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Abstract

We propose a novel approach to predicting disease progression in Alzheimer’s disease (AD) – multivariate ordinal regression
– which inherently models the ordered nature of brain atrophy spanning normal aging (CTL) to mild cognitive impairment
(MCI) to AD. Ordinal regression provides probabilistic class predictions as well as a continuous index of disease progression
– the ORCHID (Ordinal Regression Characteristic Index of Dementia) score. We applied ordinal regression to 1023 baseline
structural MRI scans from two studies: the US-based Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the European
based AddNeuroMed program. Here, the acquired AddNeuroMed dataset was used as a completely independent test set for
the ordinal regression model trained on the ADNI cohort providing an optimal assessment of model generalizability.
Distinguishing CTL-like (CTL and stable MCI) from AD-like (MCI converters and AD) resulted in balanced accuracies of 82%
(cross-validation) for ADNI and 79% (independent test set) for AddNeuroMed. For prediction of conversion from MCI to AD,
balanced accuracies of 70% (AUC of 0.75) and 75% (AUC of 0.81) were achieved. The ORCHID score was computed for all
subjects. We showed that this measure significantly correlated with MMSE at 12 months (r= –0.64, ADNI and r= –0.59,
AddNeuroMed). Additionally, the ORCHID score can help fractionate subjects with unstable diagnoses (e.g. reverters and
healthy controls who later progressed to MCI), moderately late converters (12–24 months) and late converters (24–36
months). A comparison with results in the literature and direct comparison with a binary classifier suggests that the
performance of this framework is highly competitive.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder

characterized by progressive dementia that occurs in later life.

In addition to devastating cognitive impairment, AD is character-

ized by progressive cerebral atrophy. The anatomical hallmarks of

AD, cerebral atrophy and ventricular expansion, can be detected

using magnetic resonance imaging (MRI). To model the spatial

pattern of atrophy and predict conversion to AD, pattern

recognition (PR) has been extensively applied, in particular to

the Alzheimer’s disease neuroimaging initiative (ADNI) dataset

[1–10]. Good performance has been well-established for discrim-

inating healthy controls (CTL) and AD patients [11]. Therefore,

most studies have focused on the more challenging problem of

predicting conversion from mild cognitive impairment (MCI) to

AD. The PR approach employed most commonly has been to

train binary classifiers to discriminate CTL from AD, then apply

these classifiers to make predictions for the MCI group [2,6–9]. In

these cases, the model is configured to discriminate between the

extremities of disease progression while ignoring the intermediate

states. A potential shortcoming of this approach is that it overlooks

the ordinal nature of the disease progression: AD is associated with

higher rates of brain atrophy than normal ageing with MCI

between the two [12–14].

Here, we propose to use structural MRI acquired at baseline to

predict disease progression across four clinical time points: CTL,

MCI stable (MCI-s), MCI converter (MCI-c) and AD. To model

these four groups simultaneously (distinct from pairwise compar-

isons) while considering the ordered relationship between the

classes, we use multivariate ordinal regression [15]. Under this

framework, the clinical groups are considered to lie on a

continuum of disease progression, which provides a source of

information that is not utilized by the conventional approach of

producing predictions from models trained on the contrast

between CTL (disease-free state) versus AD (disease state). We

hypothesize that this method is therefore particularly well-suited to

AD considering that brain atrophy/damage cannot be assumed to

occur at a uniform rate [16–18]. The main advantages of

performing multivariate ordinal regression over a mass univariate

approach are that the method is able to make use of correlations

between brain regions and provides predictions at a single subject

level based on patterns in the data. In more detail, we have

implemented multivariate ordinal regression using Gaussian

processes in a Bayesian framework. This framework furnishes

probabilistic predictions of which clinical time point (CTL, MCI-s,

MCI-c or AD) a test case belongs too. In addition, to help alleviate

the possibility of overfitting, this method implicitly regularises the

solution via the prior over the parameters.

In this study, we explore the use of ordinal regression applied to

baseline structural MRI data for automated early detection as well

as diagnosis of AD using two large multicentre studies – the North

American ADNI cohort and the European AddNeuroMed cohort.

