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Abstract
A re-examination of the mechanism controlling eat-
ing, locomotion, and metabolism prompts formulation 
of a new explanatory model containing five features: 
a coordinating joint role of the (1) autonomic nervous 
system (ANS); (2) the suprachiasmatic (SCN) master 
clock in counterbalancing parasympathetic digestive 
and absorptive functions and feeding with sympathetic 
locomotor and thermogenic energy expenditure within 
a circadian framework; (3) interaction of the ANS/SCN 
command with brain substrates of reward encompass-
ing dopaminergic projections to ventral striatum and 
limbic and cortical forebrain. These drive the nonho-
meostatic feeding and locomotor motivated behaviors 
in interaction with circulating ghrelin and lateral hypo-
thalamic neurons signaling through melanin concentrat-
ing hormone and orexin-hypocretin peptides; (4) coun-
terregulation of insulin by leptin of both gastric and 
adipose tissue origin through: potentiation by leptin of 
cholecystokinin-mediated satiation, inhibition of insulin 
secretion, suppression of insulin lipogenesis by leptin 
lipolysis, and modulation of peripheral tissue and brain 
sensitivity to insulin action. Thus weight-loss induced 
hypoleptimia raises insulin sensitivity and promotes its 
parasympathetic anabolic actions while obesity-induced 
hyperleptinemia supresses insulin lipogenic action; and 
(5) inhibition by leptin of bone mineral accrual suggest-
ing that leptin may contribute to the maintenance of 

stability of skeletal, lean-body, as well as adipose tissue 
masses.
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Core tip: The novel proposal for the mechanism of body 
weight regulation deals with all three components of 
body mass: bone, lean tissue, and fat depots. It attri-
butes the central control of counterbalancing energy ex-
penditure and intake to an autonomic nervous system-
circadian clock command center that encompases brain 
reward substrates, lateral hypothalamic peptidergic 
circuits and areas of the cortex. The nonhomeostatic 
character of feeding and locomotion is driven and con-
trolled by the reward circuits and modulated by shifts in 
insulin sensitivity induced by counterregulation by leptin 
of insulin as weight deviates between underweight and 
overweight and alters basal leptin concentrations. 
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INTRODUCTION
Finding and ingesting food and drink are intermittent 
behaviors essential for individual and species survival 
against continuous energy cost of  staying alive. Our 
complex physiological design insures that opportunities 
to ingest food are not missed and that drive to seek food 
increases and compensatory processes are deployed to 
counteract substantial losses of  body mass. That this be-
havior supports both growth of  body mass as well as its 
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maintenance when statural growth has ceased only adds 
to its complexity and challenges our ability to understand 
its mechanism. Therefore, the transformation from a 
system in which food abundance drives the acquisition 
of  body mass during statural growth to a system where 
energy intake is matched to each finite adult physique 
requires an explanation that integrates both phenomena. 
In addition, feeding behavior is coupled to spontaneous 
variations in movement and locomotion in ways that 
are imperfectly understood, and the two behaviors and 
control of  metabolic heat production also contribute to 
regulation of  body mass. A satisfactory model for the 
regulation of  stable adult body mass must integrate cen-
tral neural, autonomic, and endocrine controls of  feeding, 
locomotion, and metabolic heat production. But it also 
needs to account for the prospect that some humans[1,2] 
and animals[3] can deviate from body mass stability and 
predictably become obese[1,2] under conditions providing 
abundant foods of  high energy density and palatability 
along with limited opportunities and incentives for physi-
cal activity. 

The quest for understanding what guides intermit-
tent meal-to-meal eating and body mass maintainance 
as well as increased hunger and food intake responding 
to substantial losses of  body mass, has a long history 
but no satisfactory closure or consensus. Because of  its 
complexity, and relevance to professionals in discon-
nected fields of  psychology, nutrition, gastrointestinal 
physiology, endocrinology, exercise science, neuroscience, 
and physiology among others, the wealth of  information 
about the neural, autonomic, and hormonal mechanism 
of  feeding, physical activity, and thermogenesis in body 
mass regulation has not been satisfactorily integrated. 
A prevailing preference for a unitary deductive model 
of  body mass regulation has placed emphasis on the 
presumed metering and matching of  energy consumed 
to energy expended and to the energy content of  body 
fat mass under both ad libitum and underweight condi-
tions[4-9]. The core feature of  this model is operation of  
a negative feedback exerted by adipokine leptin (and in 
some variations of  the hypothesis, also by insulin) over 
feeding behavior and energy expenditure in response to 
changes in body fat mass. This widely accepted hypoth-
esis is not supported by the empirical data under condi-
tions of  intact neuroendocrine system, environmental 
abundance of  food, reduced opportunities for physical 
exertion, and rising levels of  body fat. Obesity coex-
ists with high basal concentrations of  leptin and insulin. 
Further, administration of  leptin to obese humans is 
ineffective in suppressing feeding and reducing the body 
or fat mass[10]. On the other hand, two robust findings 
regarding leptin actions on feeding and body energy sta-
tus need to be reconciled with its inability to reduce body 
fat mass in a negative feedback fashion in neurologically 
normal obese individuals under the ad-libitum feeding 
conditions. The first finding is a consistent proportional 
relationship between distributed body fat mass and basal 
leptin (and insulin) concentrations in humans and animals 

first clearly demonstrated in humans by Considine[11] and 
postulated to exert sustained inhibition over feeding and 
facilitation of  energy expenditure[4-9]. The second finding 
is capacity of  leptin to inhibit pronounced and consis-
tently high hunger and suppress high fat mass in freely 
feeding humans and animals that lack leptin signaling ca-
pacity. This was first reported in humans by Farooqi[12,13] 
and in animals by Pelleymounter[14].

