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Abstract

We review evidence that spontaneous, i.e. not stimulus- or task-driven, activity in the brain is not

noise, but orderly organized at the level of large scale systems in a series of functional networks

that maintain at all times a high level of coherence. These networks of spontaneous activity

correlation or resting state networks (RSN) are closely related to the underlying anatomical

connectivity, but their topography is also gated by the history of prior task activation. Network

coherence does not depend on covert cognitive activity, but its strength and integrity relates to

behavioral performance. Some RSN are functionally organized as dynamically competing systems

both at rest and during tasks. Computational studies show that one of such dynamics, the anti-

correlation between networks, depends on noise driven transitions between different multi-stable

cluster synchronization states. These multi-stable states emerge because of transmission delays

between regions that are modeled as coupled oscillators systems. Large-scale systems dynamics

are useful for keeping different functional sub-networks in a state of heightened competition,

which can be stabilized and fired by even small modulations of either sensory or internal signals.
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Introduction

Traditional accounts of brain function {Hubel and Wiesel 1968; Barlow 1990} emphasize

the role of feedforward information processing in generating from the ‘ground up’ sensory,

cognitive, and motor representations that implement behavior. For instance, identifying and

reaching for a common object, an apple, involves the creation of a sensory representation of

that object, as compared to other objects present in the visual scene; the sensory evidence for

the relevant object is fed forward continuously until some threshold for recognition or action

is reached. While feed forward sensory analysis can be also modulated by endogenous

signals like attention, familiarity, and reward, a central tenet of this view is that any

spontaneous or intrinsic activity reflects noise. Internal noise is critical as it produces

random fluctuations of spike rate affecting forward transmission of information. Such

NIH Public Access
Author Manuscript
Neuroscientist. Author manuscript; available in PMC 2014 August 21.

Published in final edited form as:
Neuroscientist. 2011 February ; 17(1): 107–123. doi:10.1177/1073858409354384.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



feedforward ‘sensory-motor’ models have been successful in linking activity recorded from

single neurons to perceptual decisions {Newsome and others 1989; Shadlen and others

1996; Shadlen and Newsome 1996}.

However, a different class of models suggests that the brain is not a passive ‘sensory-motor’

analyzer driven by sensory information, but that it actively generates and maintains

predictions (priors) about forthcoming sensory stimuli, cognitive states and actions {Llinas

and others 1998; Varela and others 2001; Engel and others 2001; Friston 2002}. This class

of models emphasize the role of spontaneous activity in maintaining active representations

that are modulated rather than determined by sensory information. Accordingly,

spontaneous activity should not be random (as often implied by its dismissal as mere

“noise”), but organized into structured spatio-temporal profiles that reflect the functional

architecture of the brain, possibly encode traces of previous behavior, or even predict future

decisions.

Experimental and theoretical evidences reveal that the spontaneous ongoing activity of local

cortical circuits result from a global balance between excitatory and inhibitory synaptic

currents. Experimental observations in vitro {Shu and others 2003} as well as in vivo

{Haider and others 2006} demonstrate an ongoing temporal evolution between excitation

and inhibition, which exhibits remarkable proportionality within and across neurons in

active local networks. Theoretical studies {Amit and Brunel 1997; Brunel and Wang 2001}

indicates that this global balance between excitation and inhibition is ideal for sustaining a

stable spontaneous state, and especially for allowing rapid transitions between relatively

stable network states. One classic example is attention: a balanced network is particularly

suitable for implementing biased competition {Rolls and Deco 2002; Deco and Rolls 2005},

a mechanism to amplify the rate of modulation induced by sensory bottom-up or attentional

top-down biases.

At the level of global cortical circuits, it would be relevant if large-scale networks of cortical

and subcortical areas would also show a similar dynamic balance, as this arrangement would

also facilitate rapid transitions between global network states associated with cognitive

functions. Specifically, it would be particularly relevant to find cortical networks that are in

dynamic equilibrium or competition with each other.

In the mammalian forebrain neuronal networks in demonstrate rhythmic synchronization in

several distinct frequency bands ranging from approximately 0.05 Hz to 500 Hz {Buzsaki

and Draguhn 2004}. Rhythmic synchronization in specific frequency bands, as theta, beta,

or gamma, result in alternating periods of network inhibition and excitation {Buzsaki and

others 2003; Hasenstaub and others 2005; Kopell and others 2000}. These rhythmic and

synchronized changes in excitability may have important consequences for neuronal

communication. Two groups of neurons may communicate most effectively when their

excitability fluctuations are coordinated in time, i.e. when they are coherent, and control of

cortical coherence has been proposed as a mechanism for large-scale (distant)

communication {Fries 2005}.
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Task-induced changes in synchronization or coherence have been reported at level of

individual regions during sensory integration {Gray and others 1989; Roelfsema and others

1997}, selective attention {Fries and others 2001; Womelsdorf and others 2006}, working

memory {Howard and others 2003; Pesaran and others 2002}, and motor control {Crone

and others 1998}; and, between distant cortical regions during object recognition {Varela

and others 2001}, working memory {Jones and Wilson 2005}, long-term memory encoding

{Fell and others 2001}, visual attention {Gregoriou and others 2009}, and sensory-motor

integration {Roelfsema and others 1997}. While task-specific neuronal synchronization or

coherence is well-established, less is known about the role of spontaneous or intrinsic

activity, i.e. activity not driven by stimuli or tasks. An increasing number of experimental

studies are characterized the dynamics of spontaneous activity at rest, i.e. intrinsic, and not

stimuli- or task-evoked, with a variety of different methods including EEG {Creutzfeldt and

others 1966}; optical imaging {Arieli and others 1996; Kenet and others 2003}, single unit

{Engel and others 2001}, and fMRI {Biswal and others 1995; Fox and Raichle 2007}.

