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Abstract

Case-parent trio studies are commonly employed in genetics to detect variants underlying

common complex disease risk. Both commercial and freely available software suites for genetic

data analysis usually contain methods for case-parent trio designs. A user might, however,

experience limitations with these packages, which can include missing functionality to extend the

software if a desired analysis has not been implemented, and the inability to programmatically

capture all the software versions used for low-level processing and high-level inference of

genomic data, a critical consideration in particular for high-throughput experiments. Here, we

present a software vignette (i.e., a manual with step by step instructions and examples to

demonstrate software functionality) for reproducible genome-wide analyses of case-parent trio

data using the open source Bioconductor package trio. The workflow for the practitioner uses data

from previous genetic trio studies to illustrate functions for marginal association tests, assessment

of parent-of-origin effects, power and sample size calculations, and functions to detect gene-gene

and gene-environment interactions associated with disease.
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Introduction

Case-parent trio studies, considering diseased children and their parents, are a popular

alternative to population-based case-control studies composed of unrelated individuals for

detecting variants underlying common complex disease risk, in part because case-parent trio

designs guard against population stratification and the resulting type I error inflation

commonly observed in population based studies (Spielman and Ewens, 1996; Laird and

Lange, 2006). Software suites for genetic data analysis usually contain methods for case-

parent trio designs, including commercially available packages such as GoldenHelix (http://

www.goldenhelix.com), and freely available software environments such as PLINK (Purcell

et al., 2007, http://pngu.mgh.harvard.edu/~purcell/plink/). PLINK, arguably the most

commonly used software suite in the field, is an extremely powerful environment to carry

out genetic association analyses, and in addition to a multitude of statistical approaches for

population based studies, has a built-in module to carry out the allelic transmission

disequilibrium test introduced by Spielman et al. (1993) to assess the marginal SNP effects

on the phenotype in case-parent trio studies.

Here, we present a vignette specifically for comprehensive genome-wide analyses of case-

parent trio data, using the software package trio written in the open source statistical

environment R (http://cran.r-project.org/). The workflow shown here for the practitioner

includes functions for marginal association tests, assessment of parent-of-origin effects,

power and sample size calculations, and functions to detect gene-gene and gene-

environment interactions associated with disease. We hope this vignette can also serve as a

template for good statistical practice to carry out reproducible analyses, a critical

consideration in particular for high-throughput experiments (Baggerly and Coombes, 2011;

Peng, 2011). The trio package is freely available from the Biocon-ductor repository (http://

www.bioconductor.org/) and available as open source code and binary (compiled) code for

all common operating systems.

For illustration, we use the case-parent trios from the International Cleft Consortium,

genotyped on the Illumina Human610 Beadarray and later imputed against the whole

genomes of the HapMap3 consortium (e.g., Beaty et al., 2010, 2011; Taub et al., 2012;

Murray et al., 2012; Beaty et al., 2013). These case-parent trios were ascertained through a

child with an isolated, non-syndromic oral cleft (cleft lip, cleft lip with cleft palate, or cleft

palate). DNA samples of about 2,500 case-parent trios recruited from several countries were

genotyped at the Center of Inherited Disease Research (CIDR, http://www.cidr.jhmi.edu/)

using the Illumina Human610-Quad Beadchip. The observed probe intensities were

processed using Illumina BeadStudio, and genotype calls at ~600,000 polymorphic markers

were released after initial quality control (for details, see Beaty et al., 2010). These data are

now available via dbGAP (http://www.ncbi.nlm.nih.gov/gap). To illustrate the utility of the

R functions in the trio package we particularly focus on 32,280 autosomal SNPs from

chromosome 8, which contains regions of particular interest (see Beaty et al., 2011; Murray

et al., 2012) in 1925 case-parent trios with an oral cleft proband, and genotype data from 297

case-parent trios and 111 SNPs from genes coding for fibroblast growth factors and their

receptors (FGF/FGFR genes) previously analyzed, e.g., by Wang et al. (2013). In addition,
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we demonstrate how trio builds on the Bioconductor package VariantAnnotation to import

data from vcf files, to also provide functionality for the analysis of sequencing data.