A unitary mechanism of  weight regulation that can 
account for eating and weight changes leading to obesity 
and in non-deprivation as well as weight-loss conditions 
needs to account for (1) central neural coordination of  
this process; (2) interactions of  this mechanism with the 
biological clock in structuring ultradian and nycthemeral 
rhythms of  intermittent hunger and feeding; (3) opportu-
nistic as opposed to homeostatic control of  food intake 
and locomotion; (4) counterregulation by leptin of  in-
sulin secretion and actions to fluctuations of  short-term 
energy availability and deviations in body fat mass; and (5) 
inclusion of  skeletal and lean body masses along with the 
fat mass in the energy regulatory process. The proposed 
mechanism accounts for these processes in a novel way 
that differs from the currently prevailing view[4-9]. Its main 
propositions are that : (1) the autonomic brain centers ac-
tivate hunger drive in; (2) a circadian pattern suppressed 
by intermittent inhibition from gastrointestinal (GI) fill-
ing and food processing that coordinate anabolic and cat-
abolic processes to produce weight stability; (3) meal-to-
meal eating and spontaneous physical activity represent 
non-homeostatic behaviors motivated through activation 
of  a common brain substrates of  reward that are con-
nected to, and controlled by, the autonomic centers and 
circadian clock and responsive to short-term variations 
in the filling of  the GI tract with food and fluctuations in 
body fat reserves and body mass; (4) autonomic nervous 
system (ANS) controls counterregulation by leptin of  
insulin secretion and tissue sensitivity to insulin actions 
to yoke leptin’s thermogenesis and catabolic metabolism 
to insulin’s anabolic actions; gastric leptin participates in 
GI processing of  ingested nutrients and thus contributes 
to defining meal size through both anabolic digestive 
and restrictive satiating effects. It does so in conjunction 
with leptin of  adipose tissue origin to regulate peripheral 
tissue and ANS/circadian command center sensitivity 
in response to body fat and body mass deviations from 
the adult setpoint; and (5) brain defends skeletal and lean 
body masses along with body fat mass against losses 
demonstrating that these body components should be in-
tegrated along with the adipose tissue in the regulation of  
adult mammalian body weight. The proposed postulates 
of  this novel formulation of  weight regulatory mecha-
nism reconcile the conundrum of  central and peripheral 
resistance to actions of  insulin and leptin in obesity that 
is inherent in the homeostatic negative feedback view 
and the dichotomy of  absence-of-protection model of  
energy regulation in non-deprivation eating with the 
central-resistance model of  homeostatic leptin negative 
feedback[15]. 
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CENTRAL COORDINATING ROLE OF THE 
ANS IN THE CONTROL OF FEEDING
Coordination of  parasympathetic functions of  nutrient 
intake, digestion, absorption, storage, and behavioral 
quiescence with sympathetic control of  behavioral and 
metabolic energy expenditure has been recognized for 
over half  a century. In 1947, Adolph[16] reported that 
body weight in rats stabilizes and is defended at a given 
plateau at the end of  the growth period when mature rats 
with unrestricted access to food eat daily an amount of  
standard lab chow sufficient to maintain a stable weight 
plateau. Application of  various methods of  localized 
brain damage[17] and transsections of  neural pathways[18,19] 
has revealed that ventromedial (VMH) and arcuate (ARC) 
hypothalamic lesions result in transient hyperphagia and 
hyperinsulinemia, permanent hypoactivity, and defec-
tive postprandial and cold-exposure thermogenesis. This 
has been interpreted by some to reflect an imbalanced 
parasympathetic overactivation because insulin oversecre-
tion[20], hyperphagia, deficient thermogenesis[21,22], and 
spontaneous hypoactivity[23] were preventable by subdia-
phragmatic vagotomy. In support of  this interpretation, 
electrical stimulation of  ventromedial hypothalamus[24-27] 
or administration of  sympathomimetics[28,29] to neurologi-
cally intact animals elicited fuel mobilization and energy 
expenditure. After the weight in lesioned animals stabiliz-
es, the same amount of  food per unit weight is consumed 
as in intact rats, and the new weight plateau is defended 
against weight loss[30] indicating that regulation of  stable 
weight is a consequence of  balance between parasympa-
thetic and sympathetic actions that is only reset by lesions 
to a new plateau by damage to the sympathetic controls 
or pathways. Although the relatively crude methods of  
brain lesions and neural tract transection initially singled 
out the VMH in the medial basal hypothalamus as the 
source of  sympathetic actions[31], other lines of  evidence 
identified the paraventricular hypothalamic nucleus (PVN) 
as the control center of  sympathetic outflow and, by in-
ference, dorsal motor nucleus of  the vagus as the site of  
parasympathetic control of  visceral actions other than 
cardiac function. Interest in the role of  parasympathetic 
nervous system in the control of  feeding has taken a back 
seat compared to the focus on leptin actions in the ARC 
and VMH nuclei. Nevertheless, pharmacological and 
denervation approaches have shown that suppression of  
sympathetic tone reduces thermogenesis[32] and increases 
parasympathetic functions of  white adipose tissue (WAT) 
cell proliferation and body fat accumulation[33]. 

THE CENTRAL CLOCK COORDINATES 
ANS CONTROL OF FEEDING
One of  the missing pieces in our understanding of  en-
ergy regulation is the causative stimulus of  hunger and 
meal initiation. The proposition that ghrelin is the key ini-
tiator of  hunger and feeding[34-37] is challenged by normal 

food intake and weight maintenance in animals with defi-
cient ghrelin signaling[38] and by a correlational and tran-
sient changes in ghrelin concentration and hunger sensa-
tions in the course of  a meal[34,39]. On the other hand, the 
proposition that an autonomic controller coordinated by 
the circadian master clock regulates meal taking, locomo-
tion, and thermogenesis is supported by a wealth of  both 
behavioral, lesioning, and anatomical evidence.

Meal eating is intermittent in contrast to continu-
ous behavioral and metabolic energy expenditure. Its 
ultradian and circadian patterning is a universal feature 
of  mammalian feeding behavior. Rodents take meals at 
ultradian intervals of  3 to 4 h with a circadian segrega-
tion of  eating to only the waking portion of  the day[40]. 
Humans also eat during their nycthemeral wakeful period 
at 3-h intervals if  snacks are included and at about 6-h 
intervals if  more substantive main meals are considered. 
Circadian control of  feeding in mammals is supported 
by extensive neuroanatomical evidence. Suprachiasmatic 
nucleus (SCN), the master circadian clock, has multiple 
ANS interconnections with structures that are implicated 
in weight regulation. Neural pathways through which the 
photo-entrainable SCN controls behavioral, endocrine, 
and metabolic rhythms related to energy balance include 
direct projections to subparaventricular zone (SPZ), an 
anterior hypothalamic region that receives innervation 
from both the PVN and SCN and is therefore thought 
to integrate circadian and metabolic information[41]. Ad-
ditional areas receiving SCN innervation include medial 
preoptic area and dorsomedial hypothalamic nucleus 
(DMN)[42,43]. DMN, which is innervated both by the SCN 
and the SPZ, also controls circadian pattern of  feed-
ing, sleep-wakefulness, and locomotor activity. SCN also 
influences the circadian control of  food intake, locomo-
tion, and metabolic energy expenditure through its fibers 
projecting to the ARC, the VMH, and the ventral part of  
the lateral hypothalamus (LH), all areas implicated in the 
control of  feeding and energy regulation. Interneurons 
from the SCN inhibit the PVN through γ-aminobutyric 
acid neurotransmission to facilitate parasympathetic func-
tions. Consequently, most viscera receive SCN-dependent 
circadian time cues via their parasympathetic and/or sym-
pathetic innervations that reflect metabolic and digestive 
events at peripheral sites[43]. Besides the obligatory peri-
odicity of  meal eating, nycthemeral patterning of  feeding 
is necessary for the maintenance of  stable body and fat 
masses. When the nocturnal part of  the circadian sleep-
wake cycle in humans is truncated, inappropriate overeat-
ing during extended wakeful periods ensues contributing 
to obesity and associated health risk factors[44,45]. Similarly, 
a seasonal change in the length of  circadian exposure to 
light produces changes in feeding and body fat accumula-
tion in some mammals[46].

Additional evidence for a functional interaction be-
tween the circadian clock and the ANS energy regulatory 
circuits involves loss of  feeding, locomotor, and thermo-
genic periodicities when either the ANS or SCN circuits 
are disrupted. Destruction of  SCN results in the loss of  
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diets elicits a greater DIT than does eating diets of  lesser 
olfactory and gustatory appeal[67]. Olfactory responsive-
ness[68] and hedonic responses to food and associated 
increases in DIT[67] show a diurnal rhythm with an acro-
phase during the active portion of  the circadian period. 
The rhythm and the magnitude of  thermogenic response 
are abolished by SCN lesion, sympathetic denervation of  
BAT[66], or deletion of  β1 receptors in BAT[60]. Endocan-
nabinoid blockade of  DIT thermogenesis is more effec-
tive during the active that during the inactive phase of  the 
circadian cycle[66].

Circadian influence in human meal eating is evident 
by comparing the effect of  energy expenditure during 
long nocturnal inter-meal interval (IMI) on morning 
hunger[69]. We determined that the nocturnal IMI gener-
ated expenditure of  between 710 and 750 Kcal in healthy 
postmenopausal women as compared to 340 to 450 Kcal 
expended during diurnal sedentary 6-h IMIs. Yet hunger 
rating at the end of  11 to 12-h long nocturnal IMI was 
only half  as large as the hunger rating recorded at the 
end of  individual diurnal IMIs and approximately as low 
as the evening hunger rating. Even more remarkably, 
the quantity of  food consumed at the end of  two mid-
diurnal IMIs bore no relationship to the magnitude of  
preceding energy expenditure (Figure 1). These data sup-
port the operation of  a circadian control of  hunger with 
an acrophase at mid-day, a presumed nadir in the middle 
of  sleep period, and transitional effects at dawn and 
dusk. They also indicate that the quantity of  food eaten 
at a meal bears no homeostatic relationship to preceding 
energy balance but is influenced by time of  day.

