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Seng H. Cheng6, Alberto Cavazzini4, Roberto Gambari3, Sandro Sonnino2, Giulio Cabrini1,

Maria Cristina Dechecchi1*

1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy, 2 Department of Medical Biotechnology and

Translational Medicine, University of Milano, Milano, Italy, 3 Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of

Ferrara, Ferrara, Italy, 4 Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy, 5 Medical Physics Unit, Department of Pathology and

Diagnostics, University Hospital of Verona, Verona, Italy, 6 Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America

Abstract

Current anti-inflammatory strategies for the treatment of pulmonary disease in cystic fibrosis (CF) are limited; thus, there is
continued interest in identifying additional molecular targets for therapeutic intervention. Given the emerging role of
sphingolipids (SLs) in various respiratory disorders, including CF, drugs that selectively target the enzymes associated with
SL metabolism are under development. Miglustat, a well-characterized iminosugar-based inhibitor of b-glucosidase 2
(GBA2), has shown promise in CF treatment because it reduces the inflammatory response to infection by P. aeruginosa and
restores F508del-CFTR chloride channel activity. This study aimed to probe the molecular basis for the anti-inflammatory
activity of miglustat by examining specifically the role of GBA2 following the infection of CF bronchial epithelial cells by P.
aeruginosa. We also report the anti-inflammatory activity of another potent inhibitor of GBA2 activity, namely N-(5-
adamantane-1-yl-methoxy)pentyl)-deoxynojirimycin (Genz-529648). In CF bronchial cells, inhibition of GBA2 by miglustat or
Genz-529648 significantly reduced the induction of IL-8 mRNA levels and protein release following infection by P.
aeruginosa. Hence, the present data demonstrate that the anti-inflammatory effects of miglustat and Genz-529648 are likely
exerted through inhibition of GBA2.
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Introduction

Cystic fibrosis (CF) lung disease is characterized by progressive

chronic infection and inflammation of the airways. The prolonged

airway inflammation is an important aspect of the obstructive lung

disease noted in CF patients. Resultant progressive remodeling

leads to irreversible damage and fibrosis, which is a major cause of

mortality in patients [1]. Significant efforts have been invested into

developing therapies that address the underlying basis of CF. For

example, recent efforts to identify small-molecule drugs that target

a mutant CF transmembrane conductance regulator (CFTR) led

to the successful development of a potentiator (Kalydeco) for

patients who harbor the mutant G551D-CFTR [2]. Moreover,

phase 3 clinical trials of Kalydeco in combination with the

corrector lumacaftor for people with two copies of the F508del-

CFTR mutation showed significant improvements in lung function

and other key measures of the disease (http://www.cff.org/about

CFFoundation/NewsEvents/2014NEWSArchive/6-24-Vertex

Phase-3-Results_Lumacaftor_Ibvacaftor.cfm). However, despite

these very encouranging results, adjuvant therapies that abate

the decline in pulmonary function in other patients are still

needed. Examples include the potential deployment of new

antibiotics, anti-mucolytic and anti-inflammatory drugs [3]. To

date, the only non-steroidal anti-inflammatory agent that has been

shown to be beneficial in CF patients is ibuprofen; however, its use

can be associated with severe adverse effects, such as gastrointes-

tinal bleeding [4]. Hence, the identification and development of

novel and more potent anti-inflammatory drugs for CF airway

disease remains a priority. The chemokine IL-8 is abundantly

expressed at sites of chronic inflammation and appears to play a

major role in driving the formation of neutrophil (PMN)-rich

exudates in the lungs of CF patients [5–8]; thus its reduction is a

key therapeutic goal in CF.

Sphingolipids (SLs) are a large group of lipids that are thought

to modulate the pathophysiology of several respiratory disorders,

including CF [9–11]. Ceramide, the central hub of SL metabo-
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lism, is generated by de novo synthesis or hydrolysis of complex

SLs, such as sphingomyelin (SM) by acid sphingomyelinase (ASM)

and glucosylceramide (GlcCer) by glucocerebrosidases [12].

Ceramide plays an important role in the infection by P.
aeruginosa by reorganizing lipid rafts on cellular membranes into

larger signaling platforms, which is a feature conducive to

internalizing bacteria, inducing apoptosis and regulating the

cytokine response [13]. Controversial findings on the association

between abnormalities in SL metabolism and inflammation in CF

have been reported. For example, ceramide has been identified as

a key regulator of inflammation in CF airways in different

CFTR-/- mouse models [14]. In contrast, decreased ceramide

levels have been demonstrated in CFTR KO mice [15], and no

significant difference has been found in basal ceramide levels in

CFTR KO lung homogenates compared to wild type mice [16].

The possible explanation for this discrepancy appears to be the

special diet required for the survival of CFTR KO mice, which

severely affects the concentration of SLs [14]. Interestingly, an

accumulation of ceramide, which has been directly correlated with

neutrophilic lung inflammation, has been demonstrated in the

lower airway of CF patients [17]. These findings suggest that the

CF pathophysiology associated with infection by P. aeruginosa
can be corrected, in part, by modulating ceramide levels to their

normal physiological range, independent of the conflicting results

obtained in different CF models. To date, there is some evidence

that supports pharmacological interventions in SL metabolism as

therapeutic agents for CF lung disease [14–21].

Given the emerging importance of SLs in respiratory disorders,

novel drugs that selectively target different enzymes involved in SL

metabolism are under development. Recently developed iminosu-

gar-based inhibitors of GBA2 are of particular interest because of

their good oral bioavailability and specific immune modulatory

and chaperoning activities [22]. A well-characterized inhibitor is

miglustat (N-butyldeoxynojirimycin, NB-DNJ), which is FDA-

approved and EMA-designated for use in Europe and the USA for

the treatment of type I Gaucher and other SL storage diseases. We

previously demonstrated that miglustat exhibits an anti-inflamma-

tory effect in vitro and in vivo by reducing P. aeruginosa induced

immunoreactive ceramide levels [20,23]. Moreover, miglustat can

restore F508del-CFTR chloride channel activity in respiratory and

pancreatic cells in vitro [24,25] and in CF mice [26]. However, a

recent clinical trial in CF patients did not provide evidence of

efficacy, which may be related to the intra-individual variability of

nasal potential difference (NPD) measurements or the short

duration of exposure [27]. Nevertheless, a drug that is able to

correct both the CF channel defect and reduce the inflammatory

response is of interest and warrants further attention. Miglustat

inhibits the enzyme ceramide glucosyl-transferase (GlcCerT),

which catalyzes the first step in the glycosphingolipid biosynthetic

pathway [28] with IC50 values in the low micromolar range. It

also inhibits the activities of two different GlcCer degrading

enzymes, glucocerebrosidase (GBA1) and the non-lysosomal b-

glucosidase 2 (GBA2), with IC50 values in the high micromolar

and nanomolar range, respectively [29,30]. In addition, it is also a

potent inhibitor of a-glucosidase [31]. Therefore, miglustat could

affect the host response to P. aeruginosa through one or more of

these SL metabolism pathways. The galactose analog of miglustat,

N-butyldeoxygalactonojirimycin (NB-DGJ), also inhibits GlcCerT

and GBA2, whereas its effect on GBA1 is less clear [30,32,33].