1 Reading and Manipulating Data

Trio data are most commonly and conveniently encoded via ped files, which can be

imported into an R session using the function read.pedfile() from the trio package. The first

six columns of these ped files typically contain information about the individuals (in order:

family ID, personal ID, father’s ID, mother’s ID, sex of the individual, and affection status)

and in the following columns the data for each variant, where two consecutive columns

specify the alleles at each locus. The function read.pedfile() accepts and automatically

interprets all conventional allele codes (numeric as 1, 2 and possibly also 3, 4, or alphabetic

as A and B, or encoded as nucleotides A, T, C, and G), reads SNP identifiers such as rs-

numbers if available, and stores the data in a data frame. As an example, the oral cleft data

from chromosome 8 can be read into R by

> pedChr8 <- read.pedfile(“chr8.ped”)

which stores the object pedChr8 in the following format:

> head(pedChr8[,1:8])

famid pid fatid motid sex affected rs11780869.1 rs11780869.2

1 11004 11004_1 11004_3 11004_2 1 2 4 4

2 11004 11004_2 0 0 2 1 4 4

3 11004 11004_3 0 0 1 1 4 4

4 11007 11007_1 11007_3 1 1007_2 1 2 4 4

5 11007 11007_2 0 0 2 1 0 0

6 11007 11007_3 0 0 1 1 4 4

The SNP data can also conveniently be stored in genotype matrix format, which for example

is necessary for all transmission disequilibrium test functions. In this format, each SNP is

represented by one matrix column, where the genotypes are coded as the number of minor

alleles, and each block of three consecutive rows comprise the genotypes of a trio’s father,

mother, and offspring (in this order). This is conveniently achieved by setting the option p2g

= TRUE (ped format to genotype format) in the read.pedfile() function.

> matChr8 <- read.pedfile(“chr8.ped”, p2g = TRUE)

which stores the object matChr8 in the following format:

> head(matChr8[,1:4])

rs11780869 rs3008282 rs2003497 rs12676364
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11004_3 0 1 1 0

11004_2 0 1 1 0

11004_1 0 1 1 0

11007_3 0 1 1 0

11007_2 NA NA NA NA

11007_1 0 1 2 0

As default, the minor allele at a SNP is the less frequent allele among the parents in the data

set. Alternatively, the function ped2geno() can be applied to the R object pedChr8, to

transform pedChr8 into genotype matrix format.

Similarly, a matrix in genotype format can be generated from sequencing data with variant

information stored in variant call format (vcf) files, by applying the trio function vcf2geno().

After reading the vcf files with the standard Bioconductor function readVcf() function from

the VariantAnnotation package, the matrix in genotype format is obtained by

> matGeno <- vcfgeno(vcf, ped)

where vcf is the R object obtained from readVcf(), and ped is a data frame in ped format,

which only contains the family structure information. By default, the sample names in the

vcf files are matched with the personal IDs (and hence, they must be identical), but other

options for example based on the row names of the ped object can also be used.

After a matrix in genotype format is generated either with ped2geno() or vcf2geno(), basic

data manipulations can be carried out, such as ordering SNPs by their genomic position,

which is easily done using the function orderSNPs().

> matChr8 <- orderSNPs(matChr8, map)

Here, the data frame map consists of columns specifying the SNP name, position, and

chromosome (only needed if more than one chromosome is considered), readily available

from any annotation file or package. For user convenience, there are specific functions to

remove entire case-parent trios (e.g., those with a high percentage of missing data, indicating

sample quality issues) and SNPs (e.g., those with very low minor allele frequencies) from

the analysis. For example, the line

> matChr8 <- removeTrios(matChr8, perc.na = 0.2)

removes all trios with at least 20% missing genotype information, and the line

> matChr8 <- removeSNPs(matChr8, maf = 0.05, perc.na = 0.1)

removes all SNPs with minor allele frequency below 5% or more than 10% missing values.
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2 Marginal Association Tests

2.1 Transmission Disequilibrium Tests

Transmission disequilibrium tests (TDTs) are the procedure of choice for testing association

of individual SNPs with disease in case-parent trio designs, and either consider alleles

(Spielman et al., 1993) or genotypes (Self et al., 1991; Schaid, 1996) as units in the analysis.

Both the allelic and genotyopic TDTs (aTDT and gTDT) are available in trio. This package

is the first to use the closed-form solutions of the gTDTs derived by Schwender et al.

(2012), providing for the first time gTDTs scalable on a genome-wide level. Score tests for

the parameter of interest based on the underlying conditional regression of the gTDTs are

also available, but for brevity are not discussed here (see Schwender et al., 2012).

The aTDT is applied to all 28,585 markers using the function allelicTDT(), and the five

most significant SNPs are displayed.