Here we review evidence primarily from fMRI studies about the existence of distinct

oscillating networks of spontaneous activity, i.e. not stimulus- or task-driven, at rest, or

resting state networks (RSN). We show that although RSN strongly reflect the underlying

anatomical circuitries, they are also influenced by prior history of network co-activation

during active behavior. This functional gating may allow for the retention of prior

information, and may influence future task-dependent network recruitment and related

behavioral output.

Some RSN may be functionally organized as dynamically competing systems both at rest

and during different task conditions. Computational analyses indicate one of such dynamic

states, anti-correlation between two networks, can be modeled based on the level of

synchronization between different brain areas without the use of long range inhibition. The

anti-correlation patterns emerges as the result of noise driven transitions between different

multi-stable cluster synchronization states. This multi-stable state emerges in coupled

oscillators systems because of transmission delays between regions. This result highlights

the relevance of space-time structures for network dynamics, with the spatial component

captured by the anatomical connectivity, and the temporal component by the transmission

delays. We believe that this and other forms of large-scale dynamics are useful for keeping

different functional sub-networks in a state of heightened competition, such that even small

modulations of either sensory or internal signals can lead to the stabilization of one or

another sub-network, and the generation of task-specific evoked activity. Metaphorically

speaking, the resting state is like a tennis player waiting for the service of his opponent. The

player is not static, but continues to move with small lateral jumps left and right to be able to

react more promptly to a fast ball.

Experimental Evidences of the Resting State Dynamics

fMRI resting state networks (RSN)

fMRI measures local changes in magnetic susceptibility (so called, blood oxygen level

dependent, BOLD signal) caused by variations in the capillary concentration of

deoxyhemoglobin due to blood flow and blood volume increases in response to neuronal

Deco and Corbetta Page 3

Neuroscientist. Author manuscript; available in PMC 2014 August 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



activation. Even at rest, i.e. in the absence of stimuli or task, the spontaneous (intrinsic, not

task-evoked) BOLD signal is characterized by slow fluctuations (<0.1 Hz). It was noted

more than a decade ago that spontaneous BOLD signal fluctuations are temporally

correlated (or coherent) between brain regions of similar functionality {Biswal and others

1996; Hampson and others 2002; De Luca and others 2005; Fox and others 2005} (see

{Vincent and others 2007; Greicius and others 2009; Skudlarski and others 2008} for a

review). Figure 1 shows the basic phenomenology. The time course of the BOLD signal

extracted from the left central sulcus (primary motor cortex, M1) is significantly correlated

with time courses from other regions including primary sensory cortex (S1), second sensory

cortex (S2), SMA, ventral premotor cortex (vPM), putamen, thalamus (thal), and

cerebellum, all regions commonly recruited during motor actions. So regions that activate

jointly seem to maintain a high level of spontaneous correlation at rest. The inset shows the

high correlation over about 30 minutes between signal time courses in central sulcus and

SMA. Regions showing high correlation are rest are said to be ‘functionally’ connected;

accordingly, this novel method of analysis of fMRI time series has been labeled either

functional connectivity-by-MRI (fcMRI) or resting state-fMRI (rs-fMRI); finally, the

ensuing networks of correlation are said to constitute a resting state network (RSN).

We can repeat this basic experiment over in different cortical regions, and different RSN

will be identified. For example, figure 3A (blue regions) shows another network (dorsal

attention network, DAN) obtained by calculating a correlation map between a time course

extracted at rest from the posterior medial intraparietal sulcus (pIPS), a retinotopic area

involved in the control of spatial attention and eye movements, and the rest of the brain.

Significant correlation is seen in the homologous region in the right hemisphere, left and

right frontal regions corresponding to the frontal eye field (FEF), other regions in the

intraparietal sulcus corresponding to areas V3A and V7, and occipital regions like the MT+

complex involved in motion processing. This cortical network is commonly recruited during

tasks that require either covert or overt (eye movement) shifts of spatial attention, but also in

many other tasks involving the selection/processing of stimuli and actions (eye, arm).

Interestingly, this network appears to be anti-correlated at rest with another large scale

cortical network, the default-mode network (DMN)(figure 3A orange regions), which has

been implicated in the control of internal functions (e.g. episodic memory). The DMN

includes the angular gyrus (AG), superior frontal sulcus (SFS), anterior temporal (aTp,

medial prefrontal cortex, posterior cingulate, and hippocampus. Note in the inset time series

of the BOLD signal from pIPS (DAN) and AG (DMN) over 5 minutes of recordings, and the

anti-correlation of the two signals. This raises the possibility that some RSN are functionally

organized as dynamically opposing systems (see below).