The universal circadian and ultradian patterning of  
mammalian feeding behavior suggests the operation 
of  a central circadian meal- and hunger-timing mecha-
nism where the signals related to meal digestion may be 
entrained to an ultradian gastric-contraction oscillator. 
The circadian clock restricts the predisposition to seek 

all bioenergetic circadian responses including circadian 
pattern of  drinking and locomotor activity[47,48]. Destruc-
tion of  VMH and ARC nuclei within the medial basal 
hypothalamus disrupts circadian alternation between ac-
tive and inactive periods of  food seeking and eating and 
results in protracted 24-h extension of  meal taking and 
obesity[49,50]. Postprandial[51] and general thermogenesis 
also display circadian[52,53] and ultradian[54] rhythms of  ac-
tivation that have an acrophase during the active portion 
of  the day and a nadir during the inactive phase. Meta-
bolic and thermogenic gene expression in brown adipose 
tissue (BAT) and WAT also follows circadian periodic-
ity[55]. The activation is attributable to stimulation of  BAT 
by sympathetic nerves that originate in PVN, SCN, and 
DMN[31]. And thermogenesis can be elicited by electrical 
stimulation of  sympathetic nerves to BAT[56], application 
of  sympathomimetics[28,29,57,58] and activation by leptin of  
sympathetic nerves to BAT[28,29,31,59] when the hormone is 
applied to DMN, one of  key sites involved in circadian 
components of  energy regulation[59]. Leptin itself  exhib-
its a prominent circadian pattern of  secretion in humans 
with an acrophase around midnight and a nadir during 
mid-day[60-62]. This diurnal pattern is entrained to meal 
taking and phase shifts by the same number of  hours 
with temporal displacement of  meals[62]. In addition to 
its circadian pattern, leptin secretion is pulsatile with 32 
pulses over 24 h, and a mean pulse duration of  33 min[63]. 
Circadian control of  several aspects of  energy regulation 
is seen in circadian changes in postprandial BAT thermo-
genesis in response to olfactory and gustatory stimulation 
by hedonic properties of  palatable diets. The importance 
of  stimulation of  olfactory and gustatory receptors in 
eliciting postprandial BAT thermogenesis is demon-
strated by diet-induced thermogenesis (DIT) attenuation 
when oral route of  food administration is bypassed by 
tube feeding[64], or by administration of  endocannabinoid 
blocker rimonabant[65,66]. Similarly, overeating palatable 
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Figure 1  Correlation between energy expenditure and peak hunger in two studies in which exercise energy expenditure of between 2300 and 2500 KJ was 
inserted between the morning and midday meal (A) or between both morning and midday, and midday and afternoon, meals (B). Correlation coefficient be-
tween energy expenditure during overnight fast before the morning meal, and during morning intermeal interval that included exercise on one hand and peak hunger 
at the next meal was 0.06 in A. In B, the correlation coefficient between intermeal intervals that included exercise and peak hunger at the subsequent meal was 0.0002. 
Data from Ref. [69].
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and take food to the active portion of  the day when it is 
interrupted only by the GI signals of  fullness and sup-
presses it during the inactive phase. The uniformity and 
regularity in the postprandial rise in hunger and attain-
ment of  peak hunger regardless of  the pre-meal energy 
balance is consistent with suppression by the GI stimuli 
of  the influence of  a central food-seeking command. 
Energy content of  orally taken food appears responsible 
for partial suppression of  hunger when the stomach is 
incompletely filled (Figure 2A and B). Here, GI nutrient 
sensing and the rate of  stomach emptying according to 
the energy content of  the meal may affect the predispo-
sition for supplementary food intake. Circadian control 
of  hunger and initiation of  eating is inferred from low 
morning and evening hunger and a hunger acrophase 
between 10 and 19 h[69] that are independent of  variations 
in pre-meal energy availability[39] (Figure 1). An empty 
stomach and completed GI transit of  food generate peak 
pre-meal hunger during wakeful portion of  diurnal cycle 
(Figure 2A and B) and could do so through removal of  

gastrointestinal inhibition over the central circadian com-
mand guiding the predisposition to eat. 

OPPORTUNISTIC AND HEDONISTIC 
CONTROL OF MEAL-TO-MEAL FEEDING: 
THE ROLES OF TASTE, OLFACTION, 
GI NUTRIENT SENSING, AND SOCIAL 
FACILITATION
In contrast to much of  our physiology that operates auto-
matically, we have an innate capacity to consciously detect 
and prefer foods with sweet and savory taste[70] that leads 
to predisposition for acceptance and intake of  palatable 
food. Sweet and savory nutrients elicit swallowing even at 
a fetal stage of  development[71], positive facial expressions 
and sucking in newborn infants[72], and acceptance of  pal-
atable foods by children[73]. Sampled nutrients bind to five 
different populations of  taste receptors in the mouth. 
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Figure 2  The effects of variable meal size (A) and energy availability (B) on the psychophysical ratings of hunger (A and B) and fullness (C and D) in 10 
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ercise after a large morning meal (EX), and iv nutrient infusion (TPN) as a replacement of energy withheld from a morning meal (SED-R-TPN) or expended 
through exercise (EX-TPN). Meal size had a negative effect on hunger (Fdf4,36 = 39.3, P < 0.0001) and a positive effect on fullness (Fdf4,36 = 115.3, P < 0.0001). Exer-
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Their gustatory properties are signaled in the afferents 
of  facial (Ⅶth), glossopharyngeal (Ⅸth), and vagus (Ⅹ
th) nerves and are relayed to the rostral two thirds of  
the nucleus of  the solitary tract (NTS) in medulla oblon-
gata[74]. Gustatory information also reaches parabrachial 
nucleus in the pons[75], ventral tegmental area[76], and sev-
eral regions of  the cortex to elicit hedonic appreciation 
of  the properties of  the food. The amygdala and medial 
and mid-anterior edge of  orbitofrontal cortex, and ante-
rior cingulate and insular cortex contribute the emotional 
component of  hedonic responses. The nucleus accum-
bens (NA) in ventral pallidum contributes to hedonic 
reinforcement of  intake of  palatable food through the 
release of  endocannabinoids[76-78]. These innate properties 
justify the hypothesis that non-homeostatic olfactory and 
gustatory stimuli provide incentives for non-homeostatic 
intake of  food.

Olfactory and gustatory stimuli complement sensing 
by the GI tract of  food properties and eliciting diges-
tive and absorptive endocrine reflexes[79]. Chemosensory 
receptors for sugars, amino acids, and fatty acids are 
located in the neuroendocrine epithelium of  the stom-
ach, duodenum, and small intestine. By sensing ingested 
nutrients, chemosensory neuroendocrine cells in the 
stomach secrete gastrin from G cells. In the intestine, 
ghrelin is released from P or X/A cells, somatostatin 
from D cells, cholecystokinin (CCK) from I cells, sero-
tonin from enterochromaffin cells, glucose-dependent 
insulinotropic peptide (GIP) from K cells in the proxi-
mal small intestine, while glucagon-like peptides (GLPs) 
and peptide tyrosine tyrosine (PYY) are released from 
L cells in the distal small intestine. These GI hormones 
bind to receptors on the afferent vagal fibers that are 
located in the lamina propria[80]. Stoichiometric GI endo-
crine responses to energy content of  ingested nutrients 
affect the rate and duration of  nutrient digestion and ab-
sorption. Some digestive hormones also elicit conscious 
sensation. Ghrelin increases olfactory salience of  food 
stimuli, decreases olfactory detection threshold, and 
elicits sniffing[81] as its secretion rises in parallel with pre-
meal appetite and declines with meal completion. This 
action is its most probable contribution to facilitation of  
the pre-meal appetite[34,35]. Besides their digestive roles 
in promoting enzyme release and slowing the rate of  
stomach emptying, CCK[82-85], GLP-1[86-88], and PYY[89], 
also contribute to the conscious detection of  stomach 
fullness and therefore participate in short-term meal-
associated control of  post-meal satiation.