For the ADNI cohort, the performance of ordinal regression will

be assessed using cross-validation with the AddNeuroMed cohort

will be used as a completely independent test set. While cross-

validation provides an estimate of the model generalizability; an

independent test set provides the optimal way to assess the model

generalizability [19]. In this case, the independent data set

(AddNeuroMed) has been acquired so that it is compatible with

ADNI but using different MRI scanners and in a European

cohort.

Materials and Methods

Subjects
Subjects from two open access multicentre studies were used:

AddNeuroMed (http://www.innomed-addneuromed.com) and

ADNI (http://www.adni-info.org/). For AddNeuroMed follow-

up is only available up to 12 months therefore, we only consider 12

month follow-up for the ADNI dataset for the main analysis. A

total of 1023 subjects were included, 348 subjects from the

AddNeuroMed study (119 AD, 119 MCI and 110 CTL,

representing the entire sample) and 564 subjects from the ADNI

study (147 AD, 226 MCI and 191 CTL; participant identifiers are

listed in Table S1). For further validation, ADNI subjects with

unstable diagnostic labels (reverters) and late converters (those who

convert between 12–36 months) were selected using follow-up data

to 36 months (4 AD, 89 MCI and 18 CTL; participant identifiers

are listed in Table S2). Often these data have been previously

discarded [1,8,20]. Here we propose to use these data as an

additional test set to map these subjects onto the CTL to AD

continuum. The subject characteristics are presented in Table 1.

For more information about these datasets; specifically the

inclusion/exclusion criteria and MRI acquisition see Text S1.

The following diagnostic criteria were used:

AD: Mini mental state examination (MMSE) scores between 20–

26, CDR of 0.5 or 1, and met NINCDS/ADRDA criteria for

probable AD.

MCI: MMSE scores between 24–30, memory complaints with

objective memory loss measured with Wechsler Memory Scale

Logical Memory II (education adjusted scores), CDR of 0.5,

absence of significant levels of impairment in other cognitive

domains, preserved activities of daily leaving and absence of

dementia.

CTL: MMSE scores between 24–30, CDR of 0, not depressed,

non MCI, non-demented.

The subjects were re-assessed at several time points following

baseline. Using the diagnostic criteria defined earlier and at the 12

month time point MCI subjects were divided into two groups:

those that did not progress to AD (MCI-s) and those that

progressed to AD (MCI-c). MCI subjects who converter after 12

months were not used to train the model but were used as a test

validation set.

Ethics Statement
We used ADNI subject data collected from 50 clinic sites. Ethics

approval was obtained for each institution involved. The

AddNeuroMed study was approved by ethical review boards in

each participating country (local ethical review board at University

of Perugia, University of Toulouse, Aristotle University of

Thessaloniki, Medical University of Lodz, University of Eastern

Finland and University Hospital of Kuopio and King’s College

London). Both studies were conducted according to Good Clinical

Practice guidelines, the Declaration of Helsinki, US 21CFR Part

50– Protection of Human Subjects, and Part 56– Institutional

Review Boards, and pursuant to state and federal HIPAA

regulations. Written consent was obtained where the research

participant had capacity, and in those cases where dementia

compromised capacity then assent from the patient and written

consent from a relative, according to local law and process, was

obtained. Consent was requested for data collection, sample

storage and subsequent use of samples for research. The

completed questionnaires were approved by each participating

A Continuum-Based Prediction of Alzheimer’s Disease Progression

PLOS ONE | www.plosone.org 2 August 2014 | Volume 9 | Issue 8 | e105542

http://www.innomed-addneuromed.com
http://www.adni-info.org/


site’s Institutional Review Board. The data were anonymized

before being shared.

Regional volume segmentation and cortical thickness
parcellation

For both studies, the imaging protocol included a high-

resolution sagittal 3D T1-weighted Magnetization Prepared

RApid Gradient Echo (MPRAGE) volume. Volumetric segmen-

tation, cortical surface reconstruction and cortical parcellation,

based on the FreeSurfer package (4.5.0, http://surfer.nmr.mgh.

harvard.edu/), were used to quantify baseline thicknesses and

volumes of brain regions, as detailed previously [21]. Sixty-eight

cortical thickness measures (34 from each hemisphere) and 50

regional volumes were generated. Volumes of white matter

hypointensities, optic chiasm, right and left vessel, and right and

left choroid plexus were excluded. White matter hypointensities

were excluded since most subjects were characterized by zero

values. Volumetric measures were normalized by their intracranial

volume while cortical thickness measures were not normalized

[22]. Right and left measures were averaged [23]. In total this

results in 57 measures to be used as input features for ordinal

regression; 34 regional cortical thickness measures and 23 regional

volumes (Table S3).

