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SUMMARY

Neural stem cells in the adult brain exist primarily in
a quiescent state but are reactivated in response
to changing physiological conditions. How do stem
cells sense and respond to metabolic changes? In
the Drosophila CNS, quiescent neural stem cells
are reactivated synchronously in response to a nutri-
tional stimulus. Feeding triggers insulin production
by blood-brain barrier glial cells, activating the insu-
lin/insulin-like growth factor pathway in underlying
neural stem cells and stimulating their growth and
proliferation. Here we show that gap junctions in
the blood-brain barrier glia mediate the influence of
metabolic changes on stem cell behavior, enabling
glia to respond to nutritional signals and reactivate
quiescent stem cells. We propose that gap junctions
in the blood-brain barrier are required to translate
metabolic signals into synchronized calcium pulses
and insulin secretion.

INTRODUCTION

Changes in environmental conditions can have a significant

impact on the development and function of the brain. Neural

stem cells (NSCs) integrate both local and systemic signals to

modulate their rate and extent of proliferation to meet the needs

of the organism (Kokovay et al., 2008). Most NSCs in the verte-

brate adult brain exist in a mitotically dormant state. These

quiescent NSCs are reactivated in response to a variety of meta-

bolic stimuli (Rafalski and Brunet, 2011). Understanding how

systemic and metabolic signals are sensed by the brain and

converted into specific neural stem cell behaviors is essential

to deciphering how the brain adapts to a changing environment.

In Drosophila, NSCs enter quiescence at the end of embryo-

genesis and are reactivated during early larval life in response

to feeding (Britton and Edgar, 1998; Truman and Bate, 1988; Fig-

ure1A). Aminoacid availability is sensedby the fat body, the func-

tional equivalent of the mammalian liver and adipose tissue (An-

dersen et al., 2013; Colombani et al., 2003). The fat body sends

an as-yet-unidentified signal, or signals, to the brain to induce
Develop
the production and secretion of insulin-like peptides (dIlps) by

blood-brain barrier (BBB) glial cells. dIlps act locally to trigger

the insulin/insulin-like growth factor receptor pathway in underly-

ing NSCs (Chell and Brand, 2010; Sousa-Nunes et al., 2011).

Consequently, the NSCs enlarge and re-enter the cell cycle.

NSC reactivation occurs synchronously in all neurogenic

zones of the CNS, suggesting that BBB glial cells and/or NSCs

are linked by an intercellular signalingmechanism. Gap junctions

are intercellular channels formed by the juxtaposition of con-

nexin hexamers (Segretain and Falk, 2004). They enable the

propagation and amplification of signals within or between cell

populations. Gap junctions are found throughout themammalian

brain and are important regulators of stem cell behavior, control-

ling self-renewal, survival, and aging (Kar et al., 2012; Wong

et al., 2008). Here we show that gap junction proteins play a

key role in the nutrient-dependent reactivation of dormant neural

stem cells in the Drosophila brain. Interestingly, gap junction

proteins are required in the BBB glia, but not in neural stem cells,

for reactivation. We show that gap junction proteins coordinate

nutrient-dependent calcium oscillations within the BBB and are

required for the production and secretion of insulin-like peptides.

Gap junction proteins thus enable the synchronous reactivation

of quiescent stem cells throughout the CNS.

RESULTS

Inx1 and Inx2 Are Required for Normal
Brain Development
To assess whether gap junctions play a role in NSC reactivation,

we systematically targeted each of the eight members of the

innexin (Inx) family (Bauer et al., 2005), the Drosophila functional

equivalents of connexins and pannexins (Phelan, 2005; Fig-

ure S1A available online), by RNAi in either NSCs or glia (Table

S1). Interestingly, we observed no detectable phenotype when

innexins were knocked down in NSCs. However, knockdown

of innexin 1 (inx1) or innexin 2 (inx2) in glia gave a striking pheno-

type in which brain size is dramatically reduced (Figures 1B–1D0)
without affecting overall body size (data not shown). This

suggests that the inx phenotype is not the result of a systemic

growth defect but that inx1 and inx2 have a specific role in the

brain. We checked the specificy of inx1RNAi and inx2RNAi using

in silicomethods (Naito et al., 2005), which predict no off-targets.

Our data are consistent with the recent results of Holcroft et al.,

2013, who showed that targeted RNAi against inx1 (ogre) or inx2
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Figure 1. Glial Gap Junctions Are Required

for Nutrient-Dependent Reactivation

of NSCs

(A) Drosophila quiescent NSCs are reactivated

within a 24 hr time window in response to nutrition.

CB, central brain; VNC, ventral nerve cord; ALH,

hours after larval hatching.

(B–D) Total brain size, NSC diameter and NSC

proliferation are highly reduced after inx1 or inx2

RNAi in glia.

(B0–D0) Higher magnification ventral views of the

VNCs in (B–D).

(E–G) Quantification of NSC (E) number, (F) diam-

eter, and (G) proliferation in inx1 or inx2 knockdown

in glia. (E) ***p < 0.05. Two-sided Student’s t test.

Average and SD were calculated from two bio-

logical replicates. Control n = 8 VNCs; Glia >

inx1RNAi n = 11 VNCs; Glia > inx2RNAi n = 7 VNCs.