Opportunistic characteristic of  feeding also is revealed 
in its responsiveness to the abundance of  food and com-
munal food setting. More fluid is consumed if  presented 
in tall, rather than short, glasses[90]. Savory food is con-
sumed in greater amounts from larger platters than from 
small ones[91]. More food is eaten in company of  oth-
ers[92-96], a social facilitation phenomenon widely shared by 
mammals[97-99] and even birds[100]. Further, increasing the 
number of  palatable food choices in all-you-can-eat set-
tings leads to overeating in animals[3] and humans[101-103]. In 

effect, that represents the basis for producing experimen-
tal obesity by providing animals fat-enriched, in addition 
to standard laboratory, diet[3].

A direct test of  the homeostatic metering of  energy 
during feeding requires either changing the caloric density 
of  food or the magnitude of  pre-meal energy expenditure 
(EE). Studies manipulating the energy content of  food 
and the meal size indicate that sensations of  fullness after 
the meal and the amount eaten in the subsequent meal are 
guided by the volume of  food eaten rather than its energy 
content[104-106]. That such non-homeostatic eating bears 
no direct relationship to the energy content of  ingested 
food also during a longer time frame was suggested by 
an 11-wk study in which 13 females were provided with 
either low-fat (20%-25% of  energy as fat), or a higher fat, 
diet (35%-40% fat)[107]. The volume or weight of  food 
eaten daily was comparable on the two diets resulting in a 
daily energy intake error of  1.22 KJ. Only 35% of  this ca-
loric error on a low-fat diet was compensated by the end 
of  11 wk resulting in a weight loss of  2.5 kg, twice the 
amount of  weight lost on a higher-fat diet.

A more rigorous test of  human ability to homeostati-
cally sense energy availability in non-deprived state re-
quires that hunger and food consumption show evidence 
of  caloric compensation when oral, olfactory, and GI 
sensing is bypassed. Three circumstances that meet that 
criterion include already mentioned prolonged nocturnal 
period without food, exercise energy expenditure (EEE), 
and intravenous supplementation of  withheld or ex-
pended calories in the form of  total parenteral nutrition 
(TPN). Examination of  the effects of  between 2300 to 
2500 KJ of  EEE inserted during morning and afternoon 
IMIs reveals that this increase in energy expenditure 
does not influence peak hunger ratings at the onset of  
the next meal[69] (Figure 1). A similar lack of  a relation-
ship between pre-meal energy expenditure and the size 
of  spontaneous meal was previously described in rats[40]. 
In another study, the search for compensatory changes 
in food intake was extended to manipulations of  EEE, 
intravenous TPN supplementation for energy withheld in 
a small meal or for EEE, and the size of  meals taken by 
oral and intragastric route. In this crossover study[39], ten 
overweight postmenopausal women were provided with 
a large breakfast containing 2100 KJ in three trials and 
a small one containing 420 KJ in two trials. The energy 
supply in the large breakfast in one trial was cancelled by 
2270 KJ EEE in another, and EEE was largely replaced 
by intravenous infusion of  1530 KJ of  TPN in the third 
trial. The low energy content in the small 420 KJ break-
fast in the fourth trial, was supplemented with the intra-
venous infusion of  1530 KJ of  TPN in the fifth. The re-
sults showed unequivocally that changes in the sensations 
of  hunger (Figure 2A and B) and fullness (Figure 2C and 
D) were only elicited by the size of  the meals taken by 
oral, and processed by GI, route but not by energy lost 
exercising or supplemented intravenously. Moreover, the 
quantity of  food eaten, and peak hunger rating at the 
onset of  the next ad-libitum meal is indistinguishable 
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among the five conditions, two of  which generated sub-
stantial negative energy balance (Figure 3). Furthermore, 
hormones insulin and leptin tracked accurately changes 
in energy balance that resulted from unequal meal size, 
energy lost exercising, and energy supplemented intrave-
nously (Figure 4), but the changes in their plasma con-
centrations bore no apparent relationship to conscious 
sensations of  hunger and fullness (Figure 2). 

Collectively, the above studies support the hypothesis 
that intermittent meal-to-meal eating under unrestricted 
access to food is guided by cues provided by oral and 
GI processing of  food. Hunger and fullness ratings, the 
conscious guides for food intake and meal termination, 

are affected by the size of  the orally ingested nutrients 
(Figure 2) but not by fluctuation in short-term energy 
availability caused by intravenous nutrient infusion or 
by EEE, or by changes in the plasma concentrations of  
insulin and leptin[39]. Moreover, the peak hunger rating at 
the onset of  the next meal, and the amount eaten during 
that meal are not responsive to preceding energy imbal-
ance[39,69,104-107]. Stomach filling as a guide to meal size held 
true in the 11-wk study in which the subjects were largely 
unresponsive to the energy content of  the food[107].

Additional supportive evidence for the role of  GI 
signaling rather than for homeostatic metering of  pre-
meal caloric deficit in the control of  ad-libitum meal-to-
meal eating is available in the singular success of  various 
forms of  bariatric surgery in curbing hunger and reduc-
ing food intake. A common feature of  several variants of  
bariatric surgery is reduction in stomach capacity to hold 
food and associated suppression of  appetite and hun-
ger[108] or increased nausea and vomiting[109]. The efficacy 
of  stomach fullness as a deterrent for hunger and food 
intake is also evident in successful application of  inflat-
able balloons to induce weight loss[110,111]. A century ago, 
Cannon and Washburn[112] demonstrated a striking con-
cordance between episodic bursts of  gastric contractions 
and intermittent sensations of  hunger using intragastric 
balloons as pressure gauges. In addition to Cannon’
s classic demonstration of  the correlation between the 
ultradian periodicity of  empty stomach contractions and 
hunger, connections of  mechanosensitive elements in the 
smooth muscle of  the stomach with the afferent vagus 
also have been documented more recently[113-115]. Further, 
these GI smooth muscle mechanoreceptors inhibit eat-
ing in response to volume of  food introduced into the 
stomach without regard to its nutritional properties[116,117]. 
On the other hand, nutrient quality and energy content 
are sensed by vagal receptors in the intestine and lead to 
secretion of  digestive hormones such as CCK/gastric 
leptin, GLP-1 and PYY[117]. More recently, pooled data 
from 8 studies on 67 healthy humans confirmed Cannon 
and Washburn observation by identifying pyloric pressure 
waves and peak CCK concentrations as predictors of  
food intake while finding intravenous nutrient infusions 
ineffective[118].