Multivariate ordinal regression
Multivariate ordinal regression (ORGP) was performed using

Gaussian processes in a Bayesian framework [15,24], providing

probabilistic predictions for class membership. The likelihood

function captures the ordinal nature of the data using a soft

threshold model. Crucially, these thresholds are learned from the

training data to provide flexibility in the distances between classes.

Additionally, the predictive mean of the latent function that

models the ordinal continuum per test case (see Text S1) is used to

measure the Ordinal Regression Characteristic Index of Dementia

(ORCHID) whereby more positive values indicate a more AD-like

brain structure and more negative values indicate a more CTL-

like brain structure. To visualise the spatial pattern driving the

discrimination multivariate maps can be constructed. This is

achieved by visualising the weight vector to provide a spatial

representation of the ordinal continuum.

Methodology of ordinal regression using Gaussian

processes. Consider a training dataset D of N observations,

D~ xi,yið ÞDi~1, . . . ,Nf g where each sample is a pair consisting of

the input data vector xi of dimension M and corresponding label

yi[L where L is a finite set of R ordinal categories, denoted

L~ 1,2, . . . Rf g. The column data vectors which in our case

represent the cortical thickness and subcortical volumes for all N

subjects are aggregated in the data matrix X with dimensions

N6M. The targets are collected in vector y which represents the

state of disease progression and are ranked from one to four

whereby one: CTL, two: MCI-s, three: MCI-c and four: AD.

The main principle here is to assume an unobservable latent

function f(xi)[R associated with each xi and assume a Gaussian

process (GP) prior over f, where f is a vector collecting all latent

function values at the training points. The ordinal variable yi is

dependent on the latent function f xið Þ by modelling the ranks as

intervals on the real line. This is achieved using a Bayesian

framework. First, a GP prior P fDX,hð Þ is placed on the latent

function. The GP prior can be fully defined by a mean function

m(x) and a covariance function k xi,xj

� �
. Here we define the GP

as zero mean with a linear covariance matrix:
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K~
XXTz1
� �

s2

where s2 is a bias term that also controls the scaling of the latent

function which in turn affects the variance of the predictive

weights. We refer to this quantity as a hyperparameter, collected in

the vector h, which will be optimised within this framework.

The joint probability of observing the ordinal variables, i.e. the

likelihood is defined as

P yiDf xið Þð Þ~ ~W zi
1

� �
{W zi

2

� �

where zi
1~

(byi
{f(xi))

s
and zi

2~
(byi{1{f(xi))

s
with b represent-

ing a threshold variable and s representing a noise term. W zð Þ is

the cumulative unit Gaussian whereby W(z)~
Ð z

{?N (Q : 0,1)dQ.

At the extremities of the ordinal continuum, the threshold

variables serve as limits and are defined as b0~{? and

bR~z?, and the intermediate thresholds are further defined

as bj~b1z
Pj

k~2 Dk with positive padding variables Dk where

k = 2,…,R–1. This formulation enforces ordinal constraints by

dividing the real line into R contiguous intervals

(b1vb2v . . . vbR{1) which map f(xi) to the discrete variable

yi. Note that the thresholds are not constrained to be equidistant.

Bayes theorem can be used to compute the posterior

probability, hence enabling predictions to be made. The marginal

likelihood, P(yDX,h) is known as the model evidence and is the

metric used to learn the hyperparameters. To approximate the

posterior distribution and model evidence we use the Laplace

approximation at the maximum a posteriori (MAP) estimate [25].

Powell’s method is used to maximise the evidence and hence, infer

the optimal hyperparameters [26].

Having set the hyperparameters, we now want to make

predictions about a test case x� for which the target y� is

unknown. Under the Laplace approximation, the predictive

distribution for the latent function can be written as a Gaussian

N (f (x�); m�,j�) where the predictive mean and variance can be

written as

m�~kT
� K{1 f̂f and j2

�~k��{kT
� KzL̂L{1
� �{1

k�,

where k� is the covariance between the test case and the training

data, k�� is the variance of the test case, f̂f is the MAP estimate of

the latent function, L̂L is a diagonal matrix whose ii-th entry is

second derivative of the likelihood function training sample i with

respect to f(xi).