> outTDT <- allelicTDT(matChr8)

> outTDT

Allelic TDT

Top 5 SNPs:

Statistic p-value

rs987525 68.26 < 2.2e-16

rs1519847 52.36 4.612e-13

rs882083 49.29 2.213e-12

rs12542837 49.22 2.289e-12

rs1519841 46.92 7.406e-12

The default is to show the five most significant findings, which can be altered with the top

argument, for example showing the ten most significant findings with

> print(outTDT, top = 10)

An object with all results suitable for export into spread sheet format can be generated by

setting top to a non-positive number, e.g.

> allTDT <- print(outTDT, top = 0)

In this case, the SNPs are not ordered by significance, but are returned in the same order as

stored in the data object matChr8.

In contrast to the aTDT which only provides test statistics and p-values, the gTDT

additionally allows to specify genetic models, and also returns parameter estimates and

standard errors. These statistics are required for example in meta-analyses in which

information from different experiments are combined, and often additional risk loci can be
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identified due to the increase in power (see for example Ludwig et al. (2012) for a meta-

analysis of a case parent trio and a case-control study). Here, the gTDT is applied to all

SNPs in the object matChr8 by calls to the function colTDT(), with an assumed additive

model as default.

> outgTDT <- colTDT(matChr8)

For dominant or recessive models the argument model can be used, and any unambiguous

substring can be given, e.g.

> outgTDTrec <- colTDT(matChr8, model = “rec”)

carries out a recessive gTDT to all SNPs in the object matChr8. If just a single SNP should

be tested, the function tdt() can also be used. For each marker, these functions compute and

return the slope parameter in the conditional logistic regression under the specified genetic

model and its estimated standard error, the odds ratio with its 95% confidence interval, the

test statistic, the corresponding (unadjusted) p-value based on a  null distribution, and the

effective number of trios used in the maximization of the log-likelihood (i.e., the number of

trios with at least one heterozygous parent in the additive model, etc). By default, objects

created by calls to colTDT() return the 5 most significant results.

> outgTDT

Genotypic TDT Based on 3 Pseudo Controls

Model Type: Additive

Top 5 SNPs:

Coef OR Lower Upper SE Statistic p-Value Trios

rs987525 0.577 1.78 1.55 2.05 0.0709 66.4 3.68e-16 709

rs1519847 0.443 1.56 1.38 1.76 0.0618 51.5 7.11e-13 868

rs12542837 0.429 1.54 1.36 1.73 0.0616 48.5 3.35e-12 873

rs882083 0.449 1.57 1.38 1.78 0.0646 48.5 3.36e-12 805

rs1519841 0.418 1.52 1.35 1.71 0.0614 46.2 1.05e-11 878

As before, the number of marker results in the output can be modified with the top argument

in the print() function. Also, the findings from such an analysis can be displayed by

interfacing them with other R packages such as Gviz (Figure 1).

In practice, the true underlying disease model is not known, which led to the suggestion of

using the maximum of the three gTDT statistics (additive, dominant, recessive) as the actual

test statistic, since specifying an incorrect genetic model may lead to a substantial loss of

power (Freidlin et al., 2002). The null distribution of the maximum over these three (highly)

correlated test statistics is unknown however, and permutation tests have to be applied to

determine statistical significance. While this procedure is generally not scalable on a

genome-wide level, case-parent trio design can again be exploited to make a genome-wide
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determination of p-values based on a sufficient number of permutations feasible (Schwender

et al., 2012). In our trio package, this MAX test can be carried out by a call to the functions

colTDTmaxTest().

2.2 Sample Size and Power

The closed-form solution for the gTDT also enables an exact analytic calculation of sample

size and power of this test (Neumann et al., 2014), and we implemented the procedures for

instantaneous sample size and power determinations for the allelic TDT, the gTDTs, and the

score tests in the function trio.power(). For a relative risk specified by the argument RR

(default RR = 1.5) and a type I error specified by the argument alpha (default alpha = 5 *

10^-8, the value commonly used for genome-wide significance), the power is calculated if

the sample size n is specified, or the sample size is calculated if the power beta is given. For

minor allele frequencies of 0.1 and 0.2, a desired power of β = 0.8, and the default values of

RR and alpha, the sample sizes required for the statistical tests mentioned above (under

additive or dominant models) are close to the number of trios available in our oral cleft

study.