In its basic outline, the blueprint of  human non-de-
privation meal-to-meal eating bears a striking resemblance 
to the feeding mechanism of  a blowfly[119,120]. The insect 
whose adult body mass is confined within a rigid exoskel-
eton, accepts sapid solutions whenever its crop is empty. 
Similar to ad-libitum feeding humans in whom termina-
tion of  growth imposes a finite body mass, blowfly’s food 
acceptance operates on an opportunistic and hedonic 
principle, and feeding termination on a GI negative feed-
back. The fly will ingest to capacity higher concentrations 
of  sweet solutions rather than larger quantities of  more 
dilute solutions. It stops feeding when its full crop inhib-
its a brain mechanism responsible for predisposition to 
seek and ingest nutrients whenever the crop is empty. If  
the recurrent nerve that provides the negative feedback 
from the crop to the brain is severed, the animal overeats, 
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and with sufficiently high sugar concentrations, will rup-
ture its crop. Presented evidence supports the conclusion 
that a similar system of  nonhomeostatic meal-to-meal 
eating operates in humans. However, these considerations 
still leave unanswered the question regarding the signal 

initiating hunger and food intake. The present reinterpre-
tation of  energy regulation proposes that a central ANS 
command mechanism, given temporal structure by the 
SCN master circadian clock is responsible for sustained 
food seeking and meal intake interrupted intermittently 
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by the inhibition from the signaling of  gastric distension 
as sensations of  satiation and fullness associated with GI 
processing of  food. This proposition is consistent with 
close anatomical connections between SCN and the ANS 
energy regulatory circuits, circadian and ultradian pat-
tern of  meal eating and sympathetic activation of  BAT 
thermogenesis, and disruption of  both feeding pattern 
and thermogenesis and DIT in particular with lesions 
of  either the master clock or the ANS energy regulatory 
substrates.

COUNTERREGULATION BY LEPTIN OF 
INSULIN SECRETION, ACTION, AND 
SENSITIVITY 
The key feature of  the proposed novel view of  body 
weight regulation is the counterregulation of  insulin by 
leptin under the control of  the ANS-circadian command 
mechanism. Leptin counterregulates insulin in four ways, 
by (1) acting as a gut peptide signaling satiating fullness 
and contributing to termination of  meals; (2) suppress-
ing insulin secretion; (3) counteracting insulin anabolic 
actions; and (4) regulating ANS and peripheral tissue 
sensitivity to insulin in response to downward or upward 
deflections in the components of  body mass. Through 
these counterregulatory interactions with insulin, leptin 
matches its sympathetic energy expending actions to the 
parasympathetic energy conserving actions of  insulin.

The sustained stoichiometric relationship between the 
body fat mass and basal leptin secretion[11] has strongly 
influenced formulation of  a homeostatic lipostatic hy-
pothesis of  body fat regulation featuring leptin negative- 
feedback from WAT to the brain. Integration of  short-
term secretory responsiveness of  leptin to fasting[121-124], 
meal intake[123,125,126], glucose[127-129], pyruvate[128], insulin 
secretion[121,130], and insulin-stimulated carbohydrate 
metabolism[39,127,131-133] with the long-term parallel shifts 
in plasma leptin concentration and body fat mass has 
largely escaped scrutiny. To update the understanding 
about leptin physiology, it should be pointed out that, 
besides the WAT[134], the hormone also is secreted from 
the stomach[135-143], placenta[144], and lactating mammary 
glands[145]. Since leptin of  gastric origin is likely to react 
more rapidly to short-term fluctuations in prandial state 
than leptin of  WAT origin, and both may contribute to 
short-term changes in circulating leptin concentration, 
it is useful to briefly review how gastric leptin secretion 
and appearance in circulation differs from that arising in 
WAT.

Gastric leptin is rapidly mobilized by cholinergic 
neurotransmission, nutrient entry into the stomach[139], 
and release of  CCK[135]. Its release is distinctly regulated 
by these stimuli in contrast to the leptin release from the 
WAT which is predominantly released in a constitutive 
fashion[128,134,140,146,147]. Leptin is released into the stomach 
lumen in exocrine fashion from the chief  cells in gastric 
mucosa. Complexing of  gastric leptin with its soluble re-

ceptor (LepR) prior to being released from the Golgi ap-
paratus protects it from denaturation by gastric acid[141]. It 
then is transported to the duodenum where it binds with 
LepR on the luminal membrane and is transcytozed into 
the Golgi apparatus of  the duodenal enterocyte. There it 
again binds with LepR and leaves the intestinal mucosa 
for systemic circulation[139-141].

The first counterregulation of  insulin by leptin is 
clearly of  gastric origin and consists of  its counteracting 
the absorptive actions of  insulin during a meal. Gastric 
leptin, mobilized by ingested nutrients and CCK, potenti-
ates the satiating effects of  CCK[148,149] and GLP-1[150,151], 
actions that the two hormones exert in part by slowing 
the rate of  gastric emptying[82-85,88,151], trigerring a sensa-
tion of  fullness and thus contributing to the termina-
tion of  a meal. The potentiation by leptin of  satiating 
properties of  CCK is mediated by vagal primary afferent 
neurons selectively responsive to both hormones and to 
gastric distension and transmitting gastric stretch infor-
mation to NTS[152] via vagal sensory nodose ganglion[153]. 
Activation of  gastric smooth muscle mechanoreceptors 
is sensitive only to volume of  food introduced into the 
stomach without regard to its nutritional properties[116] 
while vagal intestinal receptors sense directly the nutrient 
quality and energy content of  ingested food[117]. The po-
tentiation by leptin of  CCK satiating effect is activated by 
nutrient intake while fasting and obesity attenuate vagal 
afferent stretch signaling[154]. Repeated gastric overstretch-
ing, common in overeating and some eating disorders, 
delays onset of  feeding, suppresses leptin concentration 
and reduces neuropeptide Y levels in ARC and NTS after 
meal intake as compared to no stomach overstretching[155]. 
The indirect involvement of  leptin in the control of  
postprandial insulin response and the meal size explains 
the lack of  a relationship between its postprandial con-
centration (Figure 4C and D) and sensation of  fullness 
(Figure 2C and D). The role of  gastric leptin in curtailing 
postprandial insulin actions may contribute to increased 
food consumption in free feeding individuals[12,13] and ani-
mals[14] who have an inability to produce leptin or leptin 
receptors. In line with the parasympathetic source of  
gastric leptin elicitation, the sympathetic actions of  leptin 
suppress cardiac rate by acting on the rostral ventrolateral 
medullary heart pacer[156,157].

Since leptin of  both gastric and WAT origin reaches 
systemic circulation, it is difficult to distinguish their 
relative role in the remaining three counterregulations of  
insulin by leptin. Similar to the responsiveness of  gastric 
leptin to meal ingestion, secretion of  leptin from WAT 
adipocytes also is responsive to short-term fluctuations 
in prandial state and a number of  hormones[160,161]. Feed-
ing increases leptin secretion from WAT cells[134,140,147] 
and fasting decreases both[147]. Endocrine secretagogues 
are insulin[128,158,159] and cortisol[158-160], and inhibitors 
are β-adrenergic stimulation, adrenocorticotropic hor-
mone (ACTH), alpha melanocyte stimulating hormone 
(αMSH)[161] and testosterone[161,162]. Furthermore, car-
bohydrate metabolism has to be present for insulin to 
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increase leptin secretion[129,133], linking the WAT cell 
responses to short-term metabolic changes. The uncer-
tainty as to the origin of  circulating leptin particularly 
arises when the hormone is being stimulated by systemic 
administration of  insulin in hyperinsulinemic euglycemia. 
This stimulus applied for longer than 3 to 4 h increases 
leptin concentration in the plasma[130,163,164] but not if  the 
duration of  the clamp[165-170] or of  the postprandial peri-
od[170,171] is shorter or if  hyperinsulinemia is accompanied 
by hypoglycemia[124]. 

The second way that leptin counterregulates insulin 
is by suppressing its secretion in pancreatic β cells[172-176] 
as shown by insulin oversecretion after deletion of  leptin 
receptors in these cells[176] (Figure 5, circle). Thus, after 
leptin gene deletion or pharmacological antagonism of  
leptin action, insulin secretion is supranormal, and leptin 
administration in ob/ob mice that are unable to produce 
leptin suppresses it[172-177]. Insulin oversecretion results 
from leptin counterregulation of  insulin secretion and 
not from obesity because it occurs before any significant 
tissue fat accumulation takes place[176].