How many RSN are simultaneously oscillating at rest in the human brain? The answer to

this question partly depends on some technical details like the MRI scanner field strength

and the size of the voxels used to measure the BOLD signal. In general, higher field strength

and smaller voxels will lead to a higher number of more spatially localized networks. With

these caveats in mind, using a standard scanner (1.5 or 3.0 Tesla) and typical resolution for

human studies (3-4 mm), several groups have reported between 6 and 10 reliable RSN

including somato-motor, visual occipital and auditory temporal, and several associative

networks covering fronto-temporal-parietal cortices (dorsal attention, default, language, and
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control) {Fox and others 2006; Fox and others 2005; Hampson and others 2006; Dosenbach

and others 2007; Cordes and others 2002; De Luca and others 2005; Damoiseaux and others

2006; Mantini and others 2007}. Figure 2 shows a mapping of these different networks onto

the same atlas brain which cover about 66% of the total brain volume. More recent

approaches are trying to parse out in a data-driven the exact functional parcellation of the

resting state functional connectivity matrix {Cohen and others 2008}.

What is the origin of RSN? Based on their topography, it is now well accepted that RSN

resemble both functional networks, i.e. regions activated during behavioral tasks {Biswal

and others 1996; Hampson and others 2002; De Luca and others 2005; Fox and others 2005}

as well as anatomical networks, i.e. regions connected by anatomical pathways {Vincent and

others 2007; Greicius and others 2009; Skudlarski and others 2008}. Let's consider

anatomical and functional variables separately.

RSN and anatomical connectivity

Anatomical and fMRI connectivity are strongly related, and this is hardly surprising. Both

resting state correlation and task-driven responses must involve connections between brain

regions. This point is best exemplified by Vincent et al who scanned anesthetized monkeys

and found that the pattern of fMRI connectivity obtained by seeding area LIP in posterior

parietal cortex closely corresponds to the topography/strength of anatomical connections to/

from LIP including regions in prefrontal cortex (FEF) and superior temporal sulcus {Vincent

and others 2007}. Similar observations have been obtained in humans by comparing fMRI

connectivity with diffusion tensor imaging, a different MR technique that allows fiber

tracking of major white matter bundles {Greicius and others 2009; Skudlarski and others

2008; van den Heuvel and others 2009}. Figure 3A compares maps of fMRI correlation

between regions of the DAN and DMN in both macaque and humans. Note the similarity

between the two maps overall suggestive of the presence of similar functional systems

maintained through evolution.

However, the topography of RSN is not identical to anatomical connectivity. In fact some

regions can show strong fMRI correlation in the absence of direct anatomical connections.

Again in the Vincent et al. study, the peripheral representations of primary visual cortex in

each hemisphere showed strong resting fMRI correlation while we know that peripheral V1

representations are not directly connected. It is therefore likely that fcMRI maps reflect not

only direct, but also indirect anatomical connections, either through other cortical or

subcortical regions.

Interestingly, there are also cases in which fcMRI is not seen when direct anatomical

pathways are in place. For instance, motion specific area MT+ shows strong functional

correlation with regions in the IPS, but not with visual areas V1-V2 despite being strongly

connected with both sets of areas (Figure 3A). Therefore the fMRI correlation signal may

reflect some form of functional gating of the anatomical pathway. This gating may reflect a

temporal mechanism like presence of synchronized oscillations in spontaneous activity

and/or more structural synaptic plasticity of the kind implemented in Hebbian models {Hebb

1949}. It is unknown if the presence of correlation at rest between two regions also impacts

synaptic efficiency as expressed in magnitude of activation in the course of a task.
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One of the main goals for the future is to explore in a systematic fashion the functional-

anatomical architecture of these large-scale networks, in conjunction with computational

methods to quantitatively describes the rules underlying their interaction at the global level.

Several recent studies have begun to investigate this issue. For example, a recent study that

used computational methods to compare anatomical and fMRI connectivity concluded that

‘inferences of structural connectivity from functional connectivity are impractical’, although

indirect connections and interregional distance accounted for some of the variance in

functional connectivity. Therefore, the large-scale anatomical structure of the human

cerebral cortex may constrain but not entirely account for the observed global functional

connectivity {Honey and others 2009}.

Influence of task-evoked activation on RSN

One of the most striking observations about RSN is that their topography closely resembles

the pattern of task-evoked activation of the same regions during a task. A sensible

hypothesis is that the topography of RSN may be sculpted by the history of co-activation

between regions belonging to a ‘functional’ network. For instance, if regions of the brain

involved in attention selection and generation of eye movements work together many hours

a day while we explore the environment, then even at rest these areas may continue to

communicate. Patterns of neuronal activity during behavior may entrain patterns of

coherence at rest. In non-linear dynamics terms, different RSN represent sets of ‘attractor’

states developed through repetitive activation of the same oscillatory mechanisms, and

maintained by intrinsic dynamics at rest. If this hypothesis is correct, then the particular

ensemble of RSN commonly observed in the adult brain (visual, auditory, somato-motor,

default, dorsal attention, etc.) should include sets of functional areas that tend to activate

jointly in most tasks. Conversely, there may well be regions that do not cluster in a network.