Similar to miglustat, NB-DGJ produces an anti-inflammatory

effect in bronchial epithelial cells [25], which suggests a potential

involvement of GlcCerT and/or GBA2 in the response of

bronchial cells to P. aeruginosa. The non-lysosomal b-glucosidase

GBA2, which is extremely sensitive to deoxynojirimycin-type

inhibitors [34], is a membrane-associated enzyme located in the

plasma membrane and ER of cells [29,35]. GBA2 has been

described as a single pass transmembrane protein with its catalytic

domain facing the extracellular environment [29]. Because this

enzyme can hydrolyze GlcCer directly at the cell surface, it might

be involved in affecting transient local changes in bioactive SL

concentrations.

To gain greater insights into the molecular basis of the anti-

inflammatory activity of miglustat, we explored the potential

involvement of GBA2 in the ceramide-mediated signaling

processes following P. aeruginosa infection of CF bronchial

epithelial cells. The effects of a potent inhibitor of GBA2, N-(5-

adamantane-1-yl-methoxy)pentyl)- deoxynojirimycin or Genz-

529648 as it is referred to in this report [4,36], on the

inflammatory response to P. aeruginosa were investigated and

compared to miglustat and NB-DGJ. We also examined the

impact of lowering the expression of GBA2 in human CF

bronchial epithelial cells exposed to P. aeruginosa using siRNA

oligonucleotides. The results obtained here demonstrate that

GBA2 is a target of the anti-inflammatory effects of miglustat and

Genz-529648. Thus, these compounds provide novel insights into

the role of GBA2 in the signaling cascade activated by P.
aeruginosa in CF bronchial epithelial cells.

Methods

Cell models
IB3-1 (LGC Promochem GmbH, Teddington, Middlesex,

United Kingdom)[37] and CuFi-1 (a generous gift of A.

Klingelhutz, P. Karp and J. Zabner, University of Iowa, Iowa

City)[38] are human bronchial epithelial cells grown as previously

described [24]. Primary airway epithelial cells, i.e., mainstem

human bronchi, derived from CF individuals were obtained from

‘‘Servizio Colture Primarie’’ of the Italian Cystic Fibrosis Research

Foundation and cultured as previously described [39].

Bacterial strains
The reference P. aeruginosa strain, PAO1, was kindly provided

by A. Prince (Columbia University, New York) and grown in

trypticase soy broth (TSB) or agar (TSA) (Difco) as previously

described [25]. Some experiments were conducted with organisms

killed by heating to 65uC for 30 minutes.

Inhibitors of SL metabolism
Miglustat and NB-DGJ were obtained from Toronto Research

Chemicals, North York, ON, Canada. Genz-529648 was obtained

from Genzyme, a Sanofi Company; amitriptyline was obtained

from Sigma.

Inflammatory response in vitro
Cells were treated with different inhibitors or solvent alone and

then infected with PAO1 for 4 hours at 37uC as previously

described [25]. The inflammatory response to PAO1 infection was

studied at the transcriptional level by measuring IL-8 chemokine

expression as previously described [20]. An enzyme-linked

immunosorbent assay for the quantitative measurement of IL-8

protein release was performed using the Human IL-8 Instant

ELISA kit (Bender MedSystems, Vienna, Austria).

Cell toxicity
The effects of Genz-529648 on cell proliferation, viability and

apoptosis were studied to evaluate the potential toxicity as detailed

in the Supplement S3.

Role of GBA2 in P. aeruginosa Infected CF Cells
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GBA2 silencing
To perform silencing experiments of the GBA2 gene, a

TriFECTa RNAi Kit (Integrated DNA technologies, Coralville,

Iowa, IA) was used. Cells were transiently transfected with specific

siRNA for GBA2 (sequence GGAUCAUGUUUGGAGCUA) or

scrambled (CGUUAAUCGCGUAUAAUACGCGUAT) duplex-

es complexed with cationic liposomes Lipofectamine 2000

(Invitrogen, Carlsbad, CA) diluted in 1 ml serum-free cell culture

medium. GBA2 siRNA or scrambled duplexes (10 nM) were

added and incubated for 10 minutes. Liposome:duplex complexes

(500 mL) were added to the cells grown in 2 cm2 wells and

incubated at 37uC for 6 hours. The cells were washed twice with

culture medium and maintained at 37uC for an additional 18 or

42 hours.

Analysis of cell ceramide content
The analysis of cell ceramide content was performed via two

different approaches: by the LC-MS and LC-MS/MS method

[40] and by the metabolic labeling of cell SLs using (3H)sphin-

gosine as a precursor. Both methods are detailed in the

Supplement S1 and S2.

Enzymatic activity
IB3-1 or CuFi-1 cells were treated with 2 mM miglustat, 10 nM

Genz-529648 or solvent alone for 1 hour and the infected with

heat-killed PAO1 for 4 hours. The cells were then scraped and

centrifuged; the cellular pellets were resuspended in water

containing protease inhibitors and sonicated. After protein

determination, the b-glucosidase activities were assayed in the

total cell lysates using the fluorigenic substrate 4-methylumbelli-

feryl-b-D-glucopyranoside (MUB-Glc) as previously described

[41]. To discriminate between GBA1 and GBA2 b-glucosidase

activity, the enzymatic assays were performed in the presence of

5 nM of Genz-529648 or 500 mM of Conduritol B Epoxide (CBE),

respectively.