Glia > inx1RNAi p = 0.14.Glia > inx2RNAi p = 0.53. (F)

***p < 0.05. Two-sided Student’s t test. Average

and SD were calculated from two biological repli-

cates. Control ALH0 n = 224NSCs (8 VNC); Control

ALH24 n = 241 NSCs (15 VNCs); Glia > inx1RNAi

ALH24 n = 257 NSCs (11 VNCs); Glia > inx2RNAi

ALH24 n = 264 NSCs (11 VNCs). For ALH24:Glia >

inx1RNAi p = 1.23 3 10�28; Glia > inx2RNAi p =

2.473 10�78. (G) ***p < 0.05. Two-sided Student’s

t test. Average and SD were calculated from two

biological replicates. AH48. Control n = 17 VNCs;

Glia > inx1RNAi n = 18 VNCs; Glia > inx2RNAi n = 8

VNCs. Glia > inx1RNAi p = 3.52 3 10�7. Glia >

inx2RNAi p = 2.00 3 10�8. AH72. Control n = 14

VNCs; Glia > inx1RNAi n = 13 VNCs; Glia > inx2RNAi

n = 4 VNCs. Glia > inx1RNAi p = 1.11 3 10�4. Glia >

inx2RNAi p= 1.403 10�5. All images are anterior up,

dorsal view unless stated otherwise. NSC nuclei,

green (Deadpan, Dpn); Cell cortices, red (Discs

Large, Dlg); PH3, gray (phospho-histone H3).

See also Figure S1 and Table S1.
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in glia disrupts development of the larval nervous system and

leads to adult behavioral phenotypes. We demonstrate that

innexins are not required to link NSCs either to each other or to

glial cells. Instead, Inx1 and Inx2 are requiredwithin the glial pop-

ulation alone for brain development.

Gap Junction Proteins Are Required in Glia for NSC Exit
from Quiescence
To understand how glial gap junctions regulate growth in the

CNS, we first examined NSC behavior after inx1 or inx2 knock-

down at different time points during the process of NSC reactiva-

tion. Knockdownof inx1 or inx2 in glia did not affect the number of

NSCs in the ventral nerve cord (VNC; Figure 1E), demonstrating

that the phenotype is not due to the loss of NSCs prior to NSC re-

activation (0 hr after larval hatching, ALH0). Nextweassessedcell

diameter because one of the earliest events in NSC exit from

quiescence is cell enlargement (Chell and Brand, 2010; Sousa-

Nunes et al., 2011). We found that NSC diameter is markedly

reduced (ALH24) after inx1 or inx2 knockdown in glia (Figure 1F).
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Finally, we assessed NSC proliferation

after inx knockdown. We assayed the

mitotic marker phosphohistone H3 (PH3)
before NSC reactivation (ALH0), just after reactivation (ALH48)

and at a time when wild-type NSCs are cycling actively

(ALH72). Knockdown of either inx1 or inx2 in glial cells resulted

in a severe reduction in the number of dividing NSCs at all times

(Figure 1G). We found that NSC enlargement and entry into

mitosis were also dramatically impaired in inx1 and inx2mutants

(inx1ogrejNL3 and inx2G0036, respectively, see Figures S1B and

S1C), and that reactivation could be rescued in inx2 mutants by

glial expression of inx2 (Figures S1D–S1E0). We conclude that

inx1and inx2are required in theglia forNSCexit fromquiescence.

Inx1 and Inx2 Form Heteromeric Complexes
Gap junction proteins (connexins, pannexins, or innexins) are

classically involved in forming intercellular channels or hemi-

channels, which enable exchange between the cytoplasm and

the extracellular medium. Evidence also exists for channel-inde-

pendent roles, such as cell adhesion and direct gene regulation

(reviewed in Dbouk et al., 2009; Elias and Kriegstein, 2008). To

test if channel function is important for NSC reactivation, we



Figure 2. Inx1 and Inx2 FormHeteromeric and Temporally Regulated
Channels in Glia

(A–C) Brain explant culture experiment. Brains from ALH0 larvae were cultured

either on standardmedium (A,� fat body), supplemented with fat body extract

(B, + fat body) or supplemented with fat body extract and carbenoxolone (C, +

fat body + carbenoxolone). Each image represents a three-dimensional

reconstruction of a part of the VNC. Arrowheads indicate processes that NSCs

extend during reactivation. See text and Supplemental Experimental Pro-

cedures for details of the protocol. NSC membrane, red (grh-GAL4, UAS-

myrRFP).

(D) Confocal images showing colocalization of Inx1 (red) and Inx2 (green) in the

VNC before NSCs enlarge. Extended projection.

(E–E0 0) Inx1-GFP (green) and Inx2-RFP (red), colocalize in plaques in glia (super

resolution image).

(F) After NSCs exit quiescence Inx1 (red) and Inx2 (green) no longer colocalize.

(G) Temporal requirement of inx1 activity. Temperature shifts of tub-Gal80ts,

UAS-inx1RNAi; repo-GAL4 flies, from the permissive (25�C) to the restrictive
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Develop
treated brains in culture with carbenoxolone, a classic blocker of

gap junction channels and hemi-channels (Giaume and Theis,

2010; see Supplemental Experimental Procedures). Carbenoxo-

lone completely blocked NSC reactivation (Figures 2A–2C),

implying a channel role for Inx1 and/or Inx2, the only innexins

required for NSC reactivation. We also found that protein fusions

that interfere with the folding of the innexin N-terminal domain

(GFP-Inx1 and RFP-Inx2), which is essential for channel forma-

tion (Nakagawa et al., 2010), act as dominant-negative mutants

(Figures S2A–S2C; data not shown for Inx2). This suggests that

the function of Inx1 and Inx2 in glia is channel-based.

Inx1 and Inx2 could be part of the same channel or form two

distinct channels, performing different functions that are both

required for NSC reactivation. Gap junction channels are formed

by the apposition of connexons (innexons inDrosophila) on adja-

cent cells. Connexons can be homomeric, formed from six mol-

ecules of a single subtype of connexin, or heteromeric, formed

from different subtypes. In the larval VNC prior to NSC reactiva-

tion (ALH7), Inx1 and Inx2 were strongly expressed in glia and

colocalized in plaques typical of gap junctions (Segretain and

Falk, 2004; Figure 2D). Super-resolution microscopy (Dobbie

et al., 2011) further demonstrated the tight association of Inx1

and Inx2, using tagged fusion proteins (Figures 2E–2E0 0). This
close association is present from hatching and is not lost under

starvation conditions (Figures S2D and S2E), demonstrating that

formation of the complex is not driven by nutrition.