These regions may be important for control of functions across multiple domains, and they

would be expected to flexibly interact for short periods of time with different more domain

specific networks. A possible example include the right temporo-parietal junction, a region

we suspect is important for shifting between different tasks/networks {Corbetta and others

2008}, and that appears to have limited connectivity with other RSN {Dosenbach and others

2007}.

The evidence supporting this hypothesis is circumstantial at best this point. Similarity in

topography between RSN and task-evoked activity suggests but does not demonstrate a

causal link. A potentially more specific link may be provided by similarities in network

dynamics during active behavior and at rest. As earlier indicated (DAN) and default-mode

network (DMN) are anti-correlated at rest. Sometimes referred to as ‘task-positive’ or ‘task-

negative’ networks, these two networks are activated in opposite direction by most tasks.

Any goal-driven task involving an interaction with the environment (looking, deciding,

reaching, etc) strongly activate the DAN while deactivating the DMN {Shulman and others

1997}. Conversely, tasks that involve internal processes, like remembering personal events

strongly activate parts of the default-mode network while deactivating the dorsal attention

network {Sestieri and others 2009}. Figure 3B shows a task in which subjects search for a

coherently moving frame of motion among randomly moving dots. The DAN show strong

sustained activations (see map and time course from posterior IPS). In contrast regions in the
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DMN show strong deactivation (see map and time course from angular gyrus, AG)

{Shulman and others 2003}. Interestingly, the degree of deactivation is predictive of

performance on the motion task suggestive of a competitive interaction between DAN and

DMN {Shulman and others 2007}. It is interesting that this competitive interaction clearly

observed during active behavior may also be present in the pattern of spontaneous or

intrinsic anti-correlation (see time course from figure 3A showing anti-correlation at rest

between pIPS and AG). This relationship would be significant as both networks are involved

in control, i.e. must be rapidly deployed as function of behavioral conditions, but are

specialized for very different functions, attention to the environment (DAN) or to internal

processes (DMN). Such competitive relationship may have developed in the course of

evolution, and/or during development, perhaps because of anatomical convergence, hence

potential bottlenecks in processing, or because of shared neuro-modulatory influences

potentially affecting available processing resources. As later discussed in the computational

section this is a highly sensible way to set up a system to afford rapid engagement whenever

necessary. It is importance to underscore that the presence of anti-correlation in spontaneous

activity between DAN and DMN is not seen with all analyses1, although its occurrence may

be expected on computational grounds based on the underlying anatomical connectivity

{Honey and others 2007}.

Finally, the most direct evidence that RSN are shaped by the history of co-activation comes

from a recent study showing that the pattern of resting covariance between two RSN, DAN

and visual, is specifically changed by acquisition of a new skill. Healthy subjects learned a

difficult shape identification task in the left lower quadrant of the visual field. After training

learning-specific evoked modulations were observed in the trained quadrant of visual cortex.

Critically, there was a significant change post-training in the pattern of spontaneous

correlation between DAN and trained visual cortex, which correlated with the degree of

acquired competence {Lewis and others 2009}. This experiment shows directly for the first

time that entraining a new pattern of task-driven activation leads to the development of a

new RSN.

Influence of RSN on task-evoked activation

The other side of the coin is whether RSN, once organized, constrain task-driven activation.

In other words, does the ongoing functional organization of spontaneous activity plays a role

in determining the pattern of task-driven neuronal activation?

The best available evidence indicates that fMRI RSN in the adult human brain are

stationary; that their global topography is not dramatically altered by extreme manipulations

of behavioral state; and, that they do not reflect ongoing covert cognitive activity. For

instance, no striking global difference is observed going from resting with eyes closed, to

1The presence of anti-correlation in spontaneous network activity was reported originally by Fox et al {Fox et al. 2005} using seed-
based correlation mapping. Other studies using data driven methods (e.g. PCA or ICA) consistently detected the same two networks
(DAN,DMN) but no anti-correlation {De Luca et al. 2005, Damoiseaux et al. 2006, Mantini et al. 2007} admitted that the anti-
correlation is observed when the shared variance between networks is abolished by a whole brain normalization step. The need for
whole brain normalization to visualize anti-correlation makes this phenomenon less robust. However recent reports based on a
computational analysis of the anatomical connectivity and modeling of spontaneous activity indicates the emergence of anti-
correlation patterns {Honey et al. 2007, Ghosh et al. 2008a, Deco, Jirsa, McIntosh, Sporns and Koetter 2009}.
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eyes open, to fixating {Fox and others 2005}, even if the strength of correlation between

specific regions is affected {Golland and others 2007}. RSN topography is also generally

preserved by more dramatic manipulations like anesthesia even down to the level of EEG

burst suppression {Vincent and others 2007} which eliminates the possibility of ongoing

covert cognitive activity, or sleep {Larson-Prior and others 2009}. This relative

independence from behavioral states may suggest that RSN reflect a physiological marker of

connectional anatomy, perhaps underlying some fundamental ‘house-keeping’ or

maintenance process (e.g. synaptic turn-over) {Marder and Goaillard 2006}. However, other

data suggest a more direct and functional link between task-evoked and spontaneous

activity. Optical imaging studies in cat's visual cortex show that the variability of stimulus-