Statistics
Results are expressed as the mean 6 standard error of the

mean. Comparisons between groups were made using Student’s t

Figure 1. Genz-529648 reduces P. aeruginosa stimulated IL-8 mRNA expression and protein release. Panels A and B. Genz-529648 reduces
P. aeruginosa stimulated IL-8 mRNA expression. IB3-1 (A) and CuFi-1 (B) cells were treated with a range of doses of Genz-529648 (1–100 nM) or solvent
alone for 1 hour and then infected with PAO1 for 4 hours at 37uC. The inflammatory response was evaluated by studying the expression of IL-8
mRNA, which was measured by Real-time qPCR and obtained by comparing the ratio IL-8 and the housekeeping gene GAPDH between non-infected
and infected cells. The results are expressed as the % of untreated cells and represent the mean 6 standard error of the mean of 4 independent
experiments in duplicate. Comparisons between groups were made by using Student’s t tests. Panels C and D. Genz-529648 reduces the P. aeruginosa
induced IL-8 secretion. IB3-1 (C) and CuFi-1(D) cells were treated with Genz-529648 (100 nM) for 1 hour prior to infection with heat killed PAO1 for 24
hours. Data reported are the mean 6 standard error of the mean of 4 independent experiments in duplicate. Comparisons between groups were
made by using Student’s t tests.
doi:10.1371/journal.pone.0104763.g001
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tests. Statistical significance was defined by p,0.05. In order to

calculate the IC50 values, experimental data were fitted by

nonlinear regression using the software ‘‘R Core Team, 2013,

‘‘R: A language and environment for statistical Computing’’, R

Foundation for Statistical Computing, Vienna, Austria, URL

http://www.R-project.org.

Results

Genz-529648 reduces the expression of IL-8 in CF
bronchial epithelial cells

Several hydrophobic deoxynojirimycin derivatives have been

generated that can be used as research tools to probe the

physiological relevance of GBA2. Complete inhibition of GBA2

can be realized in cells treated with low nanomolar concentrations

of N-(5-adamantane-1-yl-methoxy)pentyl)- deoxynojirimycin

(Genz-529648). GlcCerT and oligosaccharide chain-trimming

glucosidases, which are sensitive to other hydrophobic deoxynojir-

imycin derivatives, are unaffected by Genz-529648 [34]. To

determine a possible involvement of GBA2 in the inflammatory

response to P. aeruginosa in bronchial epithelial cells, the effect of

Genz-529648 was investigated and compared to miglustat and

NB-DGJ. IB3-1 and CuFi-1 cells were treated with increasing

amounts (1–100 nM) of the inhibitors for 1 hour prior to infection

with P. aeruginosa (strain PAO1), and the IL-8 expression was

then analyzed 4 hours post-infection. As shown in panels A and B

in figure 1, Genz-529648 reduced the PAO1 induced increase in

IL-8 mRNA levels by approximately 40% in both cell lines. These

experiments were extended by measuring IL-8 chemokine

secretion in the supernatants of IB3-1 and CuFi-1 cells. Thus,

the cells were treated with Genz-529648 (100 nM) for 1 hour prior

to infection with heat killed PAO1, and the supernatants were

collected 24 hours later. Heat killed organisms were used to

prevent bronchial cell death during the 24 hours of bacterial

challenge. Figure 1, panels C and D, shows that Genz-529648

significantly decreased the amount of IL-8 released from the CF

bronchial cells infected by PAO1 by approximately 30%, which is

consistent with the results obtained at the transcriptional level

(figure 1, panels A and B).

The effects of Genz-529648 in bronchial cells were then

compared to miglustat and NB-DGJ, which also exhibit anti-

inflammatory effects [25]. IB3-1 and CuFi-1 cells were treated

with different concentrations of miglustat, NB-DGJ or Genz-

529648 and infected with PAO1 as previously described; the IL-8

mRNA levels were then measured. As summarized in table 1, a

similar maximal inhibition of approximately 50% was observed in

both cell lines treated with miglustat, NB-DGJ or Genz-529648.

However, the IC50 values of Genz-529648 in IB3-1 and CuFi-1

cells were considerably lower compared to miglustat or NB-DGJ,

which indicated that it is a more potent inhibitor of the

inflammatory response in CF bronchial cells. Moreover, the

IC50 values of Genz-529648 at inhibiting IL-8 expression were of

the same order of magnitude compared to that reported at

inhibiting GBA2 [35], which suggests that the reduction in the

inflammatory response to P. aeruginosa may have been mediated

through its action on GBA2.

Although Genz-529648 is active at nanomolar concentrations,

its potential toxicity on bronchial epithelial cells was investigated.

To determine the impact on cell proliferation, IB3-1 cells were

treated with increasing concentrations of Genz-529648 (from

0.001 to 1 mM), and the cell number/ml was analyzed after 4, 24,

48 and 72 hours. The results, which were derived from three

independent experiments, indicate that the IC50 values calculated

at these time points were always greater than 1 mM, which

T
a

b
le

1
.

In
h

ib
it

io
n

o
f

P
.

a
er

u
g

in
o

sa
st

im
u

la
te

d
IL

-8
m

R
N

A
e

xp
re

ss
io

n
b

y
al

ky
la

te
d

im
in

o
su

g
ar

s
in

IB
3

-1
an

d
C

u
Fi

-1
ce

lls
.

IB
3

-1
ce

ll
s

C
u

F
i-

1
ce

ll
s

In
h

ib
it

o
r

IC
5

0
C

I
M

ax
im

al
In

h
ib

it
io

n
C

I
IC

5
0

C
I

M
ax

im
al

In
h

ib
it

io
n

C
I

(m
M

)
(m

M
)

(%
)

(%
)

(m
M

)
(m

M
)

(%
)

(%
)

M
ig

lu
st

a
t

2
.2

1
.4

–
3

.4
5

1
.6

5
1

.1
–

5
3

.3
1

.9
8

1
.4

–
2

.7
5

1
.5

5
1

.0
–

5
7

.3

N
B

-D
G

J
0

.2
7

0
.1

6
–

0
.4

4
4

5
.0

3
9

.0
-5

2
-0

0
.3

9
0

.0
0

4
–

3
.8

5
3

.0
4

1
.0

–
5

5
.0

G
e

n
z

-5
2

9
6

4
8

0
.0

0
9

0
.0

0
4

–
0

.0
1

8
5

1
.4

4
6

.0
–

5
7

.0
0

.0
0

2
0

.0
0

2
–

0
.0

0
3

4
6

.0
3

8
.0

–
5

3
.0

IB
3

-1
an

d
C

u
Fi

-1
ce

lls
w

e
re

tr
e

at
e

d
w

it
h

a
ra

n
g

e
o

f
d

o
se

s
o

f
th

e
al

ky
la

te
d

im
in

o
su

g
ar

s
m

ig
lu

st
at

o
r

N
B

-D
G

J
(0

.5
–

1
0

0
mM

)
o

r
G

e
n

z-
5

2
9

6
4

8
(1

–
1

0
0

n
M

)
fo

r
1

h
o

u
r

p
ri

o
r

to
in

fe
ct

io
n

w
it

h
P

A
O

1
(1

0
–

5
0

C
FU

/c
e

ll)
fo

r
4

h
rs

,a
n

d
IL

-8
m

R
N

A
e

xp
re

ss
io

n
w

as
m

e
as

u
re

d
.