Figure 1. Confusion matrices for ordinal regression applied to two AD-related cohorts. The confusion matrix for the binarised CTL-like vs.
AD-like (CTL and MCI-s vs. MCI-c and AD) is displayed on the left. For illustration purposes, on the right confusion matrices for two contrasts of
interest: CTL vs. AD and MCI-s vs. MCI-c (note: training scheme is unchanged). The top panel displays the results achieved using 10-fold cross-
validation on the ADNI dataset. The bottom panel displays the results achieved by applying the ordinal regression model trained on the ADNI dataset
to the AddNeuroMed data set whereby the AddNeuroMed dataset represents an independent unseen validation of the performance of the method.
doi:10.1371/journal.pone.0105542.g001
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The predictive distribution over the ordinal target y� is

P y�Dx�,X,y,hð Þ~W
by�{m�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2zj2

�

q
0
B@

1
CA{W

by�{1{m�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2zj2

�

q
0
B@

1
CA:

This distribution is used to assign the test case to an ordinal scale

using

arg max
r[R

P y�~rDx�,X,y,hð Þ:

To visualise the spatial pattern driving the discrimination

multivariate maps can be constructed. This is achieved by

visualising the MAP estimate of the weight vector to provide a

spatial representation of the decision boundary. This is analogous

to the weight vector used for mapping SVM discrimination. For

ORGP we can extract a vector a, which is analogous to the weight

vector in the function-space view of GP learning, whereby

a~K{1f. The maps are constructed by computing the posterior

expectation ŵw of the weight vector in the weight-space.

ŵw~
1

s2
XT a:

Implementation of ordinal regression. To assess the

generalizability of the model two validation approaches were

used. For ADNI data, the ordinal regression approach was

embedded within a stratified 10-fold cross-validation scheme that

preserves the relative frequencies of samples in each class.

AddNeuroMed data were used as an independent validation set

whereby the ordinal regression model was trained on the ADNI

dataset and subsequently tested on the AddNeuroMed dataset.

To account for imbalanced subject numbers per class, the

probabilistic predictions for each test case were recalibrated

whereby the prediction per class was divided by the proportion of

that class represented in the training set. The probabilistic

predictions per test case and across all four classes were then re-

normalised to sum to one [27].

This study aimed to predict the class label of each subject along

an ordinal continuum representative of disease state. In addition,

we aimed to develop a potentially useful tool for clinical decision-

making and that can be easily compared with current approaches.

For this purpose, we also consider the accuracy obtained when the

ordinal labels were aggregated into two classes defined to reflect

Figure 2. Performance curves and correlation plots for ordinal regression. (A): ROC curves for ordinal regression applied to the ADNI data
set using 10-fold cross-validation (first panel) and using the AddNeuroMed data set as an independent test set. In both cases the ROC curves are
shown from three contrasts. (B): Correlation plots of the MMSE score assessed at the 12 month follow-up against the Ordinal Regression Characteristic
Index of Dementia (ORCHID) score for both the ADNI dataset and the AddNeuroMed dataset.
doi:10.1371/journal.pone.0105542.g002
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‘‘CTL-like’’ (CTL or MCI-s) or ‘‘AD-like’’ (MCI-c or AD)

subjects. Specifically, the prediction of CTL-like is considered

correct if the subject belongs to the CTL or MCI-s groups and the

prediction of AD-like is correct if the subject belongs to the MCI-c

or AD group.

Multivariate maps were constructed to visualise the spatial

pattern driving the ordinal regression. For Gaussian process

models, this is achieved by visualising the maximum a posteriori

estimate of the weight vector to provide a visualisation of the

projection of the data ranging from CTL to AD (see Text S1 for

more details). Since multivariate techniques are sensitive to spatial

correlations across features (ROIs in this case), and the perfor-

mance of the model is based on the entire pattern rather than

individual regions, local inference should be avoided when

interpreting these maps.