evoked activity is accounted in large part by variation of spontaneous activity {Arieli and

others 1996} A similar effect has been reported in human motor cortex where fMRI

spontaneous activity accounts for about 70% of trial-to-trial variability of motor evoked

response {Fox and others 2007}. Ongoing activity in motor cortex has been also associated

with trial-to-trial variability in behavioral performance {Fox and others 2007}. One

interpretation of these findings is that task-evoked activity, and by extrapolation behavior,

simply reflects modulations of ongoing activity. RSN may then represent dynamic

functional states whose flexible combination determines the organization of behaviorally

relevant task-networks. However, flexible behavior would seem to require a larger

combination of network states than those afforded by RSN or their combination. A more

fundamental problem is that the apparent stationarity of RSN, and apparent link with task-

evoked activity, may be just an artifact of the slow neuro-vascular coupling. A fundamental

next step is therefore a comparison of slow (fMRI) and fast (neuronal) dynamics measured

under comparable behavioral conditions and ideally in the same individual.

Neurophysiology of RSNs

It is now well accepted that stimulus-induced changes of the BOLD signal underlie mass

action changes in local field potential (LFP) and multi-unit spike rate of neuronal

populations included in the recorded fMRI voxel {Logothetis and others 2001; Logothetis

2008}. At least in visual cortex, where most studies have been conducted, the BOLD signal

is more closely related to LFP than spikes. This is extensively discussed in recent papers

{Logothetis 2008; Goense and Logothetis 2008}, and will not be further reviewed here.

Much less is known about the neural basis of spontaneous BOLD signal fluctuations. In

2008, two studies recorded electrocorticography (EcoG), either with grid arrays or deep

electrodes, in patients undergoing monitoring of cortical activity for treatment of epilepsy.

Nir et al reported positive inter-hemispheric correlation between left and right homologous

regions in auditory cortex, a characteristic feature of BOLD RSN, of the band limited power

(BLP) in the gamma band (but also in other bands) and multi-unit activity {Nir and others

2008b}. He et al reported a relationship between the spatial topography of BOLD correlation

in the somatomotor network and slow cortical potentials (0.1-4 Hz), as well as gamma BLP.

Interestingly, while the correlation with slow potentials was independent of whether the

subject was awake, or asleep (slow wave and REM), the correlation with BLP gamma was

strong only in the awake state and during REM sleep {He and others 2008}. Interestingly, in

both experiment the correlation had a 1/f distribution with correlation stronger at lower

frequencies (<0.1 Hz). A recent MEG study also found correlates of fMRI RSN
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(DAN,DMN) with a 1/f distribution of the inter-regional power correlation, with more

defined cortical topography at slow (theta, alpha, beta) than high (gamma) frequencies {De

Pasquale and others 2010}

A different approach using simultaneous fMRI and EEG recordings has been used to study

the electrophysiological correlates of RSN. Two studies have reported a link between DAN

and DMN and alpha/beta power changes {Laufs and others 2003; Mantini and others 2007}.

Interestingly, even in this case although the fMRI RSN appeared independent (see footnote

1), the EEG analysis showed a positive association of alpha/beta power with DMN, but a

negative relationship with DAN. This fMRI/EEG association is consistent with the well-

known alpha desynchronization observed during focusing of attention to the environment

{Klimesch and others 1998; Sauseng and others 2005}. It is interesting that over time in a

state of rest relative power increases in the alpha/beta band correspond to stronger

correlation with the ‘internally-directed’ DMN, specialized for controlling internal

functions, whereas relative power decreases correspond to a stronger correlation with the

‘externally’ directed DAN. This interpretation is consistent with the hypothesis that the

dynamics in these two networks are competitive both at rest and during behavior.

Functions of RSNs

We consider in this last section RSN's putative function and behavioral relevance, on which

we have already commented in previous sections. Here, we briefly summarize the main

points.

The first hypothesis is that RSN reflect a physiological marker of anatomical connectivity.

One possibility under this hypothesis is synaptic turn-over, an energy dependent process

well investigated in rodents and crustacean {Marsden}. This is a fundamentally structural

and stationary signal unrelated to moment-by-moment information processing, and its

extreme version, this hypothesis predicts no correlation with behavioral performance.

However, if we emphasize the observation that RSN topography and strength also relates to

the history of network activation (Fire-Wire hypothesis), and potentially to the synaptic

efficiency of certain circuits, then some behavioral correlation with established abilities, or

with new learning may be expected. Significant correlations of RSN strength with cognitive

abilities {Hampson and others 2006}, neurological deficits {He and others 2007}, and

recently acquired skills {Lewis and others 2009; Tambini and others 2010} have been

reported. The third hypothesis is that RSN reflect a functional spatial and temporal network-

wide landscape that facilitates large-scale communication. There are only a few

electrophysiological studies on RSN, but they seem to find a consistent relationship with

slow cortical potentials, and correlation of the band limited power at slow frequencies (1/f

distribution). For theoretical reasons, related to cortical distance and cortical wiring

{Buzsaki and Draguhn 2004}, slow cortical fluctuations of excitability may have a role

more in large-scale (inter-area) communication. This idea is based on the notion that there

may well be a relationship between slow and fast rhythms in the cortex with slow rhythms

providing windows of excitability for fast rhythms, neuronal synchrony, and increases in

spike rate during tasks. The relationship between BOLD RSN and slow and fast cortical

rhythms is being directly explored by a team of scientists in Europe and USA
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(www.brainsynch.org). One relationship found experimentally in electrophysiological

studies is between high gamma synchrony and theta phase {Canolty and others 2006}, and

ultra-slow and fast EEG rhythms {Vanhatalo and others 2005}. This hypothesis predicts a

positive correlation between RSN or their electrophysiological correlates and on-line (trial-

to-trial) behavioral performance {Fox and others 2007; Monto and others 2008}.