IC
5

0
va

lu
e

s
w

e
re

ca
lc

u
la

te
d

b
y

fi
tt

in
g

w
it

h
a

n
o

n
-l

in
e

ar
re

g
re

ss
io

n
e

xp
e

ri
m

e
n

ta
l

d
at

a
o

b
ta

in
e

d
in

4
d

if
fe

re
n

t
in

d
e

p
e

n
d

e
n

t
e

xp
e

ri
m

e
n

ts
p

e
rf

o
rm

e
d

in
e

ac
h

ce
ll

lin
e

tr
e

at
e

d
w

it
h

e
ac

h
in

h
ib

it
o

r.
IC

5
0

va
lu

e
s

(i
.e

.,
in

h
ib

it
o

r
co

n
ce

n
tr

at
io

n
th

at
re

su
lt

s
in

5
0

%
in

h
ib

it
io

n
)

w
e

re
ca

lc
u

la
te

d
b

y
fi

tt
in

g
e

xp
e

ri
m

e
n

ta
l

d
at

a
w

it
h

a
n

o
n

-l
in

e
ar

re
g

re
ss

io
n

ac
co

rd
in

g
to

th
e

fo
llo

w
in

g
fo

rm
u

la
:

-l
o

g
(I

)=
p

K
i

+
lo

g
(V

2
v)

/v
.

I=
in

h
ib

it
o

r
co

n
ce

n
tr

at
io

n
;

v
=

%
in

h
ib

it
io

n
;

p
K

i=
IC

5
0

;
V

=
m

ax
im

al
in

h
ib

it
io

n
;

C
I=

co
n

fi
d

e
n

ce
in

te
rv

al
9

5
%

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
4

7
6

3
.t

0
0

1

Role of GBA2 in P. aeruginosa Infected CF Cells

PLOS ONE | www.plosone.org 4 August 2014 | Volume 9 | Issue 8 | e104763

http://www.R-project.org


supports the concept that this compound is not cytotoxic at

nanomolar concentrations and does not display inhibitory activity

on CF bronchial cells. Cell viability, which was measured after 4

and 24 hours of treatment (figure S1), was always similar to the

untreated cells and between 91.3 and 97.6%. At the same time

points, treatment with Genz-529648 did not cause apoptotic

effects, even when used at the 1 mM concentration (figures S2 and

S3).

Miglustat and Genz-529648 inhibit GBA2 activity in P.
aeruginosa infected CF bronchial epithelial cells

To ascertain the possible involvement of GBA2 in the signaling

processes associated with P. aeruginosa infection, total b-

glucosidase, GBA1 and GBA2 activities in the lysates of both

IB3-1 and CuFi-1 cells infected by heat killed PAO1 were

measured. To prevent potential interference because of bacterial

glucosidase activities, the infected cells were subjected to washes

with PBS that removed most bacteria; moreover, heat killed

instead of living organisms were used. In addition, the residual

GBA1 and GBA2 activities associated with heat killed bacteria

were measured by enzymatic assays on the amounts of heat killed

PAO1 from 20 to 30-fold higher compared to those used for the

cell infection. The fluorescence associated with the PAO1 samples,

which was the result of hydrolysis of the artificial substrate MUB-

Glc, was less or the same extent of that identified in the negative

controls, which indicates that heat killed PAO1 does not have

detectable b-glucosidase activity. As shown in figure 2, a

significant increase in total b-glucosidase (figure 2, panel A),

GBA1 (figure 2, panel B) and GBA2 (figure 2, panel C) activities

were observed in response to infection. The effects of pre-

treatment with miglustat or Genz-529648 on b-glucosidase activity

were then studied in both IB3-1 and CuFi-1 cells infected with

PAO1. Total b-glucosidase was slightly reduced in both cell lines

treated with the two inhibitors (figure 3, panel A), whereas GBA1

activity remained unchanged (figure 3, panel B). Importantly, both

miglustat and Genz-529648 significantly decreased GBA2 activity

in bronchial cells infected with P. aeruginosa (figure 3, panel C).

These results demonstrate that miglustat and Genz-529648

inhibited the activity of GBA2 and support the hypothesis that

GBA2 could be a target of the anti-inflammatory effects of

deoxynojirimycin-type inhibitors.

Figure 2. Infection with PAO1 increases b-glucosidase activity in IB3-1 and CuFi-1 cells. IB3-1 and CuFi-1 cells were infected with heat-
killed PAO1 for 4 hours. The cells were then scraped and centrifuged; the cellular pellets were resuspended in water containing protease inhibitors
and sonicated. Similar amounts of cellular proteins were used to perform the enzymatic assays to detect the activities of total b-glucosidase (A), GBA1
(B) and GBA2 (C), as reported in the Methods section. The data reported are the mean 6 standard error of the mean of 4 (IB3-1) or 3 (CuFi-1)
independent experiments in triplicate. Comparisons between groups were made by using Student’s t tests.
doi:10.1371/journal.pone.0104763.g002

Figure 3. Miglustat and Genz-529648 inhibit GBA2 activity in IB3-1 and CuFi-1 cells infected by P. aeruginosa. IB3-1 and CuFi-1 cells
were treated with [2 mM] miglustat, [10 nM] Genz-529648 or solvent alone for 1 hour prior to infection with heat-killed PAO1 for 4 hours. Total b–
glucosidase (A), GBA1 (B) and GBA2 (C) activities were measured as indicated in figure 2. The data reported are the mean 6 standard error of the
mean of 3 (IB3-1) or 2 (CuFi-1) independent experiments in triplicate. Comparisons between groups were made by using Student’s t tests.
doi:10.1371/journal.pone.0104763.g003
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siRNA-mediated silencing of GBA2 in CF bronchial cells
decreases IL-8 expression