The third way that leptin counterregulates insulin is 
by suppressing its lipogenic and other anabolic actions. 
While the catecholamines and growth hormone facilitate 
lipolysis and lipid utilization to systemic signals of  energy 
deficit[178,179] and actually decrease leptin gene expression 
in WAT[180-182] and its circulating concentration[183-187], 
leptin binds to adipocytes to selectively counteract insu-
lin-stimulated lipogenesis and activate lipolysis and lipid 
utilization in WAT[188], especially in its visceral conpart-
ment[189]. It similarly counterregulates insulin lipogenesis 

in other tissues and thus reduces triglyceride (TG) con-
tent in pancreas[190], liver[189-193], and the muscle[190,194-198]. In 
the liver[192,199], the skeletal muscle[197,200], the BAT[201] and 
WAT[202], leptin shifts the metabolism from insulin-me-
diated carbohydrate utilization and TG synthesis toward 
free fatty acid (FFA) uptake and increased lipid utiliza-
tion. In the skeletal muscle, leptin activates the enzyme 
5’-AMP-activated protein kinase (AMPK) that is capable 
of  sensing metabolic energy depletion[190,194,195]. AMPK 
in turn inhibits fat synthesis and facilitates FFA entry 
into the mitochondria for fat oxidation[195-198,203,204]. While 
some of  these metabolic leptin actions result from the 
hormone binding directly to its receptors in peripheral 
target organs such as the pancreas[190] the WAT[188,189], the 
liver[205,206], and the muscle[198,207], the same actions also can 
be achieved by leptin binding to its receptors in the brain. 
Suppression by leptin of  lipogenic actions of  insulin in 
the WAT[205,208-211] and liver[205,206] is controlled both by the 
brain, particularly the VMH[208-211] and also is effected at 
the tissue level[205], particularly in the liver[206].

Leptin counteracts insulin’s postprandial anabolic ef-
fects by stimulating DIT. It does so by upregulating the 
thermogenic uncoupling protein UCP1 in BAT by in-
creasing sympathetic nerve activity[123,124,212,213] and norepi-
nephrine turnover in BAT[214]. It also upregulates UCP2 
in WAT[215,216], and UCP3 in skeletal muscle[217]. Leptin 
increases muscle thermogenesis by stimulating substrate 
cycling[218,219], both lipid and carbohydrate oxidation[200], 
and expression of  genes for anaerobic glycolysis, a meta-
bolic pathway that is bioenergetically less efficient than 
lipid oxidation[203,204]. While insulin increases postprandial 
metabolism and thermogenesis through its stimulation of  
carbohydrate oxidation and sympathetic activation of  fat 
oxidation in BAT[220-222], thermogenic actions of  leptin are 
yoked to postprandial insulin release.

The fourth way that leptin counterregulates insulin 
action is by controlling the sensitivity of  peripheral tis-
sues and the brain to insulin actions as body fat and body 
masses deviate from the adult plateau. Considering first 
the peripheral tissues, it is well established that insulin 
sensitivity increases with body fat and body mass losses, 
and insulin resistance increases with body fat and body 
mass gains. Tissues such as the liver, muscle and the 
WAT display direct autoregulatory increases in numbers 
of  spare receptors, hormone-receptor binding[223], and 
enzyme sensitivity to nutrients as they are depleted of  
storage molecules and structural proteins. After glycogen-
depleting exercise, activity of  glycogen synthase increases 
in proportion to the magnitude of  glycogen depletion 
which leads to a faster rate of  glycogen resynthesis dur-
ing recovery from exercise[224,225]. As they are depleted 
of  storage nutrients, liver, muscle, and WAT develop 
direct and autoregulatory increases in sensitivities to the 
anabolic actions of  insulin[191,223,225-227] and catabolic ac-
tions of  catecholamines[228] some of  which are induced 
by counterregulatory actions of  leptin[190-193]. Changes in 
hormone sensitivities and responses are greater to more 
rapid rather than to gradual or prolonged reductions in 
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energy availability. Insulin sensitivity (IS) increases more 
during the initial weight loss than during maintenance of  
reduced body weight[229]. Declines in leptin concentration 
are greater during faster weight loss over a two-day food 
restriction[230] than to a slower but cumulatively larger en-
ergy deficit extended over a 4-[231] or 7-d period[122]. Dur-
ing weight loss, sympathetic activation of  metabolic EE 
is suppressed and only the release of  adrenal epineph-
rine[232] regulates the metabolic shift to predominant lipid 
utilization[222].

The insulin sensitizing effect of  leptin in peripheral 
tissues becomes manifest as body mass index (BMI) 
declines below 25 kg/m2 and fasting plasma leptin con-
centration drops below 15 ng/dL[233,234]. At its low plasma 
concentrations, leptin contributes to insulin’s parasympa-
thetic actions by increasing muscle glucose uptake[201,235,236] 
achieved in part by inhibiting the expression of  nega-
tive regulators of  glucose transporter type 4 (GLUT4) 
translocation to the membrane[237]. By restraining visceral 
fat accumulation and insulin oversecretion[191-226], leptin 
preserves insulin sensitivity in the liver[191,226,238] implicat-
ing hyperinsulinemia in resistance to insulin action. When 
the visceral fat is surgically removed[226], reduced glycoge-
nolysis and hepatic glucose production, increased glucose 
uptake, and reduced insulin requirements to maintain 
euglycemia are all markers of  increased IS. In addition, 
metabolic gene expression in favor of  reduced WAT fat 
synthesis also results from visceral fat removal[226]. In the 
oxidative skeletal muscle, leptin counteracts insulin facili-
tation of  intramyocellular triglyceride synthesis and stor-
age by activating AMPK[200]. Through this action, leptin 
preserves the sensitivity of  muscle to insulin leading to 
increased glucose uptake and glycogen synthesis[175,225]. 
In addition to being able to exert some of  these actions 
directly in respective tissues studied in vitro[175,209], most of  
leptin actions are contingent on its systemic counterac-
tion of  insulin secretion and actions. 

The physiological significance of  insulin sensitizing 
actions of  low leptin concentrations in weight-reduced 
state is that it contributes to increased metabolic effi-
ciency that facilitates weight regain and a shift in the ANS 
balance in favor of  the parasympathetic activation[239] 
(Figure 5, left arrow). A rebound increase in carbohydrate 
utilization and insulin oversecretion in insulin-sensitive 
state during post-deprivation overeating in the rats[240,241] 
is comparable to the postlesion insulin oversecretion after 
VMH-ARC damage that is prevented by subdiaphrag-
matic vagotomy[20].

With weight gain at body mass indices above 25 to 27 
kg/m2[233,234] caused by the oportunistic and hedonic de-
sign of  human meal-to-meal eating where energy intake 
and expenditure are loosely coupled[242-245], rising basal 
plasma concentrations of  insulin and leptin lead to pe-
ripheral tissue resistance to the two hormones[233,234,246,247]. 
Although adult human adipose tissue retains some 
capacity to expand both through hyperplasia and hy-
pertrophy[248-250] and is refractory to reductions in adipo-
cyte numbers[251], the parallel rises in obesity and tissue 