ORGP was implemented by the authors in MATLAB (The

MathWorks, Natick, Massachusetts). Custom likelihood and

inference scripts were written for compatibility with the GPML

toolbox [25].

Performance Metrics
The sensitivity and specificity of binary predictions were

calculated for each pair. We report the balanced accuracy (mean

of the sensitivity and specificity) which avoids inflated performance

estimates for imbalanced datasets.

Confusion matrices and receiver operator characteristic (ROC)

curves were used for visualisation. For the confusion matrices, the

rows represent the true class labels and the columns represent the

labels predicted by the learning machine. The diagonal elements

represent correctly classified test cases whereas the off-diagonal

elements represent misclassifications. An ROC curve involves

plotting true positive rate (sensitivity) against the false positive rate

(1-specificity) achieved by varying the threshold on the probabil-

ities for a binary contrast. The area under this curve can also be

used as a metric for assessing performance; an area of 1 implies

perfect discrimination whereas as area of 0.5 implies random

chance.

Differences in the distribution of the predictive mean from

ORGP were assessed using a two sample Kolmogorov-Smirnov

test; whereby p,0.05 implies that they are from different

distributions. Spearman’s correlation was used to assess the

relationship between ORCHID scores and MMSE scores.

Results

Ordinal regression was applied to the four-class continuum

spanning healthy controls (CTL), stable mild cognitive impairment

(MCI-s), mild cognitive impairment with subsequent conversion

(MCI-c) and Alzheimer’s disease (AD). The four class predictions

were subsequently summarised to provide binary prediction of

CTL-like or AD-like.

Cross-validated ADNI results
The performance of ordinal regression for the ADNI dataset

using 10-fold cross-validation is presented in terms of three

confusion matrices (Figure 1) and ROC curves (Figure 2(a)): the

main contrast was CTL-like versus AD-like and two additional

contrasts of interest were CTL vs. AD and MCI-s vs. MCI-c. For

CTL-like versus AD-like, a balanced accuracy of 82% was

achieved with an AUC of 0.88. Considering CTL versus AD, a

balanced accuracy of 91% was achieved with an AUC of 0.95. For

MCI-s versus MCI-c contrast a balanced accuracy of 70% and an

AUC of 0.75 were found. The multivariate pattern of brain

regions driving the discrimination is shown by Figure 3.

Independent validation using AddNeuromed
To independently validate ordinal regression the model was

trained on the ADNI data and tested on the AddNeuroMed data.

Figure 3. Multivariate discriminative weights computed using ordinal regression. For ordinal regression the weights can be interpreted as
the projection of the data along the function space weight vector spanning CTL to MCI-s to MCI-s to AD. Note that the weights are symmetric across
hemispheres. These weights are sensitive the spatial correlations in the data and therefore should not be interpreted in a univariate manner.
doi:10.1371/journal.pone.0105542.g003
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The performance of the model is illustrated as confusion matrices

(Figure 1) and ROC curves (Figure 2(a)). Comparing CTL and

MCI-s to MCI-c and AD a balanced accuracy of 79% was

obtained with an AUC of 0.88. Considering the CTL versus AD

contrast a balanced accuracy of 83% was achieved with an AUC

of 0.93. For MCI-c versus MCI-s a balanced accuracy of 75% with

an AUC of 0.81 was obtained.

Combined ADNI and AddNeuroMed Data
The performance of ordinal regression for the combined ADNI

and AddNeuroMed datasets using stratified 10-fold cross-valida-

tion is presented in terms of three confusion matrices (Figure S2).

Comparing CTL and MCI-s to MCI-c and AD a balanced

accuracy of 82% was achieved with an AUC of 0.90. Considering

the CTL versus AD contrast a balanced accuracy of 88% was

achieved with an AUC of 0.95. For MCI-c versus MCI-s a

balanced accuracy of 74% with an AUC of 0.80 were obtained.

Correlation with MMSE at 12 months
The correlation between the ORCHID score and MMSE

scores at 12 months was calculated (Figure 2(b)). For the ADNI

dataset, a correlation coefficient of 20.643 (p,0.0001, Spear-

man’s r) was obtained following 10-fold cross-validation For the

AddNeuroMed dataset, a correlation coefficient of 20.589 (p,

0.0001, Spearman’s r) was obtained using this data as an

independent test set.