The final hypothesis is that RSN code information prospectively. In other words do they

play a role in representing expected features of an object, a selected location, a cognitive

state, or a prospective action? As RSN are made of spontaneous activity clearly this kind of

coding must reflect prior exposure to that particular behavior. The difference as compared to

the previous hypothesis is that RSN do not represent only windows for communication but

maintain some of the representations that makes an individual (experiences, body and

cognitive states). These patterns represent functional-structural ‘priors’ that will constrain

task-evoked activity by facilitating states that are more strongly represented in the

spontaneous activity. Possible examples would be the relative sensitivity to collinear objects

in the visual world or the characteristic tri-modal spatial distribution of saccadic eye

movements in the dark.

Resting State as Noise Driven Transitions Between Multistable State}

Under resting state conditions, the brain shows a global dynamics that can only emerges due

to its intrinsic characteristics, as it is uncontaminated from tasks and stimuli influence. These

intrinsic characteristics are given by the underlying neuroanatomical connectivity matrix, by

the temporal delays in the communications between different brain areas, and also by the

general level of fluctuations present in the brain. In fact, recent theoretical models {Honey

and others 2007; Ghosh and others 2008a} have shown the relevance of the characteristic

“small-world” structure of the underlying connectivity matrix between different brain area,

using realistic neuroanatomical information on the macaque cortex (CoCoMac; see Kötter

2004}), as well as between regions of human cortex {Honey and others 2009}. In particular,

Ghosh {2008a} proposed that the space-time structure of coupling and time delays in the

presence of noise defines a dynamic framework for the emergence of the resting brain

fluctuations. In that study, fluctuations destabilize the groundstate, producing excursion in

the dynamical repertoire of the global brain network that results in oscillations that are

structured in the experimentally observed resting state subnetworks.

Another possible scenario {Deco and others 2009} considers that resting state ultra-slow

oscillations and in particular the emergence of anti-correlated sub-networks result from

fluctuations driven transitions between multi-stable states. In this scenario, multi-stable

cluster synchronization states appear in coupled oscillators systems because of the delay of

transmission times underwriting the importance of the space-time structure of couplings in

networks (see also {Ghosh and others 2008b}), where the anatomical connectivity captures

the spatial component and the transmission time delays the temporal component thereof.

Figure 1 shows the main elements of these scenario. This scenario considers explicitly the

specific link between local neuronal communication and global cortical dynamics, and in

particular the interaction between fast local dynamics in the gamma range (40 Hz) and the

ultra-slow 0.1 Hz oscillations at the global level. For this, a very simple neurodynamic
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model for each node is assumed, namely a Wilson-Cowan model that captures node's

dynamics by a mean-field-like rate model expressing the coupling between excitatory and

inhibitory neurons. In particular, this Wilson-Cowan model is tuned such that each

independent node, if disconnected, is silent (low activity regime); but because their working

point is very near to a Hopf bifurcation, when coupled, each node starts to oscillate. In

particular, one chooses a working point such that the oscillation of each node arising from

coupling was in the gamma-band-range of 40 Hz. In this way, keeping the single node

dynamics as simple as possible, allows us to focus on the emergence of a complex collective

brain dynamic due to the intrinsic properties mentioned above. Furthermore, by considering

simple 40 Hz fast oscillations at the single node dynamics, we are able to investigate one

potential link between fast local dynamics and slow global fluctuations {Nir and others

2008a; He and others 2008; Monto and others 2008}.

Figure 1A shows the schematic of intrinsic connectivity of each node. The network

dynamics is obtained by coupling the single Wilson-Cowan modules through the excitatory

pools by using a realistics neuroanatomical connectivity matrix Cij and delays Tij,

\begin{eqnarray}

\label{eqnet} \tau \frac{\partial x_i(t)}{\partial t}

& = & -x_i(t) + \phi(I_b+ \sum_j \alpha C_{ji} x_j(t-T_{ji}) - y_i(t)) + 

\nu_i(t)

\end{eqnarray}

\begin{equation}

\label{eqnet2} \tau′ \frac{\partial y_i(t)}{\partial t} = -y_i(t) + \phi(w_I 

x_i(t)) + \nu_i(t)