We found that most Inx1 staining was lost after knockdown of

inx2 in glia, and vice versa. This suggests that Inx1 and Inx2

localization is interdependent (Figures S2F–S2H) and that Inx1

and Inx2 form heteromeric innexons (Segretain and Falk, 2004)

rather than independent gap junction channels (Lehmann et al.,

2006). Inx1 and Inx2 have been shown to form functional hetero-

meric channels in paired Xenopus oocytes (Holcroft et al., 2013).

We conclude, therefore, that Inx1 and Inx2 form heteromeric

channels or hemi-channels in the glia.

Inx1 and Inx2 Channels Are Developmentally Regulated
Interestingly, we observed a change in Inx1/Inx2 colocalization

over time. By ALH24, when reactivation has taken place, Inx1

and Inx2 are still expressed but they no longer colocalize

(Figure 2F), suggesting that formation of Inx1/Inx2 channels

is temporally regulated. Consistent with this observation, we

discovered that the temporal requirement for inx1 and inx2 func-

tion in NSC reactivation is between ALH0 and ALH24 (Figure 2G,

Table S2, and data not shown). Therefore, the formation and

maintenance of Inx1 and Inx2 heteromeric channels are develop-

mentally regulated and coincide with the time when the innexins

are required for NSC reactivation.

Inx1/Inx2GapJunctionsAreRequired in theBBBGlia for
NSC Reactivation
Inx1/Inx2 channels are required in glia to transmit nutritional

stimuli to quiescent NSCs, They are likely to be found, therefore,
temperature (30�C; black) and vice versa (gray) identify the temperature sen-

sitive period as between 0 and 24 hr ALH. The mutant phenotype was scored

based on a reduction in brain volume. For each time point, 12 brains were

analyzed. ALH, after larval hatching (at 29�C).
See also Figure S2 and Table S2.
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Figure 3. Inx1 and Inx2 Are Required in the

BBB Glia for NSC Reactivation

(A–D) Blocking inx1 and inx2 function in BBB glia

phenocopies pan-glial knockdown. Confocal im-

ages of VNC NSCs in (A) control brain (mdr65-

GAL4, UAS-mCD8-GFP) and (B) brain where

dominant-negative forms of Inx1 and Inx2 have

been driven in the subperineurial glia only (mdr65-

GAL4 driving inx1DN and inx2DN). NSC, cyan (Dpn) ;

Phospho-histone H3, magenta; BBB membrane,

green (GFP) or inx1DN (GFP-Inx1), green and

inx2DN (RFP-Inx2), red. Quantification of NSC (C)

diameter and (D) proliferation. (C) ***p < 0.05. Two-

sided Student’s t test. Average and standard

deviation were calculated from two biological

replicates. Control n = 148 NSCs (11 VNC); BBB

Glia > inx1DN + inx2DN n = 143 NSCs (10 VNCs). p =

4.193 10�53. (D) ***p < 0.05. Two-sided Student’s

t test. Average and standard deviation were

calculated from two biological replicates. Control

n = 11 VNCs; BBB Glia > inx1DN + inx2DN n = 10

VNCs. p = 4.44 3 10�4.

(E and E0) Organization of early BBB glial cells. (E0)
Close up of (E). Septate junctions, green (Lache-

sin-GFP) ; BBB nuclei, red (moody-GAL4, UAS-

Histone-RFP); glial nuclei, blue (Repo). Anterior up,

ventral view.

(F–F0 0) Three-dimensional reconstruction of a part

of the BBB membrane, red (moody-GAL4, UAS-

mCD8-RFP). Ventral up, dorsal down. (F0 and F0 0)
Apical and basal views of ventral BBB membrane,

respectively. NSC, gray (Dpn).

(G) Super resolution image of BBB glial membrane.

Inx1, green; membrane, red (Moody-GAL4, UAS-

mCD8-RFP). Top: orthogonal section; bottom

panel, single focal plane of the ventral BBB glia.

The ‘‘holes’’ (see arrowheads) in the BBB mem-

brane are created by the NSCs or neurons (N) upon

which the BBB glia rest like a sheet, resulting in

small invaginations.

(H) Schematics of the BBB.

See also Figure S3 and Table S3.
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in cells situated between the NSCs and the exterior of the brain.

To determine in which glial cells Inx1/Inx2 are required, we

knocked down Inx1/Inx2 in different glial populations using sub-

type-restricted GAL4 drivers to drive RNAi or express dominant-

negative constructs (Table S3). We found that inx function is

necessary within the subperineurial glia because knockdown in

this glial subtype alone phenocopies knockdown in the entire

glial population (Table S3 and Figures S3A and S3B), preventing

NSC reactivation (Figures 3A–3D).

The subperineurial glia and the perineurial glia constitute the

Drosophila BBB (Stork et al., 2008). In vertebrates, the BBB

consists of a single layer of vascular endothelium closely asso-

ciated with astrocytic glia (Daneman, 2012). The BBB shields

the brain from the external environment owing to tight junctions

between endothelial cells. It acts as a selective sieve to reject

potentially neurotoxic factors but allow the passage of nutri-
312 Developmental Cell 30, 309–321, August 11, 2014 ª2014 The Authors
ents, ions, or other signals to maintain

brain homeostasis (Daneman, 2012).