ADNI participants with unstable follow-up/late
conversion

Ordinal regression trained on the ADNI dataset was tested

using three subsets of the ADNI cohort: 1) Subjects with
unstable diagnosis across follow-up time points including AD

to CTL, MCI to CTL, AD to MCI and CTL subjects who

progressed to MCI past 12 months. In their most recent follow-ups

these subjects were labelled CTL or MCI-s. 2) Moderately late
converters: subjects who convert to AD between the 12–24

month follow-up and 3) Late converters: subjects who convert

to AD between the 24–36 month follow-up. In Figure 4, we map

these subjects using the ORCHID score. For comparison, we also

display distributions of the ORCHID scores for CTL and AD

classes as well as MCI subjects who converted before 12 months.

Subjects with unstable diagnoses overlap well with the CTL

distribution, implying that these two distributions are similar (p.

0.05, Kolmogorov-Smirnov test). For moderately late converters,

the distribution is shifted towards AD with some overlap at the

boundary. For the late converters, the distribution is more flat and

spread across the continuum, implying these data are not

accurately predicted by the model. The moderately late converters

are likely to have been drawn from the same distribution as the

converters at 12 months (p.0.05, Kolmogorov-Smirnov test)

whereas the late converters are not drawn from the same sample

(p = 0.00023, Kolmogorov-Smirnov test).

Figure 4. Distribution of the ORCHID (Ordinal Regression Characteristic Index of Dementia) score extracted from for the ADNI
dataset representing the disease progressive continuum spanning CTL to MCI-s to MCI-c to AD. The lower portion of each plot
represents the distributions for the CTL class (green) and the AD class (red). (a) represents the distribution of subjects with unstable labels across
follow-ups, most of which appear to belong to either the CTL or MCI-s classes (N = 24). (b) represents the distribution of those who convert to AD by
12 month follow-up (N = 62) (i.e. MCI-c: the sample used for training and testing the ADNI-based ORGP model). (c) represents the distribution of those
who convert to AD between the 12 and 24 month follow-up (N = 58). (d) represents the distribution of those who convert to AD between the 24 and
36 month follow-up (N = 29).
doi:10.1371/journal.pone.0105542.g004
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Discussion

We have presented a novel application of ordinal regression

which models structural brain changes as a continuum across

healthy controls, stable MCI patients, MCI patients who convert

to AD and AD patients. Conventionally, prediction of conversion

to AD is achieved using binary classification trained on CTL and

AD classes. Therefore, MCI classes are often not used to inform

the discriminative model. We model all classes simultaneously as a

continuum of disease progression. This is achieved using

multivariate ordinal regression from which we can extract a

probabilistic prediction of class membership as well as an index of

AD progression – the ORCHID score. This method enables us to

map subjects with unstable diagnosis (e.g. those who revert) and

also those who are late converters to a continuum which is derived

using all four classes as opposed to the extreme classes (CTL and

AD).

A large body of literature exists on predicting conversion to AD

from MCI [1–10]. Comparison between different studies in this

literature is not trivial because of varying data types and feature

construction, subject inclusion and exclusion criteria, criteria for

determining conversion to AD, classification methods, classifier

performance metrics, and most critically some papers that have

not used independent training and test sets, ultimately resulting in

biased (i.e. circular) analyses, as highlighted by Eskildsen et al. [3].

The contribution of this paper is a novel pattern recognition

approach for AD diagnosis, therefore we have selected an

appropriate subset of studies for comparison (i.e. having similar

data selection heuristics and feature construction methods but

varying pattern recognition techniques). The performance of

ordinal regression in predicting conversion/stability at 12 months

was 70% (AUC of 0.75) for the ADNI dataset. This is highly

competitive considering recent studies. For example, Cuingnet et

al. [1] achieved a balanced accuracy of 56% considering ROI-

based cortical thickness (albeit excluding subcortical regions) and a

balanced accuracy of 66% considering the volume of the

hippocampus, both using support vector machine (SVM) classifi-

cation. Using the same dataset as [1], Wolz et al. [10] achieved a

balanced accuracy of 67% considering hippocampal volume only

and linear discriminant classification. Eskildsen et al. [3] obtained

comparable balanced accuracy (73%) and AUC (0.762) to the

results reported here using cortical thickness measures and a linear

discriminant classifier. However, these authors grouped subjects

into time-homogenous groups of MCI converters, i.e. scans were

selected 6, 12, 24 and 36 months prior to conversion. Using this

rationale, 128 subjects fall into the 12 month converter group,

which is approximately double the sample size used for training

here (i.e. considering only the baseline data). Westman et al. [28]