resistance to high plasma leptin and insulin concentra-
tions limit additional body fat and mass accumulation. 
Resistance to both hormones[246,252] has several causes. An 
enzymatic resistance to anabolic actions of  insulin and 
counterregulatory actions of  leptin[198,207,253] develops in 
part due to downregulation of  respective receptors ex-
posed to prolonged high insulin[173] and leptin[179,181] con-
centrations. Insulin resistance (IR) also develops due to 
impaired hormone signaling that results from the action 
of  intermediates of  fat biosynthesis driven by high circu-
lating lipid concentrations[253] and accumulation of  TG in 
peripheral organs[200,209,252,253]. Although IR and leptin re-
sistance (LR) increase in parallel with the rise in adiposity, 
they differ in the timing of  their development and their 
relationship to WAT mass[163,254,255]. Hyperinsulinemia 
causes hyperleptinemia[163] and both lead to IR and LR. A 
decline in insulin signaling and IS is a consequence of  hy-
perinsulinemia rather than of  IR, since its correction with 
insulin-lowering diazoxide restores IS and prevents devel-
opment of  obesity while treatment of  IR with metformin 
does not[173]. IR has received a lot of  medical attention as 
a gateway to type 2 diabetes. However, development of  
IR and LR can also be viewed as an important compen-
satory processes in autonomic regulation of  energy flux 
in the form of  both enzymatic[15,256,257] and sympathetic 
resistance against additional accretion of  body fat. The 
autonomic resistance to accretion of  additional energy 
storage involves an increase in sympathetic activation of  
thermogenesis[258] (Figure 5, right arrow), the action of  
which is rendered ineffective by resistance of  enlarged 
adipocytes to actions of  catecholamines[193,228]. The dele-
terious health consequence of  sympathetic overactivation 
and tissue resistance to hormones in obesity are increased 
vasoconstriction and hypertension[259-262]. Finally, periph-
eral LR is possibly dissociable from the resistance of  the 
brain and ANS to leptin actions because of  its origin 
from two different sources, stomach and the WAT, and 
different routes of  accessing the brain, vagal transmission 
of  gastric leptin signals to the NTS, and endocrine signal-
ing of  both gastric and WAT leptin to the hypothalamus. 
This dissociation is suggested by continued effectiveness 
of  leptin when administered intracerebroventricularly at 
the time dietary obesity has rendered leptin applied intra-
peritoneally ineffective[263].

Remarkably and importantly leptin controls insulin 
sensitivity of  the ANS energy regulatory command cen-
ter as body fat and body masses deviate from the norm. 
The brain substrate that is responsive to changes in body 
fat and body mass is midbrain ventral tegmental (VTA) 
dopaminergic and opioidergic projection to the NA in 
the ventral striatum[76,77] that has rich interconnections 
with hypothalamic and cortical circuits responsible for 
activation and inhibition of  feeding, voluntary activity, 
and thermogenesis. The key neurotransmitter mediat-
ing behavioral reinforcements is dopamine (DA)[264,265], 
originating in medial VTA and projecting to ventrome-
dial striatum including medial olfactory tubercle and 
medial shell of  the NA[265]. Activation of  these midbrain 
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DA neural projections to ventral striatum supports 
nonhomeostatic motivating, rewarding, and incentive 
properties of  food and drives locomotor and eating be-
haviors[76,77,266-268]. Functional connections between the 
hypothalamus and this motivational circuitry is illustrated 
by the LH being the key effective site for behavioral self  
stimulation with mild electric current[269,270]. LH area also 
is responsible for arousal and incentive activation of  lo-
comotion probably linked to search for food through its 
component ghrelin[271], melanin concentrating hormone 
(MCH), and orexin/hypocretin[272-274] neural circuits. LH 
ghrelin is involved in anticipatory meal-associated in-
crease in locomotion[271] and increases in olfactory stimu-
lus salience during intermeal intervals[81]. MCH neurons 
regulate olfactory locomotor food-seeking behaviors[272]. 
In addition to motivating feeding[273], MCH neurons 
affect energy metabolism[274-277], and their secretion is 
regulated by gut peptide GLP-1[276], leptin[277], and β3 
adrenergic stimulation[278]. Distinct presympathetic-pre-
motor neurons in LH express both orexin and MCH[279]. 
Orexin-hypocretin neurotransmission elicits circadian 
periodicity of  locomotion[280], locomotor food seeking, 
and sequencing of  postprandial behavioral satiety and 
grooming[281,282]. Activation of  LH orexin-hypocretin 
neurons is functionally connected to DA reward cir-
cuit[282]. Further, the hyperactivity in anorexia nervosa is 
hypothesized to be driven in part by increased ghrelin 
signaling to DA neurons in ventral tegmental area during 
underweight and hypoleptinemia[283]. 

At this point, the attention should be brought to the 
fact that spontaneous locomotion and physical activity 
levels are, like meal-to-meal eating, under nonhomeostatic 
control although their interaction brings about the stabil-
ity of  adult body weight[284]. Cross-sectional human data 
show that total non-basal energy expenditure normalized 
for body mass is inversely related to body fat[285,286], and 
that morbidly obese individuals are almost completely 
inactive[287]. On the other extreme, underweight subjects 
with anorexia nervosa are known for compulsive running, 
“drive for activity”, and “restlessness”[288,289]. This paradox 
where overweight and obese subjects reduce locomo-
tor energy expenditure while the underweight ones are 
hyperactive, defies the homeostatic expectations. Several 
lines of  experimental animal research confirm the inverse 
relationship between spontaneous physical activity and 
body fatness. Obesity induced by either VMH lesions in 
rats[23], rostromedial septal lesions[290] and hippocampal[291] 
or septo-hypothalamic transections[292] in hamsters, or 
cafeteria and high-fat diets in neurologically intact ani-
mals[3,293,294] reduce spontaneous running activity. On the 
other hand, severe dietary restriction consisting of  only 
2-h access to food, leads to weight loss in rats and up to 
300% to 500% increase in spontaneous running activity 
to the point of  emaciation[295]. Spontaneous running by 
rodents in wheels is a motivated behavior amplified by 
the device challenges[296] and mediated in part by μ opi-
oids[297]. The inverse relationship between body fat and 
activity levels is associated with neurochemical changes 

in brain areas where damage produces obesity and hy-
poactivity[293]. Obesity-inducing brain lesions in hamsters 
abolish the inverse relationship to body fat[292]. This then 
indicates a neurochemical link between the nonhomeo-
static physical activity and body fat and body mass.

 The motivational basis of  spontaneous activity can 
be demonstrated by placing obese and hypoactive le-
sioned animals on a motor-driven treadmill. Mild electri-
cal shock at the base of  treadmill provides external moti-
vation for animals to keep running on the moving track. 
Compared to neurologically intact animals, obese hypoac-
tive animals can be compelled by such external negative 
incentive to run on a treadmill as long and as fast as the 
intact controls[298]. In a similar vein, rats displaying hy-
perphagia during ad libitum access to food following a 
weight loss, display reduced willingness to run and need 
external incentives to increase their activity[241].

So how then do non-homeostatic feeding and non-
homeostatic spontaneous physical activity add up to 
maintenance of  stable adult body mass and composition? 
The evidence presented so far permits a conclusion that 
the intermittent feeding and locomotor and other physical 
activities are loosely coupled with continuous body energy 
drain[244-246,248]. The way they result in stable body mass 
setpoint is by sharing the same neural substrate which 
provides variable reward for these behaviors based on the 
changes in the brain substrate’s sensitivity to circulating 
concentrations of  insulin and leptin. The brain substrate 
that supports motivations to locomote and search and 
ingest food is richly populated by insulin[299] and leptin[300] 
receptors and consists of  dopaminergic projections from 
VTA to NA in the ventral striatum, to limbic forebrain 
structures and to orbitofrontal cortex[265-267]. Endogenous 
opiates and cannabinoids[301,302] also are components of  this 
DA reward circuitry, with most of  NA, but also some of  
its parts in particular, showing increased hedonic respond-
ing to sweets after stimulation of  μ opioid receptors[303]. 
Mu opioids are also implicated in the motivation for spon-
taneous running[297]. LH circuits responsive to circulating 
ghrelin and signaling through MCH and orexin-hypocretin 
neurons[304] also are associated with DA reward sys-
tem[273,282,283] in supporting behavioral activation and search 
for food. The basis of  changes in incentive value for loco-
motor search and ingestion of  food[76,77,264-268,302] is vested in 
changes in the brain substrate’s sensitivity to changes in the 
concentrations of  the two hormones as body mass under-
goes deviations from the adult norm. Withdrawal of  leptin 
during weight loss reduces its counterregulation of  insulin 
actions, increases the sensitivity of  the brain reward sub-
strates to locomotor, olfactory, and gustatory rewards and 
increases the efficiency of  insulin actions leading to lipo-
genesis and recovery of  depleted body energy reservoirs. 
Leptin administration to underweight humans and animals 
suppresses the motivation to eat[305], insulin metabolic ef-
ficiency[203,204,305], and motivation for spontaneous locomo-
tion[306-309]. With body mass loss and declines in leptin and 
insulin concentration, increased parasympathetic activa-
tion and sensitivities of  tissues to insulin and leptin action 
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facilitate efficient energy storage. Insulin actions are en-
hanced by reduced leptin counterregulation of  its secretion 
and actions (Figure 5). The parasympathetic dominance in 
underweight state is reflected in hyperphagia, insulin over-
secretion to food intake, and increased efficiency of  energy 
storage that prevail as long as peripheral and central insulin 
and leptin concentrations remain low and tissue and ANS 
sensitivity to their actions high.