To confirm if GBA2 is involved in the signaling cascade

activated by P. aeruginosa infection of CF bronchial cells, the

levels of IL-8 were measured following GBA2 silencing with

siRNA oligonucleotides. The cells were transiently transfected with

a siRNA that specifically targeted the degradation of human

GBA2 mRNA or a control duplex scrambled siRNA. As shown in

figure 4, panel A, transfection of IB3-1 cells with the GBA2-

specific siRNA significantly reduced (30%) the level of expression

of GBA2 mRNA. Transfection of CuFi-1 cells with the GBA2

siRNA produced a greater decrease (60%) in GBA2 mRNA levels

(figure 4, panel B). The experiments were then repeated in

primary CF bronchial cells, a cell model that closely resembles the

native epithelium, where a decrease of GBA2 expression (,60%)

was also identified after transfection with the GBA2 specific siRNA

(figure 4, panel C). As shown in figure 5, the silencing of GBA2

expression decreased IL-8 transcription in both uninfected cells

(figure 5, panels A, B and C) and cells infected by P. aeruginosa
(figure 5, panels D, E and F); however, in IB3-1 cells, the IL-8

reduction was not significant (figure 5, panels A and D). These

findings were confirmed by measuring IL-8 protein levels in the

supernatants of CuFi-1 cells at 4 hours post-infection with PAO1.

As expected, the decrease in IL-8 mRNA expression was

accompanied by a significant reduction in the secretion of IL-8

into the supernatant (figure 6). To provide evidence that the

reduction of IL-8 levels is related to a decrease in GBA2 function,

GBA2 activity was measured in GBA2 silenced CuFi-1 cells.

Therefore, the cells were transiently transfected as previously

described, and the total b-glucosidase and GBA2 activities in cell

lysates were measured 18 and 42 hours after transfection. As

shown in figure 7, panel A, GBA2 activity was significantly

decreased at 18 hours after transfection. A further reduction of

GBA2 activity resulted from measurements performed 42 hours

after silencing. In these experimental conditions, transfection with

siRNA that targeted GBA2 had an impact only on GBA2 activity,

as demonstrated by the slight decrease of total b-glucosidase

activity identified in GBA2 silenced cells (figure 7, panel B). These

data, which demonstrate that lowering the expression and activity

of GBA2 leads to a concomitant reduction in IL-8 levels, suggest a

role for GBA2 in the inflammatory response induced by P.
aeruginosa infection of CF bronchial cells.

Increase of cell ceramide content induced by
P. aeruginosa in CF bronchial cells

Inhibiting the catabolism of GlcCer by GBA2 could also lower

ceramide levels and thereby reduce pulmonary inflammation in

CF patients. We have previously shown that miglustat reduced the

expression of immunoreactive ceramides (measured by immuno-

fluorescence) induced by P. aeruginosa [20]. To assess the effect of

P. aeruginosa infection on the total cell ceramide content, LC-MS

and LC-MS/MS analyses were performed as detailed in the

Supplement S1. In the PAO1 infected IB3-1 and CuFi-1 cells, a

significant increase in ceramides was identified (figure 8, panels A

and B), which indicated that the infection up-modulated whole cell

ceramide levels. Treatment with miglustat or Genz-529648

significantly reduced whole cell ceramide in IB3-1 cells by

approximately 50% (figure 8, panel A), whereas in CuFi-1 cells,

a small, albeit not significant decrease in ceramide levels was

identified (figure 8, panel B).

To better evaluate the contribution of GSL catabolism to the

ceramide increase following PAO1 infection, cell SL metabolic

labeling was performed with the radioactive precursor sphingo-

sine, which enables labeling of SLs at the steady-state. Thus, the

effects of drug treatment on the radioactive ceramide content are

only because of the modulation of the SL catabolism, thereby

excluding the de novo pathway. To discriminate between the

ceramide derived from SM catabolism and GSLs, we treated cells

with amitriptyline alone, which is an inhibitor of ASM activity, or

in combination with Genz-529648. IB3-1 and CuFi-1 cells were

also subjected to the SL metabolic labeling with (1-3H) sphingosine

and were then differently treated with 10 mM amitriptyline alone

or in combination with 10 nM Genz-529648 and infected with

PAO1 as detailed in the Supplement S2. The total lipid extracts

(ELT) obtained from cells were subjected to HPTLC separation to

distinguish ceramide from the other SLs. The radioactive

ceramide was quantified by digital autoradiography (figure 9,

panel A). In the CuFi-1 cells, the ceramide levels were under the

Figure 4. Transfection with GBA2 siRNA reduces the expression of GBA2 in CF bronchial cells. IB3-1 (A), CuFi-1 (B) or CF primary
bronchial cells (C) were transfected with GBA2 siRNA or scrambled oligonucleotides for 24 h. GBA2 mRNA expression was measured by Real-time
qPCR and obtained by comparing the ratio GBA2 and the housekeeping gene GAPDH between scrambled or siRNA treated cells. The data reported
on the y-axis are relative to scrambled-treated cells and represent the mean 6 SE of five (IB3-1, panel A), eight (CuFi-1, panel B) and four (CF primary
bronchial, panel C) independent experiments performed in duplicate. Comparisons between groups were made by using Student’s t tests.
doi:10.1371/journal.pone.0104763.g004
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sensitivity threshold of the digital autoradiograph used. By

contrast, a significant increase in the ceramide content after

PAO1 infection was observed in the IB3-1 cells. The treatment of

cells with amitriptyline caused a slight reduction of ceramide,

whereas a significant decrease of the ceramide content was

observed when infected cells were treated with both amitriptyline

and Genz-529648; these findings support a direct involvement of

GBA2 in ceramide production (figure 9, panel B).

Discussion

Recent advances in glycobiology have encouraged a search for

novel drug molecules that address new biochemical targets.