The Drosophila BBB exhibits similar

neuroprotective strategies to its verte-
brate counterpart, including a layer that limits the diffusion of

neurotoxic factors, and an array of conserved transporters that

regulates BBB permeability (Daneman and Barres, 2005; De-

Salvo et al., 2011; Mayer et al., 2009). The subperineurial glia

are large, flat polyploid (Unhavaithaya and Orr-Weaver, 2012)

cells (Figures 3E–3E0) that envelop the brain (Figure 3F) and are

closely apposed to the NSCs (Figures 3F0 and 3F0 0). They isolate

the brain from the hemolymph (the Drosophila equivalent of

blood) by virtue of lateral septate junctions (Figures 3E and 3E0;
Schwabe et al., 2005; Stork et al., 2008).

Knockdown of inx did not disrupt the septate junctions (Fig-

ures S3C and S3D), and we were not able to see a change in

Dextran dye penetration (data not shown; Pinsonneault et al.,

2011; Schwabe et al., 2005). Although weak permeability de-

fects are difficult to detect at this stage and cannot be

excluded, they do not prevent NSC reactivation (moodyD17
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mutant (Bainton et al., 2005), data not shown). These data sug-

gest that the inx mutant phenotype is not due to an impaired,

leaky BBB. Using super-resolution microscopy, we detected

Inx1 (and Inx2, data not shown) along the BBB membranes

and the septate junctions lining the lateral cell membranes (Fig-

ures 3G and S3E). We conclude that Inx1/Inx2 channels are

required autonomously in the BBB glial cells for NSC reactiva-

tion (Figure 3H).

Inx1/Inx2 Gap Junctions Are Required for
Insulin Signaling
NSC reactivation requires the expression and secretion of insu-

lin-like peptides, dIlps, by BBBglial cells (Chell and Brand, 2010).

Of the eight identified insulin-like peptides in Drosophila, dIlp6

transcription was shown to increase dramatically in the CNS

upon feeding. Furthermore, when larvae were starved, forced

expression of dIlp6 in the glia was able to rescue NSC reactiva-

tion (Chell and Brand, 2010). dIlp6 binds to the insulin receptor

(InR) on NSCs, activating the PI3K/Akt pathway and inducing

exit from quiescence (Chell and Brand, 2010).

We assayed whether gap junction proteins within the BBB are

required for insulin signaling. We found a significant decrease in

dIlp6 transcription after knocking down both inx1 and inx2 in

the glia (Figure S4A). We next assayed dIlp6 secretion. In the

absence of an effective dIlp6 antiserum, we expressed a tagged,

functional version of dIlp6 (dIlp6-FLAG) in the BBBglia.We found

that dIlp6 secretion from the BBB glia was strongly impaired in

inx1 loss-of-functionmutants (Figures 4A, 4B, and 4D). Secretion

of dIlp6 was similarly impaired upon starvation (Figures 4A, 4C,

and 4E). Therefore, both the expression and secretion of dIlp6

are regulated by nutrition and depend on gap junction proteins.

NSC reactivation in inx mutants was rescued by forced

expression of dIlp6 in glia (Figures 4F–4H0, see arrowheads), as

shown by the recovery of brain volume (80% of the brains, Fig-

ure 4I) and of NSC diameter (Figure 4J). Direct activation of the

PI3K/Akt pathway in NSCs also resulted in rescue of brain vol-

ume and NSC enlargement and entry into mitosis (Figures

S4B–S4C0). We conclude that gap junction proteins in the BBB

glia are required to activate insulin signaling and induce NSC

reactivation.

Gap Junctions Coordinate Calcium Oscillations in the
BBB Glia
Secretion of insulin by the pancreas is induced by glucose,

leading to synchronized calcium oscillations within gap junc-

tion-coupled beta cells and insulin exocytosis (MacDonald and

Rorsman, 2006). Gap junctions enable the passage of secondary

messengers that either trigger the release of calcium from intra-

cellular stores or the influx of calcium from the extracellular envi-

ronment (Laude and Simpson, 2009; Leybaert and Sanderson,

2012; Orellana et al., 2012; Skupin and Thurley, 2012). Blocking

gap junctions inhibits coordinated intercellular calcium signaling

(Leybaert and Sanderson, 2012; Orellana et al., 2012). Gap junc-

tion proteins are thus an importantmeans of transmitting calcium

waves.

To investigate whether calcium signaling plays a role in gap

junction-mediated NSC reactivation, we expressed a calcium

sensor, GCaMP3 (Tian et al., 2009), in the BBB glia (Figure 5A;

Figures S5A–S5C) of living larvae. Before reactivation (ALH7)
Develop
the BBB glia of feeding larvae exhibited clear calcium oscillations

(Movie S1; Figure 5B). The BBB glia pulsed simultaneously, sug-

gesting that calcium oscillations are coordinated across the

entire CNS. Individual cell tracking showed that glial calcium

oscillations exhibited striking synchrony (Figures 5B0 and 5B0 0)
in all brains analyzed (n = 15, six are displayed; Figure S5D).

To further assess the extent of calcium oscillation coordination

within the BBB glia under these conditions, we performed corre-

lation analysis (see Experimental Procedures) for 20 regions of

interest (ROI) chosen at random within the BBB glial layer

(Figures 5C, S5E, and S5E0). In fed larvae before reactivation,

the central correlation peak (coefficient 1) demonstrates the syn-

chronicity of calcium oscillations within the BBB layer. Additional

peaks on each side reveal that this synchronicity repeats (see

Experimental Procedures for details).

Next, we monitored calcium dynamics in inx1 mutants. None

of the mutant brains (n = 11) showed coordinated calcium oscil-

lations (Movie S2; Figure 5D; Figure S5F). Instead, BBB glial cells

pulse independently, with no coordination between neighboring

cells (Figures 5D0 and 5D0 0). We conclude that Inx1/Inx2 gap

junctions are required to coordinate synchronous calcium oscil-

lations within the BBB glia. In accordance with our observation,

the graph of correlation coefficient for inx1 mutants established

the total absence of synchronicity between BBB glial cells (Fig-

ures 5E, S5G, and S5G0), showing that gap junctions are required

for propagating calcium oscillations within the BBB.