> trio.power(maf = c(0.1, 0.2), beta = 0.8, model = c(“add”, “dom”))

Trio studies sample size calculation

Test Model MAF alpha RR beta Trios

1 gTDT additive 0.1 5e-08 1.5 0.8 2524

2 gTDT additive 0.2 5e-08 1.5 0.8 1607

3 gTDT dominant 0.1 5e-08 1.5 0.8 2771

4 gTDT dominant 0.2 5e-08 1.5 0.8 1950

5 Score additive 0.1 5e-08 1.5 0.8 2505

6 Score additive 0.2 5e-08 1.5 0.8 1596

7 Score dominant 0.1 5e-08 1.5 0.8 2749

8 Score dominant 0.2 5e-08 1.5 0.8 1935

9 aTDT multiplicative 0.1 5e-08 1.5 0.8 2505

10 aTDT multiplicative 0.2 5e-08 1.5 0.8 1596

2.3 Parent-of-Origin Effects

Parent-of-origin effects are particularly important to consider when studying birth defects

such as oral clefts, because the maternal genotype controls also the in utero environment of

the developing fetus, and separating maternal genotypic effects from imprinting effects

remains an important question (Wilkins and Haig, 2003; Weinberg and Umbach, 2005). The

Transmission Asymmetry Test (TAT; Weinberg et al., 1998) and the Parent-of-Origin

Likelihood Ratio Test (PO-LRT; Weinberg, 1999b) are implemented in trio as functions

colTAT() and colPOlrt(), respectively, to provide methods for assessment of parent-of-

origin-effects. For the latter we receive the following output.

> poOut <- colPOlrt(matChr8)

> poOut
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Parent-Of-Origin Likelihood Ratio Test

Top 5 SNPs:

LL (with) LL (without) Statistic P-Value

rs4921798 -191.4 -201.5 20.19 7.026e-06

rs13259591 -379.7 -389.6 19.76 8.770e-06

rs4311638 -604.7 -614.6 19.69 9.100e-06

rs2570683 -613.1 -621.5 16.65 4.487e-05

rs1460172 -522.4 -530.2 15.64 7.645e-05

As before, by default the results from the top 5 markers are shown, including the values of

the maximized log-likelihoods for logistic regression models with and without a term for the

parent-of-origin effect, the likelihood ratio test statistics, and their corresponding p-values.

For the TAT, similar to the allelic TDT, the test statistics and corresponding p-values are

computed for each SNP. Originally, matings between two heterozygotes were excluded

because transmission can be ambiguous, however, in some implementation such as PLINK

(Purcell et al., 2007) these ambiguous transmissions are counted as 0.5 for both mother and

father. The function colTAT() provides an argument bothHet to govern the contribution of

the heterozygotes to the test statistic, with bothHet = 0 as default, leading to the original

TAT.

3 Gene-Environment Interactions

3.1 Gene-Environment Tests with Binary E

An additional feature of the gTDT compared to the allelic TDT is that the model can be

readily extended to test for gene-gene and gene-environment interactions, by simply

including interaction terms in the conditional logistic regression model. For gene-

environment tests, these conditional logistic regression models include one term for the SNP

main effect and one term for the gene-environment interaction (the model does not contain a

term for the environmental variable itself, since its value is always identical within a trio

which constitutes the grouping factor, and thus the main environmental effect is not

identifiable; Maestri et al., 1997; Schaid, 1999).

In the vast majority of analyses the environmental factor is binary (for example given as

indicator of maternal smoking or alcohol consumption, exposure to a pollutant, etc), and in

that instance the test statistic for the gene-environment interaction term in the gTDT has

again a known closed-form solution (Schwender et al., 2012), also implemented in trio. For

example, testing for differences in genetic effects between males and females, we can

invoke the colGxE function

> outGxE <- colGxE(matChr8, gender)

assuming the children’s records for gender in the object gender are in the same order as the

trios in matChr8. Otherwise the trio / family IDs corresponding to the entries in gender can

be specified using the argument famid.
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As in colTDT(), an additive mode of inheritance is assumed as default, but other genetic

models can also be selected by specifying the argument model. The function colGxE()

computes the parameter estimates, estimated standard errors, odds ratios, 95% confidence

intervals, test statistics, and the (unadjusted) p-values for both the SNP main effects and the

gene-environment interaction terms. In addition, similar to the marginal calculations, the

effective number of trios contributing to the likelihoods are determined, as well as the odds

ratios for the exposed cases with the corresponding 95% confidence intervals (assuming

addGandE = TRUE is used as an argument in the function, which is the default). Further, the

2 degrees of freedom Wald and likelihood ratio tests simultaneously assessing the SNP main

effect and the interaction with the environment are carried out by default for each marker, as

well as a 1 degree of freedom likelihood ratio test assessing the interaction term alone.

For our example, the default output for outGxE is displayed in the supplementary materials.