Iminosugars, which are carbohydrate-mimetics with a nitrogen

atom replacing oxygen, have many attributes that make them

suitable as small-molecule drug candidates. Pharmaceutical

interest in these compounds is related to their ability to modulate

carbohydrate processing, control cancer cell glycosylation, reduce

viral and bacterial infectivity, alter immune responses and bind

carbohydrate receptors [22]. The iminosugar miglustat, which was

approved to treat type I Gaucher disease and Niemann-Pick type

C disease, exerts an anti-inflammatory effect in CF human

bronchial epithelial cells infected by P. aeruginosa and down

modulates the neutrophil chemotaxis in murine lungs in vivo
[20,23]. Here, we report that the non-lysosomal b-glucosidase 2, is

a target of the anti-inflammatory effects of miglustat and other

deoxynojirimycin-type inhibitors used in this study. This conten-

tion is supported by the findings that: i) treatment of P. aeruginosa
infected CF bronchial cells with Genz-529648, a potent inhibitor

of GBA2, reduced the extent of inflammation; ii) the IC50 value of

the anti-inflammatory effect of Genz-529648 was similar com-

pared to the effect reported toward inhibiting GBA2 activity (33);

iii) treatment of CF bronchial cells with miglustat or Genz-529648

inhibited GBA2; and iv) inhibition of GBA2 by siRNA lowered

the expression of IL-8.

The alkylated iminosugars miglustat, NB-DGJ and Genz-

529648 employed in this study inhibit GlcCerT, GBA1 and

GBA2. However, the impact of these compounds on GlcCerT and

GBA activities depends greatly on their dosage [30]. Lower

concentrations of iminosugars primarily affect GBA2, whereas

higher doses inhibit all enzymes. Notably, we obtained a reduction

of P. aeruginosa stimulated IL-8 mRNA expression in CF

bronchial cells treated with Genz-529648 at very low nanomolar

Figure 5. Reduction of IL-8 is associated with a relevant decrease of GBA2 expression in CF bronchial cells. IB3-1 (A), CuFi-1 (B) or CF
primary bronchial cells (C) were transfected with GBA2 siRNA or scrambled oligonucleotides for 24 h and then infected with PAO1 (10–50 CFU/cell).
IL-8 mRNA expression was measured as indicated in figure 1. The data reported on the y-axis are relative to scrambled-treated cells (A, B and C) or
scrambled-treated uninfected cells (D, E and F) and represent the mean 6 SE of five (IB3-1, panels A and D), eight (CuFi-1, panels B and E) and four (CF
primary bronchial, panels C and F) independent experiments performed in duplicate. Comparisons between groups were made by using Student’s t
tests.
doi:10.1371/journal.pone.0104763.g005
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concentrations, which completely inhibited GBA2 activity, but not

GBA1 or GlcCerT [34]. Measurements of the sensitivity of

GlcCerT, GBA1 and GBA2 to the inhibition by miglustat in

different mammalian cells/tissues revealed IC50 values in the low

mM, high mM and nM range, respectively. This finding indicates

that GBA2 is more sensitive to miglustat compared to GlcCerT

and GBA1 [30]. Although the IC50 values of miglustat at

inhibiting P. aeruginosa stimulated IL-8 mRNA expression in

CF bronchial cells (table 1) are higher compared to the IC50 values

for inhibiting GBA2, they are substantially lower compared to

GlcCerT and GBA1. Hence, GlcCerT and GBA1 are unlikely to

have been the targets of the anti-inflammatory effects of miglustat.

Furthermore, we previously reported that miglustat down mod-

ulates neutrophil chemotaxis in vivo at doses that are lower

(100 mg/Kg) [20] compared to the doses necessary to affect

GlcCerT (1800–2400 mg/Kg) [42], which further supports the

notion that the primary effect of miglustat is on GBA2 activity.

GBA2 plays a role in extra-lysosomal GlcCer catabolism,

producing ceramide that can then be rapidly converted into

sphingomyelin [29]. Although the mechanism and function of

extra-lysosomal GlcCer degradation are not well understood,

GBA2 has recently been implicated in various pathologic

conditions, such as neuronal diseases [43] or cancer [44], which

supports a role of GlcCer in cell growth, proliferation and

immunity. The present novel findings suggest that GBA2 may also

be involved in modulating the inflammatory response to P.
aeruginosa infection in CF bronchial epithelial cells. Indeed, total

b-glucosidase, GBA1 and GBA2 activities were elevated in CF

bronchial cells infected by P. aeruginosa (figure 2). As for the

effects of infection on SLs, it should be noted that infection of host

epithelial cells with P. aeruginosa activates host ASM levels, which

leads to the generation of plasma membrane ceramide-enriched

platforms that promote the internalization of bacteria, induce

apoptosis and regulate the cytokine storm [13]. Based on the

observations noted in our studies, it is possible that in addition to

ASM, an overall activation of b-glucosidase activity may also be

involved in the host cell response to infection. However, additional

studies are needed to validate this assumption. Importantly,

miglustat or Genz-529648, at the concentrations used in this study,

strongly inhibited only GBA2 activity (figure 3); in parallel, we

demonstrated a reduction of P. aeruginosa stimulated IL-8 mRNA

expression and protein release in CF bronchial cells when GBA2

expression (figure 5) and function (figures 1 and 7) were decreased.

These findings support the contention that GBA2 is involved in

the inflammatory response to P. aeruginosa. GBA2 is typically

associated with plasma- and/or ER-membranes in close proximity

to the sites of GlcCer synthesis and ceramide conversion to SM

[45]. Therefore, as GBA2 is in a key position for GlcCer-mediated

signaling, it could be activated following interactions between P.
aeruginosa and the host cell. It has been shown that GBA2

activation causes the phosphorylation of eukaryotic initiation

factor 2a (eIF2a), and this event is associated with an increased

expression of the ATF4 family of transcription factors [44].

Interestingly, phosphorylation of eIF2a has been observed in

models of acute infection with Clostridium difficile, as part of the

mucosal inflammatory response [46]. It can be speculated that

GBA2 activation by P. aeruginosa leads to increased expression of

the transcription factors that regulate the pro-inflammatory genes

in CF bronchial cells.