Calcium Oscillations in the BBB Glia Respond to
Nutritional Status
To assess whether calcium oscillations in the BBB are induced

by a nutritional stimulus, we first assayed calcium dynamics in

the BBB glia of newly hatched larvae (ALH0), before they started

to feed. The calcium oscillations differed both in extent and fre-

quency from those seen in fed larvae (n = 9; Movie S3; Figures

6A–6A0 0; Figure S6A). Correlation analysis revealed a partial co-

ordination within the BBB glia (central correlation peak with a co-

efficient of 0.5, Figures 6B, S6B, and S6B0), strengthening the

idea that nutrition is important for extending and establishing

robust calcium synchronicity in the BBB.

Next, we assessed calcium dynamics after starvation, specif-

ically the absence of essential amino acids. Calcium dynamics in

the BBB of starved larvae resembled inx1 mutant brains (Movie

S4; Figure 6C). Synchronous calcium oscillations were

completely abolished in all brains examined (n = 19, Figure S6C).

Individual BBB cells displayed some calcium pulses (Figures 6C0

and 6C0 0), but with different profiles to those seen in fed larvae. In

addition, correlation analysis of starved larvae showed very

weak synchronicity (Figures 6D, S6D, and S6D0). This suggests

that the synchronous, nutrition-dependent, calcium oscillations

are lost upon starvation. Importantly, neither Inx1 nor Inx2 is

lost under starvation conditions (Figure S2E). We conclude that

nutrition, in particular essential amino acids, shape calcium

dynamics. Upon feeding, calcium oscillations are amplified and

synchronized across the BBB.

The IP3 Pathway and BBB Membrane Polarization
Control Neural Stem Cell Reactivation
We assayed whether glial calcium oscillations arise from the

release of intracellular calcium, or from the influx of extracellular
mental Cell 30, 309–321, August 11, 2014 ª2014 The Authors 313



Figure 4. Gap Junctions Control NSC Reactivation through the Insulin Pathway

(A–D) dIlp6 secretion depends on gap junction and nutrition. dIlp6 secretion was assayed by expressing a tagged version in the BBB glia only (moody-GAL4,

UAS-mCD8-RFP, UAS-dIlp6-FLAG,) and assessing what is found out of the BBB glia. Cross-section of one BBB glial cell and its schematic for (A) control,

(B) inx1ogrejNL3 mutant, and (C) starved. dIlp6-FLAG, green (FLAG); BBB membrane, red (RFP). (D and E) Secreted dIlp6-FLAG (%) was measured as the ratio

(legend continued on next page)
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calcium, and how these influence NSC reactivation. First, we

assessed the importance of the inositol-triphosphate (IP3)

pathway. The IP3 pathway triggers calcium release from intracel-

lular stores (Berridge, 2009). Stimulation of G-coupled receptors

by a wide range of signals activates phospholipase C, leading to

the production of IP3 from cleaved PIP2. IP3 then binds to its

receptor (Ins3PR), a ligand-gated Ca2+ channel found on the sur-

face of the ER, releasing intracellular calcium.We knocked down

Ins3PR (itpr in Drosophila) in the BBB glia by RNAi (Chorna and

Hasan, 2012). Both NSC enlargement and proliferation were

strongly impaired (Figures 7A–7D). We conclude that NSC reac-

tivation depends on IP3-mediated release of calcium from intra-

cellular stores.

Next, we assessed the importance of calcium influx. Mem-

brane depolarization triggers the entry of extracellular calcium

via voltage-gated calcium channels (Catterall, 2011; Leybaert

and Sanderson, 2012), whereas hyperpolarization prevents it.

We hyperpolarized BBB membranes by expressing the inward-

rectifying potassium channel, kir2.1 (Baines et al., 2001). BBB

hyperpolarization blocks NSC reactivation dramatically, as re-

vealed by the complete failure of both enlargement and mitotic

re-entry (Figures 7E–7H). Interestingly, the mushroom body

neuroblasts, a small group of central brain NSCs that do not

undergo quiescence and reactivation, are not affected by BBB

hyperpolarization, suggesting that nutrition-dependent NSC re-

activation is specifically affected (Figures S7A and S7B, see ar-

rowheads). BBB hyperpolarization both decreases dIlp6 mRNA

levels (Figure S7C) and dIlp6 secretion (Figures S7D and S7E),

similar to what is seen during starvation or gap junction loss-

of-function (see Figure S4A and Figures 4A–4E). In support of

the role of calcium oscillations in reactivating NSCs, we found

that overexpressing the calcium-binding protein, calmodulin,

prevents NSC reactivation (Figures S7C–S7F). Our results

show that intracellular and extracellular calcium both contribute

to NSC reactivation.

DISCUSSION

Gap Junctions Are Required in the BBB for
NSC Reactivation
The nutrient-dependent reactivation of NSCs in the Drosophila

brain demonstrates how NSCs can adapt to environmental

changes to fulfil the needs of the organism. Here, we show that

gap junction proteins within the BBB glia are required for insulin

expression and secretion, a prerequisite for NSC exit from quies-

cence (Figure 7I). We demonstrate that gap junction proteins

coordinate glial calcium oscillations that are required for NSC

reactivation. Both intracellular calcium stores and calcium influx

contribute to reactivation. Membrane depolarization is known to
between secreted dIlp6-FLAG and total dIlp6-FLAG. See Experimental Procedur

inx1ogrejNL3 n = 35 VNCs. p = 7.21 3 10�8. (E) Fed n = 19 VNCs; starved n = 18 V

(F–J) Rescue of NSC reactivation in inx1 mutants by glial expression of dIlp6

nuclei, green (Deadpan); Cell cortices, red (Discs Large); Phosphohistone H

was performed. ***p < 0.05. Control n = 10 brains; inx1ogrejNL3; glia > lacZ n = 12

8.68 3 10�12. For mutant versus rescue, p = 2.01 3 10�2. For control versus re

test was performed. ***p < 0.05. Control n = 182 NSCs (10 VNCs); inx1ogrejNL3;

(10 VNCs). For control versus mutant, p = 2.30 3 10�42. For mutant versus rescu

See also Figure S4.