\end{equation}

where the nonlinearity

\begin{equation}

\phi(x) = \frac{c}{1 - \exp{-a(x-b)}}

\end{equation}

is the response function (transforming current into discharge rates) for a spiking neuron with

deterministic input, time membrane constant tau. In last equations, Cii=w+/alpha, being

alpha a parameter regulating globally the coupling strength. In all simulations alpha =0.007,

a=0.1, b=40, c=100, tau=1, tau′=0.2$, wI=1.5, Ib=10 and w+=1.4. The neuroanatomical

connectivity matrix Cij corresponds to the connectivity matrix of the primate brain based on

the CoCoMac neuroinformatics tool {Kötter 2004} (Figure 1B). Kötter und Wanke
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proposed a coarse parcellation of cerebral cortex into 38 regions, which deliberately

reflected broad and rather uncontroversial divisions so that a rough mapping of the human

brain appeared feasible {Kötter and Wanke 2005}. Connectivity data from tracer studies

collated in CoCoMac were transformed to the regional map using the ORT procedure as

described by Stephan {Stephan and others 2000}. In addition, the centre coordinates of the

38 cortical areas were calculated and their distances obtained from the geometry defined in

the AAL cortical surface template of a human hemisphere {Tzourio-Mazoyer and others

2002}. Assuming a uniform velocity of transmission v one can derive approximate delays

Tij. The velocity v is adjusted such that cluster synchronization emerges (Figure 1C). In

order, to find clusters that are more prone to synchronize, first a division of the network in

clusters or communities is identified using a modularity algorithm {Leicht and Newman

2008}. The community structure is given by a group of nodes that have a high density of

connections within them, but a lower density of connections between groups. We found that

the network can be subdivided in two communities (shown in Figure 1B in two different

colours). In fact, these two communities are highly similar to the ones found in {Honey and

others 2007}.

Now, the level of cluster synchronization in each community as a function of the velocity of

transmission v can be studied. Two hundred forty seconds of the whole network dynamics

were simulated. Figure 2 shows the level of synchronization in each of the two extracted

communities (the figure plots the maximum of the Kuramoto indices defined in {Deco and

others 2009}). The figure shows that the synchronization level is relatively low for most of

the v. However, there are two regions that show elevated levels of synchronization that

correspond to the increase of synchronization in either one of the community clusters: The

left bump corresponds to one of the communities and the right bump to the other

community. In the working point P between the two synchronization bumps (v=1.65 m/s),

the system is expected to show alternates of maximal cluster synchronization in one or the

other community because of the underlying fluctuations. Consequently, fixing the

transmission velocity according the working point P, one can now study the optimal level of

noise such that the system is optimally driven between the two multistable states of elevated

synchronization in one or the other community. The goal is to find an optimal level of noise

such that the signal reflecting the level of synchronization in the two communities shows

resting state characteristics, i.e. ultra-slow oscillation and anticorrelation. For that, again

240s. of simulations for different levels of noise are simulated. Figure 3A plots the

dependence of the maximum of the power spectrum peak of the signal given by differences

between the level of synchronization between both communities versus the noise level

(variance of the stochastic fluctuations). This gives us a measure of the level of fluctuation

that has a maximum effect on the emergence of global oscillations. Note, that the level of

synchronization is correlated with the associated BOLD-signal, as we will show in the next

section. In all plots, points (diamonds) correspond to numerical simulation results, whereas

the lines correspond to a nonlinear least-squared fitting using an alpha-function. As the

figure shows, there is a stochastic resonance effect, i.e. there is a specified level of noise for

which the optimum is reached. Lower or higher levels of noise attenuate the global 0.1 Hz

oscillations. Figure 3B plots the dependence of the location (in frequency domain) of the

maximum in the power spectrum of the signal given by differences between the level of
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synchronization between both communities versus the noise level. This measure specifies

the position of the maximum of the global oscillation. The figure shows again a stochastic

resonance effect for the same level of noise. Furthermore, at this optimal level of noise, the

maximum of the spectrum is given by 0.1 Hz global slow oscillations. Finally, figure 3C

plots the level of correlation between the levels of synchronization between both

communities versus the noise level. Stochastic resonance at the same level of noise reveals a

maximum of the anti-correlation between the two sub-networks, consistent with the

experimental data. It is important to remark, not only the essential role of fluctuations, as

documented by the presence of a stochastic resonance effect, but also the fact that the

optimum level of fluctuations is given simultaneously for the emergence of 0.1 Hz global

slow oscillations and the emergence of anti-correlated spatio-temporal patterns for both

communities.

Fast and Slow Oscillations

In the last section, we demonstrated that for an optimal level of noise associated with a

stochastic phenomenon, a cortical network of oscillators is able to show slow transitions

between patterns of synchronization that were anti-correlated at less than 0.1 Hz across the

sets in line with a wide range of recent experimental observations. In this section, we show

that at that optimal point, the associated BOLD-signal also shows the same sub-networks of

anti-correlated ultra-slow oscillating activity.

Figure 4A (left) shows that the optimal working point can reproduce the typical collective

brain dynamics found at rest conditions. The black and red curves, respectively, plot the

level of synchronization for each of the two communities. The blue curve indicates the

differences between the level of synchronization in the two clusters. (The results to relative

variations with respect to the mean (i.e. z = (z-<z>)/<z>). The right panel of figure 4A shows

the power spectrum of the signal given by differences between the level of synchronization

between both communities.

