,

1994; Freedman et al., 2000) and the Greater Avenues for Independence evaluation (Riccio,

Friedlander, and Freedman, 1994). In addition, two recent studies of charter schools found

significant variation in impacts across schools (Gleason et al., 2010;, 2010).

In this paper, we begin by defining what we mean by purposive site selection and

documenting its prevalence in social experiments. Then we present a conceptual model for

purposive site selection—that is, the process by which purposive samples are chosen. This

model allows us to derive a formula for the bias that can result from purposive site selection

when impacts vary across sites in the population. We conclude with recommendations for

future research, including research designed to estimate the magnitude of the bias, to help

the field gain an understanding of the limitations of impact evaluations that select sites

purposively.

Site Selection in Impact Evaluations

In general terms, there are three approaches to selecting sites for an evaluation: (1) selecting

all possible sites, (2) selecting a random sample of sites, and (3) selecting a purposive

sample of sites. Purposive sampling is “a method by which units are selected to be in a

sample by a deliberate method that is not random” (Shadish, Cook, and Campbell, 2002, p.

511). Purposive samples are presumably selected with some goal or goals in mind, goals that

at least in some instances stem from the specific objectives of the research. For example, if

the evaluator or evaluation sponsor wants to compare the impacts for one group of sites to

the impacts for a different group of sites (such as urban to rural), the evaluator may select

equal numbers of sites from both groups. In other cases, purposive sampling may seek to

ensure that a range of different types of sites is represented in the sample.1

We define the term “purposive site selection” to include what is sometimes called

“convenience sampling,” where the primary objective is to minimize the costs incurred or

the time necessary to meet the evaluation’s sample size requirements. In our experience,

purposive sampling is often implemented as a form of “stratified convenience sampling”:

researchers may select the distribution of sites that they hope to achieve (e.g., X urban sites

and Y rural sites), but subject to those constraints, include the sites that are “most

convenient” to include in the study (e.g., those that were easiest to persuade to participate in

the study). In this paper, we use the term “purposive site selection” to cover both stratified

and unstratified convenience sampling.

1Later in this paper, we consider how these objectives can be met through stratified random sampling of sites.
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Purposive site selection has been used and defended since the earliest large-scale social

experiments. For example, in the final report on the New Jersey Income Maintenance

Experiment (Watts, Peck, and Taussig, 1977), the authors explained the operational

necessity of implementing the test in a small number of sites and defended a “test bore”

strategy of “examining a discrete number of purposely chosen and distinctive samples from

which a complete composite can eventually be formed” (p. 445).

Over the ensuing decades, the test bore approach—that is, purposive selection of a small

number of sites and often a small fraction of all potential sites—became the accepted

standard in evaluation. To assess the prevalence of purposive site selection, we reviewed the

Digest of Social Experiments (Greenberg and Shroder, 2004). The Digest attempted to

capture every social experiment designed to determine how one or more policy interventions

affected individual or household market behavior (e.g., employment and earnings;

consumption of food, energy, housing, or health care; or receipt of government transfers). Of

the 273 evaluations included in the Digest, all but 7 appear to have included a purposive

sample of sites. In addition, a substantial majority of the evaluations reported in the Digest

included sites that covered 10 or fewer localities, which in many cases is a small fraction of

all localities that are or could be implementing the program.2,3 In summary, most social

experiments covered in the Digest have used much the same approach that was used in the

income maintenance experiments: purposive selection of a small number of sites, often

aiming for diversity of sites, but seldom choosing sites in a way that would allow rigorous

generalization.

We should note that some evaluations select all eligible sites into the evaluation sample

(which of course yields a representative sample of eligible sites). The Digest identified five

of these evaluations: the National Job Corps Study, the Washington State Intensive

Applicant Employment Services Evaluation, the Delaware Dislocated Worker Pilot

Program, and two evaluations conducted outside of the United States.4

In contrast, random site selection is rare. The Digest clearly identifies only two social

experiments as having selected sites randomly: (1) the Food Stamp Employment and

Training Program Evaluation (Puma et al., 1990), and (2) the Pennsylvania Re-employment

Bonus Demonstration (Corson et al., 1991). We know of three other social experiments that

selected sites randomly, were included in the Digest, but were not clearly identified by the