Develop
regulate exocytosis via calcium signaling (Fridlyand and Phili-

pson, 2011; Stojilkovic, 2012; Südhof, 2012), which controls

stimulus-secretion coupling in secretory cells, such as in endo-

crine cells (Dolen�sek et al., 2011; Géminard et al., 2009; Stojil-

kovic, 2012; Südhof, 2012). We show that conditions that block

calcium oscillation in the BBB glia (the loss of gap junction pro-

teins, starvation) also impair insulin secretion.

Mechanisms of Insulin Production and Secretion in
Drosophila and Vertebrates
The sequence of events leading to glial secretion of insulin bears

a striking resemblance to the diet-induced release of insulin by

the beta cells of the pancreas (MacDonald and Rorsman,

2006). In the pancreas, a nutritional stimulus is sensed by gap

junction-coupled beta cells, inducing depolarization resulting in

synchronized calcium oscillation and insulin secretion. Loss of

gap junction coupling results in uncoordinated calcium pulses.

InDrosophila inx loss of function mutants, individual subperineu-

rial BBB glial cells oscillate independently of one another.

Compared to starvation, in which the nutritional signal is absent

and NSC reactivation cannot occur, the scattered signals from

individual BBB cells are able to induce delayed, asynchronous,

reactivation in a small number of NSCs (see PH3 positive

NSCs in Figures 1C0–1D0). We propose that gap junction function

within the BBB enables glial insulin release to reach a threshold

high enough to trigger NSC reactivation throughout the central

nervous system.

In both beta cells and BBB cells, membrane depolarization is

crucial for generating calcium oscillations. Failure to depolarize

or an active block to depolarization prevents insulin release.

However, sustained depolarization of b cells can lead to desen-

sitization and a decline in insulin release (Willenborg et al., 2012).

Interestingly, we find that forced depolarization of BBB glia only

mildly enhances NSC reactivation (data not shown). This could

be due to desensitization or it may be that the system is already

maximally active.

Insulin mRNA levels are decreased after gap junction knock-

down, both in pancreatic islets (Bosco et al., 2011) and in the

BBB glia. In both cases it remains to be determined if calcium

oscillations can directly affect gene expression, as has been

shown in other systems (Alonso and Garcı́a-Sancho, 2011).

Insulin produced by the pancreas is distributed via the

circulatory system, whereas glial insulin is secreted locally,

directly to underlying NSCs. Glial insulin signaling is thus con-

tained within the brain, enabling local, differential regulation of

this organ. The BBB acts both as a niche and as a protective bar-

rier, providing specific factors directly to the stem cell while

shielding the brain from unwelcome systemic regulation. In the

context of NSC reactivation, these two roles are conveniently
es for details. ***p < 0.05. Two-sided Student’s test. (D) Control n = 38 VNCs;

NCs. p = 4.56 3 10�18. Bar graphs represent mean ± SEM.

. Anterior up, dorsal view. (F0–H0) Higher magnification. Ventral views. NSC

3, gray. (I) Quantification of brain volume rescue. A one-way Anova test

brains; inx1ogrejNL3; glia > dIlp6 n = 10 brains. For control versus mutant, p =

scue, p = 0.12. (J) Quantification of NSC diameter rescue. A one-way Anova

glia > lacZ; n = 198 NSCs (12 VNCs); inx1ogrejNL3; glia > dIlp6; n = 219 NSCs

e, p = 1.84 3 10�42. For control versus rescue, p = 0.21.
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complementary. In the vertebrate BBB, similar functions may be

split between endothelial cells and astrocytic glia. The vascular

endothelium provides the barrier function, while astrocytic glia

have a regulatory role in sensing and adjusting barrier perme-

ability to various stimuli (Daneman, 2012). BBB endothelial cells

can secrete cytokines, chemokines, and prostaglandins, sug-

gesting that the BBB behaves like an endocrine tissue (Banks,

2012). Interestingly, calcium oscillations have been observed in

cultured vertebrate BBB endothelial cells, but their function is

largely unknown (De Bock et al., 2013).

Gap Junction Function in Neural Stem Cells
Gap junction communication can influence stem cell behavior by

directly coupling stem cells to each other or to supporting cells,

such as found in a stem cell niche. In the brain, connexon-medi-

ated communication has been reported to occur between pro-

genitor cells, within astrocytic networks, and between radial

glia and neurons or progenitor cells and astrocytes (Giaume

et al., 2010; Lacar et al., 2011; Nakase and Naus, 2004; Lo Turco

and Kriegstein, 1991). The proliferation of neural progenitors and

the formation of cortical layers in the mouse brain depend on an

intercellular gap junction network (Malmersjö et al., 2013), and

grafted human NSCs integrate into organotypic cultures through

connexin coupling (Jäderstad et al., 2010). Here, we show that

gap junction function within a niche, the BBB, can also influence

NSC behavior.

The Drosophila BBB is a protective and selective barrier as

well as a signaling center that orchestrates major developmental

and physiological events. Here we show that gap junction

communication enables cells within the BBB to act as a

concerted unit, leading to coordinated calcium signaling and

insulin release. Similarities between the BBB in vertebrates and

invertebrates suggest that our findings are likely to have broader

significance.

EXPERIMENTAL PROCEDURES

Genetics

The RNAi and GAL4 drivers used in this study are listed in Tables S1 and S3.

inx1ogrejNL3 and moody-GAL4 were kind gifts of P. Phelan and R. Bainton,

respectively. All RNAi experiments were conducted at 29�C. All glial knock-
downs were performed with repo-GAL4 as driver, unless stated otherwise.