achieved a balanced accuracy of 63% using orthogonal partial

least squares (OPLS) applied to measures of cortical thickness and

subcortical volumes. Cui et al. [7] achieved a balanced accuracy of

63% using SVM on cortical thickness and subcortical volume

features and considering follow-up to 24 months.

In order to optimally assess the generalizability of ordinal

regression for predicting conversion to AD, we tested the model on

a completely independent test set – the AddNeuroMed dataset.

The balanced accuracy for predicting conversion/stability at 12

months was 75% (AUC of 0.81, sensitivity of 77% and specificity

of 72%). Using an identical cohort and feature set to this study and

OPLS, Westman et al. [28] obtained a balanced accuracy of 68%

(sensitivity of 64%, specificity of 71%). The results reported by

Westman et al. were obtained by training the OPLS classifier on

the CTL and AD data from the combined AddNeuroMed and

ADNI dataset and then tested on the MCI-s/-c classes from

AddNeuroMed. In contrast, our results were obtained by applying

ordinal regression to all four classes from the ADNI dataset and

testing on the MCI-c/-s from AddNeuroMed. Given that both

cohorts display similar patterns of brain atrophy [28], we suggest

that the improvement in performance achieved here is likely to

have been strongly driven by the use of ordinal regression to model

brain atrophy as a continuum.

Fan et al. [4] published the first paper proposing a multivariate

ranking approach for predicting conversion to AD. Fan et al.

developed a pairwise ranking approach using binary classifiers

with ordinal rules and presented their results using 4 class

confusion matrices therefore, we can calculate the accuracy in the

same manner as here. Using a subset of the ADNI dataset, a

balanced accuracy of 54.2% was obtained for predicting

conversion/stability. This is markedly lower than the performance

obtained using our ordinal regression model which considers all

classes simultaneously, albeit using a smaller sample and including

later converters (.12months).

The spatial pattern of weights driving the ordinal regression

model are presented in Figure 3. These weights are influenced by

the value of either the cortical thickness or subcortical volume, the

variance of the data and the parameterisation of the classifier.

Therefore, a negative weight cannot be directly interpreted as an

ROI displaying atrophy. Nonetheless we qualitatively note that the

pattern of regions for ordinal regression is similar to discriminating

regions for CTL vs. AD reported in previous studies [9,28] with

the entorhinal cortex, hippocampus and temporal lobe among the

most negatively weighted regions and the ventricles and CSF

among the most positively weighted regions.

Ordinal regression provides a single summary index of the state

of disease progression - the ORCHID score. The rationale of the

ORCHID score is similar to that of the SPARE-AD [2] and OPLS

[29] indices. Specifically, a more positive ORCHID score implies

a more AD-like brain structure and a more negative score implies

a more CTL-like brain structure. The SPARE-AD study utilised a

similar sized ADNI cohort, (170 MCI-s and 69 MCI-c) using CDR

to define conversion; a balanced accuracy of 63% was obtained.

For the OPLS index subjects from both the ADNI and

AddNeuroMed datasets were used to achieve a balance accuracy

of 68%. For comparison, we evaluated ordinal regression using

both datasets and achieved a balanced accuracy of 74%. Both the

SPARE-AD and OPLS indices are computed using the extremal

ends of disease progression – CTL versus AD. In contrast, the

ORCHID score developed here is derived from data across 4

states of disease progression (CTL to MCI-s to MCI-c to AD).

Moreover, this method inherently models the ordinal nature of the

states of disease progression which we infer from increasing levels

of brain atrophy across the states. Ordinal regression also provides

probabilistic predictions which enable us to recalibrate the

predictions to account for the uneven number of subjects per

class. Furthermore, ordinal regression was found to outperform

binary classification using Gaussian processes [25,30] (4% increase

for ADNI, 6% increase for AddNeuroMed, Figure S1) trained in a

similar manner to SPARE-AD and OPLS whereby the CTL

versus AD subjects from ADNI were used for training and MCI-s/

c subjects from AddNeuroMed and ADNI were used for testing

(see Text S1).