Figure 4B plots the same activity, but now as evidenced by fMRI, i.e. by plotting the

associated BOLD-signal to each of both communities. The BOLD-signal was calculated

using the Balloon-Windkessel hemodynamic model of Friston et al. {Friston and others

(2003)}, which specifies the coupling of perfusion to the BOLD signal, with a dynamical

model of the transduction of neural activity into perfusion changes. Figure 4B (left) plots the

BOLD signal calculated from the model at the optimal working point P. The figure shows

that the model can reproduce both the slow 0.1 Hz oscillations and the anti-correlation of the

BOLD signals of both communities. The black and red curves plot respectively the BOLD

signal for each of the two single communities. The right panel of figure 4B shows the power

spectrum of the BOLD signal given by the differences between the level of BOLD signal in

the two communities. The fact that synchronization predicts BOLD activity is not trivial.

This is because the drive to the hemodynamic responses reflects mean population activity,

not its synchronization. These results therefore mean that there is a coupling between the

degree of synchronization and neural activity that is manifest in elevated BOLD signals.

This coupling has been studied in the context of evoked responses {Chawla and others

2000} and in terms of endogenous fluctuations {Chawla and others 1999}. These analyses
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of simulated spike trends and local field potentials show that in nearly every domain of

parameter space, mean activity and synchronization are tightly coupled allowing us to

conclude that indices of brain activity that are based purely upon synaptic activity (e.g.

functional magnetic resonance imaging) may also be sensitive to changes in synchronous

coupling. Thus, our simulations explain why BOLD might be particularly sensitive to slow

fluctuations in fast synchronised dynamics.

Conclusion

In this paper, we discussed the experimental evidence characterizing the intrinsic ongoing

dynamics of the brain under resting conditions. Many points are worthwhiles to stress: 1)

Functional neuroimaging and electrophysiological studies evidence a dynamic baseline of

intrinsic (not stimulus- or task-evoked) brain activity during resting wakefulness; 2) This

baseline is characterized by slow (<0.1 Hz) fluctuations of functional imaging signals that

are topographically organized in discrete brain networks, and by much faster electrical

oscillations; 3) The blood oxygenation level-dependent signal fluctuations associated with

each network are correlated with the EEG power variations of faster rythms rhythms

(including gamma); 4) The extracted networks show a degree of anti-correlation.

From a theoretical point of view, we discussed different scenarios from which these highly

structured intrinsic ongoing activities could emerges. In particular, we believe that the

“small world”-like type of underlying neuroanatomical connectivity matrix, the delays and

in particular the noise play a crutial role. The underlying mechanisms seems to be associated

with a stochastic resonance phenomenon by which noise driven transitions between cluster

synchronization shows both the ultra-slow and anti-correlation characteristics of the ongoing

oscillations.

Our current hypothesis is that these resting state networks represent a finite set of

spatiotemporal basis function (or dynamical modes) from which task-networks are then

dynamically assembled and modulated during different behavioral states. One form of

modulation would be the combination of different networks to mediate behavior, which is

apparent in this study. In particular, in the abscence of task and stimulation, the underlying

system seems to be optimally tuned for sustaining all the basic dynamical modes activated in

a regular and equilibrated way. This fact, may give the network a maximal sensitivity to the

system to react as efficient as possible, when a concrete task or stimulation has to be

processed.
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Figure 1.
(A) (left) Basic Wilson-Cowan computational module for each node. Excitatory pools are

connected with a inhibitory pool. (right) Network architecture built up by Wilson-Cowan

units coupled through the excitatory pools. (B) Anatomical plot of the CoCoMac structural

connectivity matrix. The colours show the two extracted communities. The green cluster

consists mostly of visual areas (with the exception of V2) as well as prefrontal areas. The

yellow cluster consists mainly of sensorimotor and premotor areas.
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Figure 2.
Level of synchronization in each of the two extracted communities as a function of the

transmission velocity v. The synchronization level is relatively low for most of the v. There

are two regions that show elevated levels of synchronization that correspond to the increase

of synchronization in either one of the community clusters: The left bump corresponds to

one of the communities and the right bump to the other community. In the working point P

between the two synchronization bumps (v=1.65 m/s), the system is expected to show

alternates of maximal cluster synchronization in one or the other community because of the

underlying fluctuations.
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Figure 3.
(A): Maximum of the power spectrum peak of the signal given by differences between the

level of synchronization between both communities versus the noise level (variance). (B):

Maximum in the power spectrum of the signal given by differences between the level of

synchronization between both communities versus the noise level. (C): Correlation between

the level of synchronization between both communities versus the noise level. Note the

stochastic resonance effect that for the same level of fluctuations reveals the optimal

emergence of 0.1 Hz global slow oscillations and the emergence of anticorrelated spatio

temporal patterns for both communities. Points (diamonds) corresponds to numerical

simulations, whereas the line corresponds to a nonlinear least-squared fitting using an alpha-

function.
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Figure 4.
(A) Left: Level of synchronization for each of the two individual communities(community

1: black, community 2: red, difference: blue). Right: Power spectrum of the signal given by

differences between the level of synchronization between both communities. (B) Left:

BOLD signal for each of the two single communities (community 1: black, community 2:

red, difference: blue). Right: Power spectrum of the BOLD signal given by the differences

between the level of BOLD signal between both communities.
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