The BBB driver was either moody-GAL4 or mdr65-GAL4 (see for each

experiment).

Statistics

Bar graphs were generated using the mean and SEM for each sample. Error

bars represent SEM. Center values are averages. Student’s t test was per-

formed using a threshold of p < 0.05 (confidence interval of 95%), represented
Figure 5. Coordinated Calcium Oscillations in the BBB Glia Depend on

(A) GCaMP3 and a membrane marker were driven specifically in the BBB glia (m

(B–B0 0) Calcium oscillation in BBB glia at ALH7 in one control brain. (B) GCaMP3 n

(ROI, A–D) at time 0. (B0 0) GCaMP3 mean intensity over time for four different RO

(C) Graph of the correlation coefficient for a fed larva before NSC enlargement. T

normalized calcium intensity were correlated against each other. A correlation c

(D–D0 0) Calcium oscillation in BBB glia of inx1 mutant (inx1ogrejNL3) in one brain. (D

(A–D) at time 0. (D0 0) GCaMP3 mean intensity over time for four different ROIS.

(E) Graph of the correlation coefficient for an inx1ogrejNL3 mutant. Twenty ROIs w

details of the imaging and data processing. Anterior to the left.

See also Figure S5, and Movies S1 and S2.

Develop
by ***. All tests performed in this study were two-sided and with samples of

same variance, unless stated otherwise.

For rescue of inx1 mutant by glial expression of dIlp6, we used a one-way

Anova test, with p < 0.05 represented by ***. Whisker plots were drawn using

the minimum, quartile 1, median, quartile 3, and maximum of each condition’s

sample. In addition, a Student’s t test based on a sample’s average and SD

was used to generate p values with the same criteria as above. n refers to

the total number of samples for all biological or technical replicates. NSC

numbers were determined using measurement scripts in Volocity software

(PerkinElmer).

Temperature Shift Experiments

We used tub-Gal80ts, inx1RNAi ; repo-GAL4 to achieve conditional expression

of inx1. At 25�C (permissive temperature for Gal80ts), larvae showed a wild-

type phenotype, but at 30�C (restrictive temperature for Gal80ts), all larvae

showed a mutant phenotype: lack of NSC reactivation and clear reduction in

brain volume. In further experiments, we scored mutant phenotypes by brain

volume only in third instar larvae. Twelve larvae were scored for each condi-

tion. In single temperature-shift experiments, 1 hr embryos or 1 hr first instar

larvae were grown at a given temperature and shifted once. We tested 6 or

24 hr temporal windows.

dIlp6 Secretion Experiments

We coexpressed a tagged version of dIlp6 (dIlp6-FLAG) and a membrane

marker (mCD8-RFP) in the BBB glia alone, in controls (genotype moody-

GAL4, UAS-mCD8-RFP, UAS-dIlp6-FLAG) and inx1 mutants (genotype

inx1ogrejNL3/Y; moody-GAL4, UAS-mCD8-RFP, UAS-dIlp6-FLAG). Larvae

were starved as described in the Supplemental Experimental Procedures.

All brains were imaged using the same confocal settings for dIlp6-FLAG.

For each VNC, the total dIlp6 intensity (T) was calculated using Volocity soft-

ware, using a fixed intensity threshold. Retained dIlp6 intensity (R) was then

measured as the dIlp6 signal (same threshold as previously) colocalizing

with the BBB membrane (RFP signal). The threshold for the RFP signal

was determined manually for each brain, to ensure selection of the whole

membrane. Due to the flatness of the BBB glia, the membrane signal repre-

sents most of the cells, although some cytoplasmic signal could be missed.

The percentage of secreted dIlp6 was calculated as percent secreted dIlp6 =

(1 � R/T) 3 100.

Membrane Polarization Experiments

moody-GAL4, UAS-kir2.1-GFP; tubulin-GAL80ts flies were grown at permis-

sive temperature until hatching, then switched to 30�C from ALH0 to ALH24.

Calcium Imaging

Two different conditions were analyzed: control (genotype FM7, Dfd GMR

YFP/Y; moody-GAL4, UAS-mCD8-RFP, UAS-GCaMP3) and inx1 mutant (ge-

notype inx1ogrejNL3/Y; moody-GAL4,UAS-mCD8-RFP,UAS-GCaMP3). Larvae

were raised and staged at 29�C, then fed or starved as described in the Supple-

mental Experimental Procedures. Larvaewere placed in a drop of Voltalef oil on

a 22 mm diameter Welco dish, ventral side down. A 13 mm diameter round

coverslip was placed tilted on top and lowered until the larva was immobilized.

Mounted larvae were imaged with a 403 oil immersion objective on an

Olympus inverted FV1000. One focal plane encompassing as much as

possible of the GCaMP signal was imaged. GCaMP and mCD8-RFP were

imaged simultaneously because we did not detect any bleed-through.
Gap Junctions

oody-Gal4, UAS-mCD8-RFP, UAS-GCaMP3).

ormalized mean intensity over time for the entire plane. (B0) Regions of interest
Is across the VNC.

wenty ROIs were chosen at random within the BBB glia and the plots of their

oefficient of 1 indicates perfect correlation.

) GCaMP3 normalized mean intensity over time for the entire plane. (D0) ROIs

ere chosen at random within the BBB glia. See Experimental Procedures for
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Figure 6. Coordinated Calcium Oscillations in the BBB Glia Depend on Nutritional State

(A–A0 0) Calcium oscillation in BBB glia of a newly hatched control larva (ALH0). (A) GCaMP3 normalized mean intensity over time for the entire plane. (A0) ROIs (A–

D) at time 0. (A0 0) GCaMP3 mean intensity over time for four different ROIs.