Digest as having selected sites randomly: (1) the National Evaluation of the Upward Bound

Program (Seftor, Mamun, and Schirm, 2009), (2) the Evaluation of Ohio's Learning,

Earning, and Parenting Program (Bos and Fellerath, 1997), and (3) the Evaluation of

Florida’s Project Independence (Kemple, Friedlander, and Fellerath, 1995). While there may

be other evaluations that selected sites randomly, the combination of our experience and the

2Our calculations suggest that of the 231 evaluations conducted in the Unites States and reported by the Digest, 177 included sites in
10 or fewer localities (e.g., cities or counties) and 28 included sites in 11 or more localities. The remainder of the evaluations were
conducted throughout one region of a single state (in an unspecified number of localities), statewide in a single state, statewide in 2 to
10 states, or, in the case of the National Job Corps Study, nationwide.
3The number of sites included in an evaluation is heavily influenced by the evaluation budget. Therefore, our discussion here should
not be misconstrued as a criticism of evaluations that are based on relatively few sites.
4The Digest includes 42 experimental and quasi-experimental evaluations that were conducted outside of the United States.
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evidence from the Digest suggests to us that random site selection is very rare in social

experiments.

Since the Digest includes studies that are typically at least 10 years old, it is reasonable to

ask whether random site selection has become more common in the last decade. Our

experience suggests not. We are only aware of three recent multisite impact evaluations that

have selected a random sample of sites: (1) the Head Start Impact Study (Puma et al., 2010),

(2) the Benefit Offset National Demonstration (Stapleton et al., 2010), and (3) the Impact

Evaluation of Upward Bound’s Increased Emphasis on Higher-Risk Students (cancelled less

than one year after sites were selected).

In our experience, evaluators and evaluation sponsors often justify selecting sites

purposively instead of randomly to reduce the costs of the evaluation. To control costs,

researchers may focus on sites that offer the largest study sample or the least resistance to

participating in the study. In addition, for random assignment evaluations, evaluators may

focus on sites with more eligible applicants than the program can serve; otherwise, the

evaluation may bear the costs of recruiting additional applicants. Furthermore, the benefits

of random site selection may be unclear when the number of sites is small or the selected

sites may choose to opt out the evaluation. In either case, the sample of participating sites

may not resemble the population from which it was selected, even if sites were initially

selected randomly. Regardless of whether these factors provide an adequate justification for

purposive site selection, they likely contribute to the fact that few evaluations select sites

randomly in the hopes of obtaining a representative sample—and that most evaluations

instead rely on purposive samples site selection.

Contribution of this Paper

The main contributions of this paper are the development of a conceptual model of

purposive site selection and the derivation of a formal expression for the bias that can result

when evaluations select sites purposively. This paper is not the first to address external

validity of study results from an unrepresentative sample. For example, Shadish, Cook, and

Campbell (2002) and Imai, King, and Stuart (2008) provide conceptual frameworks for

thinking about external validity and the biases that may exist when trying to generalize study

findings to target populations. In addition, Cole and Stuart (2010) and Weisberg, Hayden,

and Pontes (2009) provide expressions for external validity bias in settings where

individuals are randomized and impacts may vary across individuals.5

However, while other papers derive ex post expressions for the bias in terms of the realized

differences between the purposive sample and the population, this paper provides an a priori

expression for the bias by treating purposive site selection as a sampling process. This

allows us to show that the bias from purposive site selection results from a selection process

that favors certain types of sites over others, but that fails to account for this key feature of

the site selection process in the analysis. In particular, in evaluations that select sites

purposively, evaluators typically favor sites based on site-level characteristics that are

5Weisberg, Hayden, and Pontes (2009) are particularly concerned with examining the consequences for generalizability of the strict
inclusion and exclusion criteria of many clinical trials.
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available to the evaluators and accept sites that agree to participate based on a process we

cannot observe. We formally demonstrate that the process by which sites are included in

purposive samples can produce biased impact estimates—that is, impact estimates that are

systematically different from the impacts that policymakers would like to know. Because

most impact evaluations of social programs begin by selecting a sample of sites, the paper’s

findings are broadly relevant to the field of rigorous program evaluation.