The airway epithelium is known to play a key role in the

initiation and regulation of inflammatory processes in response to

pathogens. In addition to the classical cytokines and chemokines

that are released by the respiratory epithelium, ceramide is

another important factor in pulmonary host defense [11]. Here,

we report an increase in whole cell ceramides in response to

infection by P. aeruginosa (figures 8 and 9) in CF bronchial

Figure 6. GBA2 silencing reduces the IL-8 protein release in CuFi-1 cells. CuFi-1 cells were transfected with GBA2 siRNA or scrambled
oligonucleotides and then infected with PAO1 as indicated in figure 5. The supernatants were collected at the end of infection, and IL-8 protein
release was measured as detailed in the ‘‘Methods’’ section. The data reported are the mean 6 SE of eight independent experiments performed in
duplicate. Comparisons between groups were made by using Student’s t tests.
doi:10.1371/journal.pone.0104763.g006
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Figure 7. GBA2 silencing reduces GBA2 activity in CuFi-1 cells. CuFi-1 cells were transfected with GBA2 siRNA or scrambled oligonucleotides
as indicated in figure 5. Eighteen or 42 hours after transfection, the cells were scraped and treated as indicated in figure 2. Total b-glucosidase (B) and
GBA2 (A) activities were measured as reported in the Methods section. The data reported are the mean 6 standard error of the mean of 2
independent experiments in triplicate. Comparisons between groups were made by using Student’s t tests.
doi:10.1371/journal.pone.0104763.g007
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epithelial cells, which is consistent with the rise of ceramide levels

at the plasma membrane previously described [20]. In CuFi-1

cells, which have a lower ceramide content compared to IB3-1

cells, we observed a slight decrease in ceramide levels by miglustat

or Genz-529648 (figure 8, panel B). By contrast, IB3-1 cells

infected with PAO1 and treated with both miglustat and Genz-

Figure 8. Infection with PAO1 increases whole cell ceramides in CF bronchial epithelial cells. IB3-1 (A) and CuFi-1 (B) cells were treated
with [2 mM] miglustat, [10 nM] Genz-529648 or solvent alone and infected with PAO1 as indicated in figure 3. After infection, whole cell ceramides
were analyzed by LC-MS and LC-MS/MS methods as described in the online supplement. The data reported are the mean 6 SE of three independent
experiments performed with both cell lines. Comparisons between groups were made by using Student’s t tests.
doi:10.1371/journal.pone.0104763.g008
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Figure 9. Treatment with Genz-529648 reduces the ceramide content in IB3-1 cells infected with PAO1. IB3-1 cells subjected to the SL
metabolic labeling with (1-3H)sphingosine were treated with [10 mM] amitriptyline alone, in combination with [10 nM] Genz-529648, or with solvent
alone and infected with PAO1 as indicated in figure 3. After lipid extraction, (3H)ceramide was separated from the other radioactive SLs by HPTLC, as
detailed in the online supplement, and detected by digital autoradiography (total lipid extracts amounts corresponding to 4 mg of cellular proteins
were applied on a 4-mm line. Time of acquisition: 48 hours). The digital autoradiography represents data obtained in three different experiments (A).
The ceramide content was quantified by specific b-Vision software, and the data reported are the mean 6 SE of three independent experiments.
Comparisons between groups were made by using Student’s t tests (B).
doi:10.1371/journal.pone.0104763.g009
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529648 showed a marked decrease of ceramide content (figure 8,

panel A). The increase in ceramide content following infection by

PAO1 could be a result of different pathways, including the de
novo biosynthesis [21], SM catabolism [13] and GSL degradation.

When we evaluated the effects of drug treatment on the

radioactive ceramide content that resulted only because of the

modulation of SL catabolism, thus excluding the de novo pathway,

we identified a marked increase in the cell ceramide content after

PAO1 infection (figure 9). After ASM inhibition, we observed a

slight decrease and a further, more significant ceramide reduction

after the addition of the specific inhibitor of GBA2, Genz-529648

(figure 9), which strongly supports the direct involvement of GBA2

in the ceramide production after PAO1 infection of human

bronchial epithelial cells. Thus, the information derived from the

literature and the data presented here provide evidence that

different inhibitors, such as miglustat and Genz-529648, amitrip-

tyline [14] and myriocin [21], that target GBA2, ASM and

ceramide de novo synthesis, respectively, could represent thera-

peutic tools to reduce ceramide levels and limit excessive lung

inflammation in CF patients (figure 10). Nevertheless, drugs that

target SL metabolism must be carefully titrated to normalize

ceramide levels in CF airways, but not reduce ceramide

concentrations below a critical level that would impair normal

biological functions. Notably, systemic inhibition of ASM could

negatively affect the host defense, which has been demonstrated by

studies in mice that completely lack ASM and are unable to

control infections [13]. Interestingly, no increased susceptibility to

bacterial infections has been identified in patients affected by

Gaucher disease, treated with miglustat [47] or in a mouse model

of Sandhoff disease treated with Genz-529648 [48].

In summary, our study proposes GBA2 as a novel target to

reduce the inflammatory response to P. aeruginosa in CF

bronchial cells. These results further support the use of modulators

of SL metabolism for CF lung inflammation. In addition, as GBA2

is sensitive to very low doses of miglustat, other alkylated

iminosugars (NB-DGJ) and Genz-529648, our findings provide

evidence to develop therapeutic options for CF lung inflammation

using iminosugars, which can be effective at even low doses, thus

limiting potential adverse effects.

Supporting Information

Figure S1 Viability profile of IB3-1 cells treated for 24
hours with the indicated concentrations of Genz-529648.

(TIF)

Figure S2 Apoptosis profile of IB3-1 cells treated for 24
hours with the indicated concentration of Genz-529648.

(TIF)

Figure S3 Apoptotic IB3-1 cells after 4 and 24 hours of
treatment with the indicated concentrations of Genz-
529648.

(TIF)

Supplement S1 Analysis of cell ceramide levels using
LC-MS and LC-MS/MS.

(DOC)

Figure 10. Metabolic pathways involved in ceramide formation. Schematic representation of the primary metabolic pathways involved in
ceramide production. Ceramide can be produced by the de novo biosynthesis, the hydrolysis of sphingomyelin (SM) by the action of
sphingomyelinases and the catabolism of glycosphingolipids (GSL). In particular, it has been observed that in CF bronchial epithelial cells, the use of
inhibitors of these pathways resulted in a reduction of ceramide. Myriocin acts on the first step of the de novo biosynthesis through the inhibition of
the Serine-palmitoyl transferase (SPT); amitriptyline inhibits the acid SMase (ASM) responsible for SM catabolism; and miglustat, NB-DGJ and Genz-
529648 are inhibitors of the b-glucosidases GBA1 and GBA2, which are involved in the hydrolysis of the glucosylceramide (GlcCer).
doi:10.1371/journal.pone.0104763.g010

Role of GBA2 in P. aeruginosa Infected CF Cells

PLOS ONE | www.plosone.org 12 August 2014 | Volume 9 | Issue 8 | e104763



Supplement S2 Analysis of cell ceramide levels by cell
SLs labeling with (3H)sphingosine.
(DOC)

Supplement S3 Cellular toxicity of Genz-529648.
(DOC)
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19. Nährlich L, Mainz JG, Adams C, Engel C, Herrmann G, et al. (2013) Therapy
of CF-patients with amitriptyline and placebo-a randomised, double-blind,

placebo-controlled phase IIb multicenter, cohort-study. Cell Physiol Biochem
31(4–5): 505–312.