(B) Graph of the correlation coefficient for a newly hatched control larva (ALH0). Twenty ROIs were chosen at random within the BBB glia.

(C–C0 0) Calcium oscillation in BBB glia in the brain of a starved larva. (C) GCaMP3 normalizedmean intensity over time for the entire plane. (C0) ROIs (A–D) at time 0.

(C0 0) GCaMP3 mean intensity over time for four different ROIs.

(D) Graph of the correlation coefficient for a starved larva. Twenty ROIs were chosen at randomwithin the BBB glia. See Experimental Procedures for details of the

imaging and data processing. Anterior to the left.

See also Figure S6, and Movies S3 and S4.
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Figure 7. Calcium Signaling in the BBB Glia

Is Required for NSC Reactivation

(A–D) NSC reactivation depends on the insitol-

triphosphate pathway. Knocking down the insitol-

triphosphate receptor in the BBB glia only (mdr65-

GAL4 > itprRNAi) impairs NSC enlargement and

proliferation (compare B to A). (C and D) Quantifi-

cation of NSC (C) diameter and (D) proliferation;

whisker plots. (C) ***p < 0.05. Two-sided Student’s

test. Average and standard deviation were calcu-

lated from two biological replicates. Control n =

352 NSCs (22 VNC); BBB glia > itprRNAi n = 358

NSCs (22 VNC); p = 2.31 3 10�116. (D) ***p < 0.05.

Two-sided Student’s t test. Average and SD were

calculated from two biological replicates. Control

n = 22 VNCs; BBB glia > itprRNAi n = 22 VNCs. p =

1.03 3 10�7 (unequal variance test).

(E–H) NSC enlargement and proliferation are

blocked upon BBB membrane hyperpolarization

(BBBglia > UAS-kir2.1.) (compare F to E). (G andH)

Quantification of NSC (G) diameter and (H) prolif-

eration; whisker plots. (G) ***p < 0.05. Two-sided

Student’s t test. Average and SD were calculated

from two biological replicates. Control n = 466

NSCs (22 VNC); BBB hyperpolarization n = 366

NSCs (16 VNC). p = 3.30 3 10�110. (H) ***p < 0.05.

Two-sided Student’s test. Average and SD were

calculated from three biological replicates. Control

n = 33 VNCs; BBB hyperpolarization n = 26 VNCs.

p = 7.883 10�23 (unequal variance test). All images

are anterior up, ventral view. NSC nuclei, green

(Deadpan, Dpn); Cell cortices, red (Discs Large,

Dlg); PH3, gray (phosphohistone H3).

(I) Model of the role of the BBB glia in nutrition-

dependent NSC reactivation. Nutrition induces

calcium oscillations, which encode the nutritional

message required for NSC reactivation, in

the BBB. Inx1/Inx2 heteromeric channels are

necessary to synchronize calcium oscillations

throughout the BBB and regulate insulin produc-

tion and secretion.

See also Figure S7.
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Calcium Data Processing

To measure the mean intensity of the whole plane over time, movies were

analyzed in Volocity. The mean intensity was measured for each point both

for GCAMP3 (channel 1, C1) and mCD8-RFP signals (channel 2, C2). We

normalized changes in GCaMP3 intensity against changes in mCD8-RFP in-

tensities (accounting mainly for loss of focal plane due to larval movement),

and then normalized the ratio by its minimum over the whole movie, so that

the baseline for all movies was always 1. The normalized GCaMP3 signal is

then: I(GCaMP) norm = (C1/C2) / (C1/C2)min. This normalized ratio was plotted

over time using spreadsheet software.

Calcium Tracking

To follow the behavior of calcium in different regions of the brain to check for

oscillation coordination, we tracked selected ROIs independently.

For this specific purpose, a tailored python script was developed (F.N. Mur-

phy). ROIs were selected manually in the first frame of the movie, and their

central coordinates recorded. The script then tracked the ROIs as they moved

during the movie. A 643 64 pixel tracking window was centered on each ROI,
Developmental Cell 30, 309–32
and a 32 3 32 pixel subwindow in the middle of

each tracking window was used for measuring in-

tensity values. The tracking operations were per-

formed on the relatively stable red channel (cell

membrane) rather than the more dynamic green
channel (the calcium signal to be measured). The script moves the tracking

window by calculating the correlation between the window region from one

frame to the next. The location of the peak of the correlation function indicates

how far and in which direction to move the tracking window to keep it centered

on the ROI. To reduce tracking drift due to rounding errors, times-two upsam-

pling was used. To further improve tracking accuracy, the image was low pass

filtered to remove noise. The upsampling and filtering were accomplished

simultaneously by taking the product of the fast Fourier transforms of the

tracking window and extracting the low-frequency coefficients then zero

padding before taking the inverse fast Fourier transforms. The intensity mea-

surements were performed by summing the pixel values within the 32 3 32

pixel measuring window for both the red and green channels. Normalization

was then applied as described above.

Correlation Analysis

The intensity signal for each ROI (computed and normalized as described

above) is processed to remove baseline wander. The baseline is calculated us-

ing a 50 sample running average filter and then subtracted out from the signal.
1, August 11, 2014 ª2014 The Authors 319
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The remaining signal is then scaled so that the sum of the squares of the

samples is one. The signal with the largest positive excursion is selected as

a reference. Each remaining ROI signal is correlated with the reference for

shifts of �50 to +50 samples. The result is a correlation coefficient indicating

the similarity of the signals. If a signal is identical to the reference, the correla-

tion coefficient will peak at +1 for a shift of 0. Multiple peaks will be observed if

the signal is periodic. If a signal is uncorrelated with the reference, then the cor-

relation coefficient will take small random values.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, three tables, and four movies and can be found with this article

online at http://dx.doi.org/10.1016/j.devcel.2014.05.021.
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