We stress that other factors may also limit external validity in any particular study. For an

excellent discussion of the threats to validity, see Shadish, Cook, and Campbell (2002). We

focus here on external validity bias due to purposive site selection, and leave investigation of

other factors that may limit generalizability to future research.

A FORMAL MODEL OF PURPOSIVE SITE SELECTION

Our conceptual model of purposive site selection in multisite impact evaluations is based on

the proposition that any purposive sample of sites can usefully be conceptualized as a

random sample of sites from some well-defined population, for which the sampling

probabilities are unknown and vary across sites. We use this model to derive a formal

expression for the bias that results from selecting sites purposively.

Conceptual Model

In our experience, the process of selecting and recruiting sites for multisite impact

evaluations has four key steps. First, the evaluation may specify its population of interest. In

other cases, the population of interest may be left unspecified—either because the

population of interest is obvious (e.g., all program participants, in evaluations of ongoing

programs) or because there may be multiple populations of interest to the evaluation sponsor

(e.g., in evaluations of interventions that may be adopted voluntarily by local entities).

Second, the evaluation defines what a “site” is and may specify eligibility criteria for

whether a site can be included in the evaluation, or at least describe the types of sites it aims

to recruit. Third, the evaluation selects a sample of sites to recruit. Fourth, these sites must

decide whether or not to participate. The selection and recruiting process typically continues

until the evaluation meets its sample size requirements (or decides to conduct the evaluation

with a reduced sample).

In our conceptual model, we treat purposive site selection as a process. Instead of focusing

on the outcome—the sample actually selected—we conceptualize the selection process as a

random process with well-defined but unknown probabilities. More specifically, we assume

that for any evaluation, for each site in the population of interest, there exists a well-defined

probability of inclusion in the evaluation. Like all probabilities, the probability for each site

falls between 0 and 1, inclusive. However, unlike formal probability sampling, the

probabilities are unknown even to the researchers who selected or recruited the sample.

In this model, we define a site’s probability of inclusion as the proportion of “replications”

of the site inclusion process in which the particular site would be included in the evaluation

sample (i.e., in which the site would both be chosen and would agree to participate). We

define a replication as a hypothetical execution of a site inclusion process, which is defined
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by certain fixed parameters, but also includes some variable or random elements. The fixed

parameters of the inclusion process may include the universe of potential sites and the target

number of sites to be included; the variable elements of the inclusion process may include

the procedures used to recruit eligible sites and time-varying personality or political factors

that influence sites’ willingness to participate. Under this conceptual model, the particular

sites included in the evaluation can vary across replications.

While this conceptual model may seem restrictive, it is in fact sufficiently general to allow

for any kind of inclusion process. At one extreme, it allows for a perfectly deterministic site

inclusion process (e.g., 60 eligible schools with an inclusion probability of one and 940

eligible schools with an inclusion probability of zero). At the other extreme, it allows for a

perfectly random process (e.g., all 1,000 eligible schools with a 6 percent chance of

inclusion in the sample).

Most importantly, our model allows for more realistic situations in which some sites in the

population of interest have zero probabilities of inclusion and other sites have positive but

varying inclusion probabilities. For example, for a hypothetical random assignment

evaluation of afterschool programs, the probability of inclusion may be zero for sites that

lack enough excess demand to conduct random assignment, small but positive for

oversubscribed sites that serve a small number of children (e.g., those located in rural areas),

and larger for oversubscribed sites that serve a large number of children (e.g., those located

in urban areas).

One way of understanding our conceptual model is by analogy. Our conceptual model for

purposive sampling is analogous to the conceptual models behind Donald Rubin’s theory of

missing data (e.g., Rubin, 1976) and James Heckman’s theory of sample selection bias (e.g.,

Heckman, 1976). Both of these models consider the absence of particular units from the

analysis sample as having a probabilistic component. Our model can thus be thought of as a

special case of more general models that have played a prominent role in evaluation

research.