As increased hunger and metabolic efficiency drive 
restoration of  body fat and body stores to pre-depriva-
tion plateau, the sensitivity of  the brain reward circuit 
declines. The transport of  both hormones into the brain 
also declines[310,311], a process that most likely signals 
that predeprivation body weight setpoint has been at-
tained. Accrual of  excess body fat and body mass along 
with increases in basal insulin and leptin concentrations 
leads to reduced motivation to locomote, while feeding 
is supported in part by palatability of  food rather than 
responsiveness to hunger[76,77]. When excess fat is gained, 
increased basal concentrations of  both insulin and leptin 
lead to reduced peripheral tissue sensitivity to their ac-
tions, and increased activation of  sympathetic tone de-
velops as a countermeasure against further body fat and 
body mass accretion (Figure 5). Thus the brain reward 
circuit is a component of  the autonomic-circadian com-
mand center responsible for balancing of  sympathetic 
and parasympathetic processes in part by controlling the 

secretion of  insulin and leptin.
Alternating cycles of  famine and feast very likely 

produced the evolutionary pressure toward coupling of  
nonhomeostatic search for food opportunities with vari-
able incentive rewards associated with these behaviors[312]. 
Meal taking and meal processing represent shorter cycles 
of  intermittent refueling of  the body that expends energy 
continuously (Figure 6). Pre-meal behavioral arousal and 
increased nonhomeostatic locomotion may reflect the 
activation by the central ANS/circadian command center 
of  lateral hypothalamic neurons responsive to ghrelin, 
and signaling through MCH and orexin/hypocretin neu-
rons as well as ultradian contractile activity of  the empty 
stomach. The activation of  these processes increases lo-
comotor behavior and responsiveness to olfactory gusta-
tory and other signals of  food availability. Meal eating in-
hibits the ANS/circadian command center by GI signals 
of  fullness and satiation. Post-meal grooming in animals 
and somnolence is induced in part by postprandial insulin 
secretion[313] and activation of  orexin-hypocretin circuits 
in the LH[280]. The inhibition of  the ANS/circadian com-
mand center by volumetric and hormonal signals of  GI 
repletion declines progressively as the GI processing of  
food is completed allowing the sensation of  hunger to 
progressively rise (Figure 2).

REGULATION OF SKELETAL, LEAN AND 
FAT BODY MASS 
Body weight losses or gains along with accumulation of  
excess fat by either damage to the sympathetic and cir-
cadian components of  the ANS or cafeteria or high-fat 
food are viewed by some as a pathological dysfunction 
of  brain substrates where leptin and insulin fail to exert a 
negative feedback over feeding due to neural inflamma-
tion[9]. What this formulation fails to take into account is 
that weight regulatory mechanism is in full operation at 
either starvation or obesity extreme of  energy balance. 
Animals rendered obese by medial basal (or in the case 
of  hamsters, septal) lesions or by cafeteria and fat diets 
defend their new elevated body weight plateau after it has 
been attained against downward deflections[3,314,315]. The 
lesions and hedonic nonhomeostatic overeating therefore 
only raise the plateau at which WAT mass is defended 
and do not interfere with the body mass regulatory mech-
anism per se. The clearest demonstration of  the integrity 
of  the body mass regulatory defenses after VMH lesions 
is absence of  hyperphagia and hyperinsulinemia (or even 
presence of  hypophagia) if  animals are rendered obese 
by prolonged insulin injections prior to VMH lesion. The 
change in their feeding behavior lasts until they attain the 
usual obese body mass plateau characteristic of  lesioned 
animals and thus demonstrate its regulatory defense[316].

The origin of  the signal for body mass recovery can 
therefore not reside exclusively in the size of  WAT or 
adipocyte fat content but requires consideration of  the 
role of  the other two body components, the bone and 
lean tissues. The bone is the probable source of  such sig-
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Figure 6  The conceptual model of the linkage between nonhomeostatic 
meal eating and nonhomeostatic facilitation of physical activity. Comple-
tion of gastrointestinal (GI) transit of food removes the inhibitory influence of 
volumetric and nutritional afferent information mediated by the vagus nerve 
from reaching nucleus tractus solitaries and DA and opioidergic brain centers of 
reward.This allows activation of sympathetic actions over fuel mobilization, full 
operation of behavioral arousal, nonhomeostatic increase in locomotion in quest 
of food associated with activation of orexin/hypocretin and ghrelin. Completion 
of nonhomeostatically controled meal results in filling of the stomach, activation 
of GI nutrient sensing, and increases in postprandial plasma concentrations of 
insulin and leptin. Vagal projections of this information to the brain reinstate the 
inhibition over autonomic sympathetic actions and activate parasympathetic 
control of food digestion and absorption and behavioral quiescence. It is prob-
able that weight loss increases postprandial events linked by the left arrow, and 
that obesity increases the postprandial events linked by right arrow. Additional 
consequences of weight loss and weight gain are mediated by changes in tis-
sue sensitivities to leptin and insulin actions altering the prevailing sympathova-
gal balance and illustrated in Figure 5. DA: Dopaminergic.
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es in bone mineralization and size. The effect requires β 
adrenergic receptors on the osteoblasts in the absence 
of  which a high-bone, obese, and hypoactive phenotype 
is observed similar to that of  VMH lesioned animals 
or mice with deficient leptin signaling (ob/ob and db/db 
mice). These findings help explain why with each kg of  
body fat lost, 16.5 g of  bone mineral is lost, and then 
gained back with body fat regain[317]. Acknowledgment 
that all three compartments of  body mass are regulated 
extends our understanding of  the scope of  the roles of  
leptin and ANS both in short-term nonhomeostatic be-
haviors and in maintenance of  adult weight stability.

The proposed re-interpretation of  body weight regu-
lation presents it as a counterpoint between the sympa-
thetic and parasympathetic actions of  the ANS/circadian 
command center in which counterregulation by leptin of  
insulin secretion and actions and change in tissue sensi-
tivities to the two hormones influence nonhomeostatric 
locomotor and ingestive behaviors as body fat and body 
mass are displaced from the stable adult norm. This nov-
el integration offers an opportunity to revise the prevail-
ing homeostatic view of  energy regulation and to refocus 
weight regulation research. The inclusion of  body com-
ponents other than fat stores in body weight regulation 
expands the scope of  study of  this mechanism. The pro-
posal that the role of  leptin is to counterbalance energy 
storage associated with insulin secretion as well as help 
guide lost body mass to pre-deprivation setpoint prompts 
new hypotheses and research about its possible role in 
termination of  growth and initiation of  the maintenance 
of  a stable adult body mass. 
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