20. Dechecchi MC, Nicolis E, Mazzi P, Cioffi F, Bezzerri V, et al. (2011)
Modulators of sphingolipid metabolism reduce lung inflammation. Am J Respir

Cell Mol Biol 45(4): 825–833.

21. Caretti A, Bragonzi A, Facchini M, De Fino I, Riva C, et al. (2014) Anti-

inflammatory action of lipid nanocarrier-delivered myriocin: therapeutic

potential in cystic fibrosis. Biochim Biophys Acta 1840(1): 586–594.

22. Nash RJ, Kato A, Yu C-Y, Fleet GWJ (2011) Iminosugars as therapeuthic
agents:recent advances and promising trends. Future Med Chem 3(12): 1–9.

23. Dechecchi MC, Nicolis E, Mazzi P, Paroni M, Cioffi F, et al. (2012)
Pharmacological modulators of sphingolipid metabolism for the treatment of

cystic fibrosis lung inflammation. In Dinesh D and Sriramulu D editors. Cystic

Fibrosis - the Human Agony, ISBN 979-953-307-059-8, Germany.

24. Norez C, Noel S, Wilke M, Bijvelds M, Jorna H, et al. (2006) Rescue of

functional delF508-CFTR channels in cystic fibrosis epithelial cells by the a-

glucosidase inhibitor miglustat. FEBS Lett 580: 2081–2086.

25. Dechecchi MC, Nicolis E, Norez C, Bezzerri V, Borgatti M, et al. (2008) Anti-

inflammatory effect of miglustat in bronchial epithelial cells. J Cyst Fibros 7(6):
555–565.

26. Lubamba B, Lebacq J, Lebecque P, Vanbever R, Leonard A (2009) Airway

delivery of low-dose miglustat normalizes nasal potential difference in F508del
cystic fibrosis mice. Am J Respir Crit Care Med 179: 1022–1028.

27. Leonard A, Lebecque P, Dingemanse J, Leal T (2012) A randomized placebo-
controlled trial of miglustat in cystic fibrosi based on nasal potential difference.

J Cystic Fibrosis 11(3): 231–236.

28. Inokuchi J, Mason I, Radin NS (1987) Antitumor activity via inhibition of

glycosphingolipid biosynthesis. Cancer Lett 38: 23–30.

29. Boot RG, Verhoek M, Donker-Koopman W, Strijland A, van Marle J, et al.
(2007) Identification of the non-lysosomal glucosylceramidase as beta-glucosi-

dase 2. J Biol Chem 282: 1305–1312.

30. Ridley CM, Thur KE, Shanahan J, Thillaiappan NB, Shen A, et al. (2013) b-

Glucosidase 2 (GBA2) activity and imino sugar pharmacology. J Biol Chem
288(36): 26052–26066.

31. Dwek RA, Butters TD, Platt FM, Zitzmann N (2002) Targeting glycosylation as

a therapeutic approach. Nat Rev Drug Discov 1: 65–75.

32. Platt FM, Neises GR, Karlsson GB, Dwek RA, Butters TD (1994) N-

butyldeoxygalactonojirimycin inhibits glycolipid biosynthesis but does not affect
N-linked oligosaccharide processing. J Biol Chem 269 (43): 27108–27114.

33. Weenekes T, Meijer AJ, Groen AK, Boot RG, Groener JE, et al. (2010) Large-

Scale synthesis of the glucosylceramide synthase inhibitor N-[5-(Adamantan-1-
yl-methoxy)-pentyl]-1-deoxynojirimycin. J Med Chem 53: 689–698.

34. Overkleeft HS, Renkema Hg, Neele J, Vianello P, Hung IO, et al. (1998)
Generation of specific deoxynojirimycin-type inhibitors of the non-lysosomal

glucosylceramidase. J Biol Chem 273 (41): 26522–26527.

35. Yildiz Y, Matern H, Thompson B, Allergood JC, Warren RL, et al. (2006)

Mutation of beta-glucosidase 2 causes glycolipid storage disease and impaired

male fertility. J Clin Invest 116: 2985–2994.

36. Aerts JM, Ottenhoff R, Powlson AS, Grefhorst A, van Eijk M, et al. (2007)

Pharmacological inhibition of glucosylceramide synthase enhances insulin
sensitivity. Diabetes 56(5): 1341–1349.

37. Zeitlin PL, Lu L, Rhim J, Cutting G, Stetten G, et al. (1991) A cystic fibrosis
bronchial epithelial cell line: immortalization by adeno-12-SV40 infection.

Am J Respir Cell Mol Biol 4: 313–319.

38. Zabner J, Karp P, Seiler M, Phillips Sl, Mitchell CJ, et al. (2003) Development of
cystic fibrosis and non cystic fibrosis airway cell lines. Am J Physiol Lung Cell

Mol Physiol 284: L844–L854.

39. Scudieri P, Caci E, Bruno S, Ferrera L, Schiavon M, et al. (2012) Association of

TMEM16A chloride channel overexpression with airway goblet cell metaplasia.

J Physiol 590 (23): 6141–6155.

40. Sullards MC, Allegood JC, Kelly S, Wang E, Haynes CA, et al. (2007) Structure-

specific, quantitative methods for analysis of sphingolipids by LC-tandem MS:
‘‘inside-out’’ sphingolipids. Methods in Enzymology 432: 83–115.

41. Aureli M, Loberto N, Bassi R, Ferraretto A, Perego S, et al. (2012) Plasma
membrane-associated glycohydrolases activation by extracellular acidification

due to proton exchangers. Neurochem Res 37(6): 1296–1307.

42. Platt FM, Reinkensmeier G, Dwek RA, Butters TD (1996) Extensive
glycosphingolipid depletion in the liver and lymphoid organs of mice treated

with N- butyldeoxynojirimycin. J Biol Chem 272: 19365–19372.
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