External Validity Bias

In this subsection, we derive a mathematical expression for the bias that results from

selecting sites purposively and then using standard methods to obtain a pooled impact

estimate. First, let us formally establish the parameter of interest in multisite impact

evaluations as the average impact in the population of interest. We assert that in most

evaluations, the main parameter of interest is either the average impact across all sites in the

population of interest or the average impact across all individuals in this population (where

the latter is simply a weighted average of the former). To derive a formal expression for the

bias, we focus on the former impact. This would be a key parameter of policy interest if

individual sites can choose whether to adopt the intervention, or if policy decisions are made

at a higher level for all sites in the population, but the number of program participants per

site is the same across all sites in the population. Equation (1) defines the parameter of

interest as Δ:
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(1)

where K equals the number of sites in the population and Δs is the impact in site s for s = 1,

…, K.6

Suppose that J sites are included in the evaluation, where J < K, and the J sites included in

the evaluation are a subset of the K sites in the population of interest. Equation (2) defines

the pooled impact estimator that is often computed in multisite evaluations based on

purposive site selection, which is just a simple average of the site-level impact estimates

from the sites included in the evaluation:

(2)

where j subscripts the J sites included in the evaluation sample and Δ̂j is the impact estimate

in site j.

An alternative way of expressing this estimator is:

(3)

where Is equals 1 if site s from the population was included in the evaluation and equals 0

otherwise.

The bias of the estimator in equation (3) is the expected difference between its expected

value and the parameter we are trying to estimate (shown in equation (1)):

(4)

The expectation in equation (4) is defined across replications of a given evaluation design.

The evaluation design to be replicated includes both a specific process for selecting sites and

a specific methodology for estimating impacts in each site that could potentially be included

in the evaluation. The methodology for estimating impacts includes both the process for

selecting the study sample in each included site, and, for evaluations based on random

assignment and many quasi-experimental methods, a process for assigning sample members

to groups. The pooled impact estimate will vary across replications for two reasons: (1) the

sites selected for the evaluation will vary across replications, and (2) for each site, the

individuals included in the treatment and control or comparison groups will vary across

replications. The expected value of the impact estimate, E(Δ ̂pooled), is defined as the limit of

the simple average of the pooled impact estimates across replications of the evaluation as the

number of replications approaches infinity.

6If the impacts vary across individuals in site s, we can think of Δs as the average impact in site s.
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Substituting equation (3) into equation (4), and moving the expectation inside the

summation, yields equation (5):

(5)

To simplify this expression, we assume that for each site s, Δ̂s and Is are statistically

independent across replications of the evaluation—that is, E(Δ ̂s|Is) = E(Δ ̂s) and E(Is|Δ̂s) =

E(Is) (Note that we are assuming an impact estimate could be computed in every site in the

population of interest for each replication of the evaluation, and inclusion in the study only

affects whether the impact estimate is observed and included in the pooled impact estimate.)

A sufficient condition for the independence assumption to hold would be if the variation in

each variable across replications were purely random and uncorrelated with all other

variables. Intuitively, we would expect the independence assumption to hold if, (a) for each

site s, the inclusion of the site in the evaluation (Is) does not affect the site’s impact estimate

(Δ ̂s)—as distinct from the true impact in the site (Δs)— (b) the site’s impact estimate does

not affect the site’s inclusion in the evaluation, and there are no other factors that affect both

and thereby create a statistical dependence between the two variables.

By assuming that Δ̂s are independent for each site s, we arrive at equation (6):

(6)

The expected value of the impact estimate in site s,(E(Δ ̂s) can be expressed as the sum of the

true impact in site s (Δs) and the bias in the impact estimator or methodology for estimating

the impact in site s (bs), which we refer to as the internal validity bias in estimating the

causal effect of the intervention in site s. In addition, the expected value of the 0–1 site

inclusion indicator for site s (E(Is)) is Ps by definition. Substituting these values into

equation (6), we arrive at equation (7):

(7)

The first term in equation (7) can be decomposed into two parts: the portion attributable to

the actual site-level impacts in each site (Δs) and the portion attributable to the internal

validity bias in the individual site-level impact estimates (bs), as shown in equation (8):

(8)

If we multiply and divide each term in equation (8) by K—the number of sites in the

population—and use standard formulas for the covariance between two variables,7 we arrive

at equation (9):
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(9)

where μΔ is defined as the population mean of the site-level impacts, μP is defined as the

population mean of the site inclusion probabilities, σΔP is defined as the population

covariance between the site-level impacts and the site inclusion probabilities, μb is defined

as the population mean of the bias in the site-level impact estimates, and σbP is defined as

the population covariance between the bias in the site-level impact estimates and the site

inclusion probabilities.