The ORCHID score was also found to be significantly

correlated with the MMSE score at 12 month follow-up for both

the ADNI dataset r= 20.64 (cross-validation) and the AddNeur-

oMed dataset r= 20.59 (independent validation). Stonnington et

al. [31] investigated the utility of baseline MRI for directly

regressing baseline MMSE scores on structural imaging data.

Using a similar sized ADNI cohort they achieved a correlation
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coefficient of r= 0.48. The magnitude of the correlation

coefficient reported here is higher while also being compared to

the MMSE at 12 month follow-up rather than baseline.

We employed the ORCHID score to help fractionate subjects

with unstable diagnoses (e.g. reverters and healthy controls who

later progressed to MCI), moderately late converters (12–24

months) and late converters (24–36 months). We found the

distribution of the predictive mean for the unstable diagnosis

group was similar to the distribution for healthy controls. We

consider this to be appropriate given that most people in this group

had reverted from a diagnosis of AD or MCI-c to CTL or MCI-s.

The moderately late converters were found to have similar

distribution to the 12 month converters. However, the late

converters were found to have a significantly different distribution

of predictive means. Qualitatively, the predictive means are spread

across the continuum (Figure 4). This implies that late converters

are more difficult to characterise which may be as at baseline they

are at an early stage of disease progression in terms of brain

pathology. This is in keeping with other studies which found that

predictive performance was highest closer to the point of

conversion [3,32]. Adaszewsk et al. [32] proposed that atrophy

is restricted to a few brain regions in the early stages of disease

progression as atrophy in AD is assumed to follow the spreading

pattern of beta amyloid of tau depositions with a delay of several

years,. Therefore, the pattern of brain changes for late converters

(24 to 36 months) may be distinct from the pattern of earlier

converters and those already diagnosed with AD and hence this

may explain why late converters are not well-characterised by the

ORCHID score.

We have presented a probabilistic multivariate framework for

ordinal regression. A comparison with results in the literature and

direct comparison with a binary classifier suggests that the

performance of this framework is highly competitive. To further

explore the performance of this technique, it may be interesting to

extend this framework to the multi-modal case incorporating

multiple data sources. This may provide further improved

performance if complimentary information is spread across data

sources.

Methodologically, this technique offers several advantages: the

inherent ordinal nature of the disease progression of AD is

captured and two quantitative predictions are provided which can

be readily interpreted. The first is a probabilistic prediction at the

individual subject level, which indicates the categorical group

membership (e.g. CTL-like or AD-like) and can be directly applied

to assist clinical decision making, following appropriate validation.

Moreover, the method quantifies the certainty of this prediction,

which is equally crucial for clinical applications, for example to

account for class imbalance [27]. The second type of prediction is

the ORCHID score, which quantifies disease progression provid-

ing a visualisation of where an individual subject lies on a

continuum spanning healthy to disease state. Overall, we propose

that multivariate ordinal regression is a potentially powerful

method for identifying those at risk of progressing to AD.

Supporting Information

Figure S1 Confusion matrices obtained for MCI stable
versus converters from the ADNI and AddNeuroMed
cohorts using a binary Gaussian process classification
trained on CTL versus AD subjects from the ADNI
cohort.
(TIF)

Figure S2 Confusion matrices for ordinal regression
applied to the combined data from ADNI and AddNeur-
oMed using 10-fold cross validation. The confusion matrix

for the binarised CTL-like vs. AD-like (CTL and MCI-s vs. MCI-c

and AD) is displayed on the left. For illustration purposes, on the

right confusion matrices for two contrasts of interest: CTL vs. AD

and MCI-s vs. MCI-c (note: training scheme is unchanged).

(TIF)

Table S1 List of participants selected from the ADNI
dataset for training and testing the ordinal regression
model.
(DOCX)

Table S2 List of participants selected from the ADNI
dataset for validating the ordinal regression model.
(DOCX)

Table S3 Variables included in the ordinal regression
analysis. 57 variables in total, 34 cortical thickness measures and

23 volumetric measures.

(DOCX)

Text S1

(DOCX)
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