It is important to recognize that (a) the population mean of the site-level impacts is, by

definition, the parameter of interest established in equation (1) (i.e., μΔ ≡ Δ), and (b) the

population mean of the site-level inclusion probabilities is, by construction, equal to the

fraction of all sites in the population to be included in the evaluation (i.e., μP = J/K).8

This allows us to express the bias of the pooled impact estimator as follows:

(10)

where σΔ is the standard deviation of impacts across sites in the population, σP is the

standard deviation of the site inclusion probabilities across sites in the population, ρΔ,P is the

correlation between the site-level impacts and the site inclusion probabilities across all sites

in the population, and σb is the standard deviation of the bias in the site-level impact

estimators across all sites in the population.

Now we define cvP as the coefficient of variation in the site-level inclusion probabilities,

where the coefficient of variation is defined as the standard deviation divided by the mean.

Since the mean probability of inclusion in the population μP is equal to J / K, the bias in the

pooled impact estimator can be expressed as a function of the coefficient of variation in the

site-level inclusion probabilities (cvP):

7The covariance between any two variables x and y (σxy) in a discrete population can be expressed as

, where μx and μy are defined as the population
means of x and y, respectively.

8To show why this is true, note that . Taking the expectation of both sides over an infinite number of replications

of the site selection process, . However,  is a

constant. Therefore, .
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(11)

Equation (11) effectively decomposes the bias in the pooled impact estimator into three

terms. The first term (ρΔPσΔcvP) is the external validity bias attributable to selecting a

potentially unrepresentative sample of sites but weighting them equally in the analysis. The

last term is the internal validity bias attributable to using a biased impact estimator in some

or all sites (μb ≠ 0). The middle term (ρb,PσbcvP) is the bias that can result from the

interaction between internal validity bias and the inclusion probabilities. In particular, the

pooled impact estimate can be biased if the inclusion probabilities vary across sites (cvP >

0), the internal validity bias in the impact estimates varies across sites (σb > 0), and the site

inclusion probabilities are correlated with the internal validity bias in estimating the impact

in individual sites (ρb,P ≠ 0).

From this point forward, to focus on the external validity bias that arises from selecting sites

purposively, we assume that the internal validity bias for each site is zero (bs = 0 ∀s) which

implies that μb = 0 and σb = 0). Under this assumption, we obtain a simple expression for

the external validity bias in multisite impact evaluations that select sites purposively but

weight them equally in the analysis:

(12)

Equation (12) shows that the external validity bias from purposive site selection depends on

three factors: the variance of impacts across sites in the population of interest (σΔ), the

coefficient of variation in inclusion probabilities across sites in the population (cvP), and the

correlation between site-level impacts and the site inclusion probabilities in the population

(ρΔ,P). If all three of these factors are non-zero, then the external validity bias from

purposive site selection will be non-zero, and the magnitude of the bias will depend on the

magnitude of the three factors. However, if any of the three factors equals zero, the bias will

be zero. In other words, the external validity bias from purposive site selection will be zero

if (1) the impact is the same in all sites, (2) the probability of being included in the sample is

the same in all sites (i.e., as if the sample were a simple random sample), or (3) impacts and

site inclusion probabilities vary across sites in the population, but they are uncorrelated with

each other—that is, the site inclusion process does not favor sites with particularly large or

small impacts.

Interestingly, a parallel expression for bias has been derived in the survey nonresponse

context, where the set of respondents may not be representative of the full population. Brick

and Jones (2008) express the bias in the mean of an outcome Y as the product of the

coefficient of variation of the probabilities of response, the standard deviation of Y, and the

correlation between the response probability and Y (see equation (2) in their paper).

One factor that does not affect the external validity bias is the average impact across sites in

the population of interest. While the variance of the site-level impacts appears in equation

(12), the mean of the site-level impacts does not.
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In addition, increasing the number of sites in the evaluation does not necessarily reduce the

bias, as we might expect. At the extreme, the external validity bias equals zero when all sites

in the population are included in the sample. However, when the study includes a small

share of all sites in the population, and all the site inclusion probabilities are less than one,

increasing the number of sites in the sample will not necessarily reduce the external validity

bias. For example, if all the site inclusion probabilities are increased by a constant

multiplicative factor without increasing any probabilities above their limit of one, it can be

shown that the sample size will increase by the same factor and the external validity bias

will be unaffected (proof available upon request). However, there is no guarantee that the

site inclusion probabilities will increase by a constant multiplicative factor if an evaluation

increases the number of sites to be included: it will depend on how the site recruiting

process is changed to generate a larger sample of sites, and how those changes affect the

terms in equation (12). Therefore, there is no necessary relationship between the number of

sites included in the evaluation and the magnitude of the external validity bias.

Magnitude of the Bias

While investigating the components of the external validity bias is helpful, knowing the

formula for the external bias does not yield any insights into how large the bias from

purposive site selection is likely to be—either in the average study or in particular studies.

Many papers have provided empirical evidence on the magnitude of a different type of bias

—internal validity bias (selection bias) resulting from study designs based on

nonexperimental comparison groups (e.g., LaLonde, 1986; Fraker and Maynard, 1987;

Glazerman, Levy, and Myers, 2003; Bloom, Michalopoulos, and Hill, 2005; Cook, Shadish,

and Wong, 2008). However, to the best of our knowledge, no published papers have

provided empirical evidence on the magnitude of external validity bias resulting from

purposive site selection.

It is reasonable to ask whether estimates of the external validity bias could be constructed

using existing evidence from multisite impact evaluations. Evidence from (the small number

of) studies that selected sites randomly could be used to produce unbiased estimates of the

variation in impacts across sites in the population (σΔ). However, because these studies

selected sites randomly and not purposively, they cannot help us to estimate the other two

parameters in the bias formula—the variation in the site inclusion probabilities when sites

are selected purposively (cvP) or the correlation between site inclusion probabilities and site-

level impacts (ρΔ,P). Studies based on purposive samples might allow researchers to estimate

all three parameters, but these estimates may be biased. Site inclusion probabilities can be

estimated if data are available on site-level characteristics for both the purposively selected

sites and the broader pool of sites from which included sites were drawn (e.g., by regressing

whether or not the site was included in the study—one for yes and zero for no—on a set of

observed site-level characteristics). However, if some of the factors that influence site

inclusion are not observed, estimates of the variation in site inclusion probabilities (cvP)

could be biased. In addition, while purposive samples can be used to estimate the variation

in impacts across sites (σΔ), these estimates could be biased because the sample is not

representative of the population of interest (e.g., if purposively selected sites are more

homogeneous than the population as a whole).
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In summary, the amount of external validity bias that results from purposive site selection is

an empirical question for which we lack empirical evidence. Just as researchers 25 years ago

had no evidence on the magnitude of the internal validity bias that would result from a

nonexperimental comparison group design, researchers today have no evidence on the

consequences of beginning their next multisite impact evaluation by selecting a purposive or

convenience sample of sites.

CONCLUDING THOUGHTS AND SUGGESTIONS FOR ADDITIONAL

RESEARCH

The lack of any empirical evidence on the typical magnitude of external validity bias from

purposive site selection leaves plenty of room for disagreement about how this potential

problem should be handled. Some may argue that in the absence of evidence suggesting the

bias is large, researchers should focus their attention on other methodological issues. Others

may argue that because the bias could potentially be large, we should design and implement

future studies with the specific goal of reducing the bias. At this point, we propose a middle

ground and recommend more research in this area. In particular, we make two suggestions

for future research.

First, we recommend that future studies focus on producing empirical evidence on the

magnitude of the external validity bias that results from purposive site selection. To estimate

this bias, researchers could follow an approach that is similar to the studies that have

estimated the magnitude of internal validity bias in nonexperimental studies. These studies

compare the actual impact estimates from an experiment to a reasonable prediction of what

the impact estimates would be if an experiment had not been possible, and researchers had

instead selected a nonexperimental comparison group.

To estimate the magnitude of the external validity bias from purposive site selection,

researchers could begin with data from one or more studies that were based on a

representative sample, compute externally valid impact estimates from the sample, and treat

the estimates as the “gold standard” from the perspective of external validity. Then the study

could attempt to predict which sites would have been selected had the study selected sites

purposively, estimate impacts for these sites, and compare the estimates to the gold standard.

The challenge with taking this approach is predicting which sites would be included in the

study if sites had been selected purposively. Fortunately, studies that select sites purposively

may provide some evidence on the types of sites that tend to be included in studies when

purposive site selection is used and sites may or may not agree to participate. Therefore, one

approach to estimating the external validity bias would use data from studies that selected a

representative sample of sites and studies that selected sites purposively. In further work on

this topic, we plan to pursue this approach.

Second, if future research identifies evaluation settings where the external validity bias due

to purposive site selection is (or could be) large, we would encourage future studies to focus

on exploring and testing possible approaches to reducing the bias. The most obvious

solution is to select sites randomly. If researchers had good reasons to favor certain types of
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sites over others based on observed characteristics, the study could select a stratified random

sample of sites—instead of the stratified convenience sample that studies often select. While

one might reasonably doubt the benefits of random site selection in settings where the “take-

up rate” is low—that is, when many selected sites will choose not to participate—whether

and how much random site selection can reduce the bias when participation decisions are

nonrandom is an empirical question that warrants additional research.

Another approach worth exploring involves devoting additional effort and resources to

recruiting sites that initially resist being included in the evaluation, and comparing the

impacts in these sites with those in the sites that initially agreed to participate. This

suggestion is motivated by studies based on surveys that have invested additional time and

resources to interview a random sample of initial nonrespondents with the goal of reducing

survey nonresponse bias.9 We believe this approach would be worth testing in the context of

site recruitment, perhaps initially on a small scale, to assess the costs of this approach and

the benefits in terms of potential bias reduction.

Finally, we recommend exploring and testing the use of observed site-level characteristics to

reduce the external validity bias at the analysis stage. In principle, if the site inclusion

probabilities were known, sites could be weighted in the analysis to completely eliminate the

bias (proof available upon request). In practice, when the site inclusion probabilities are

unknown, one may be able to reduce the bias by reweighting the sample of sites to more

closely match the population of interest in terms of observed site-level characteristics. This

approach has been used extensively and rigorously examined in literatures on (1)

reweighting comparison groups to make them more comparable to program participants, via

propensity score methods (e.g., Rubin, 2001; Stuart, 2010) and (2) reweighting survey

respondents to make them more comparable to the population from which the survey sample

was selected (e.g., Oh and Scheuren, 1983; Little, 1986; Brick and Jones, 2008).

Reweighting approaches have more recently been applied to improve the external validity of

impact estimates from unrepresentative samples (e.g., Haneuse et al., 2009; Pan and

Schaubel; 2009; Stuart et al., 2011). We believe this approach is worthy of additional

research and testing to assess its ability to reduce external validity bias resulting from

purposive site selection.

To recap, this paper lays the groundwork for future research on the generalizability of study

findings based on purposive samples of sites, as opposed to random probability samples of

sites that formally generalize to a known population. The paper begins with the premise that

effectiveness studies conducted to inform policy decisions should estimate the effects of the

program or policy for one or more populations of interest to policymakers. We show

formally that statistical bias, in the usual sense of the term, will result if impacts vary across

sites and the process by which sites are included in the evaluation systematically favors sites

with impacts that are either larger or smaller than the average impact for the population of

interest. In the paper, we provide a formula for the total bias when estimating a population

average treatment effect, isolate the external validity bias due to purposive site selection, and

9For example, this approach was used in the Moving to Opportunities experiment (see Orr et al., 2003) and also in a study to describe
the outcomes of welfare leavers in Iowa (see Kauff, Fraker, and Milliner-Waddell, 2002; Kauff, Olsen and Fraker, 2002).
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identify the parameters of the site inclusion process that contribute to the external validity

bias. Future research is needed to assess the magnitude of the external validity bias resulting

from purposive site selection and to test different options for reducing that bias.
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