As before, the default is to show statistics for the five most significant gene-environment

interactions determined by the p-values of the 1 degree of freedom GxE Wald test. The

function getGxEstats() can be applied to the output of colGxE() to obtain these statistics for

all gene-environment interactions, either unsorted or ordered by the p-values of one of the

performed tests. In our example, none of the markers on chromosome 8 shows a genome-

wide significant difference between males and females (nor was this the case for any marker

on any other chromosome, see the supplementary material in Schwender et al., 2012, for

details).

3.2 Gauderman’s 2-step Procedure

Additional power to detect gene-environment interactions can be obtained by using the two-

step procedure proposed by Gauderman et al. (2010). In the first step, a logistic regression is

used for each marker with the binary environmental factor as a dependent variable, and the

sum over the genotype codings for the respective parents as an independent variable. In the

second step, the same gTDT as described above is used to test for gene-environment

interactions only for those markers achieving a p-value smaller than a pre-determined

significance level (α1) in step one. The gain in power stems from the two test statistics for

each marker being (asymptotically) independent, and thus, fewer markers are investigated in

step 2. If in the function colGxE() the argument alpha1 is set to a value between 0 and 1,

Gauderman’s 2-step procedure with a step 1 significance level of α1 is carried out. In

colGxE(), a -distribution is employed as asymptotic null distribution to determine the p-

values. If this is a concern, the function colGxEperm() can be used instead to calculate p-

values based on a permutation null distribution.

4 Epistatic Interactions

4.1 Pairwise Interactions

Interactions between specific pairs of SNPs via a gTDT can be tested using the function

tdtGxG(), all pairs of SNPs comprised by a matrix in genotype format can be tested using

the function colGxG(). By default (argument test=“epistatic”) the 4 degrees of freedom

likelihood ratio test proposed by Cordell (2002) for epistatic interactions is applied,

comparing the likelihoods of conditional logistic regression models with and without four
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terms encoding the interaction (two orthogonal vectors coding each bi-allelic marker).

Alternative approaches include a conditional logistic regression (”screening”) model with

only one term for the interaction (test = “screen”), a model containing additional terms for

the two main effects (test = “full”), and a likelihood ratio test comparing the likelihoods of

the full model with the reduced model (main effects, no interaction; test = “lrt”). A faster

implementation for the screening model is also available (fastGxG()). As before, by default

an additive genetic model is assumed for all SNPs, with alternatives available (model =

“dominant” and model = “recessive”, for dominant and recessive models, respectively).

Commonly, only interactions from different specific regions are of interest, for example

epistatic interactions between markers from separate candidate genes. The argument genes

in colGxG() and fastGxG() provides a convenient approach to carry out this task. For

example, if we consider the FGF and FGFR gene family data analyzed by Wang et al.

(2013) and store these data in the matrix matFGF in genotype format, then interactions

between SNPs from different FGF genes can be tested by constructing a vector genes using

an object with the gene names, and specifying the number of SNPs in the respective genes.

In this example this yields 5,322 pairwise interactions to be tested, for example using

Cordell’s 4 degrees of freedom test for epistatic interactions

> outGxG <- colGxG(matFGF, genes = genes)

The default output contains the values of the log-likelihoods, the test statistics, the miminal

p-values, and the gene names for the five most significant interactions.

> outGxG

Genotypic TDT for Epistatic Interactions (Using 15 Pseudo Controls)

Top 5 SNP Interactions (Likelihood Ratio Test):

LL (with IAs) LL (w/o IAs) Statistic P-Value Genes

rs2043278 : rs12870202 -638.7 -650.6 23.85 8.544e-05 18:9

rs1482679 : rs3934591 -630.3 -639.2 17.74 0.001385 10:18

rs4733930 : rs2981427 -667.9 -675.9 15.97 0.003055 R1:R2

rs6887323 : rs1893047 -554.7 -562.2 15.14 0.004429 18:3

rs1384449 : rs2981430 -673.6 -680.8 14.34 0.006292 10:R2

Alternatively, the fast screening test described above runs about two orders of magnitude

faster:

> outGxGfast <- fastGxG(matFGF, genes = genes)

The difference in computing time is due to the much higher complexity of the Cordell test

where conditional logistic regression models with four and eight parameters are numerically

fitted using an iterative procedure, while in the screening test the likelihood is first converted

to a form which is much easier to maximize than the standard expression for the likelihood
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(see the supplementary material to Schwender et al., 2012), since maximization only applies

to one parameter.

4.2 Higher-order Interactions

Trio Logic Regression—Detecting higher-order SNP interactions is foremost a high-

dimensional search problem, and for case-parent trios in particular few such approaches

exist. Trio logic regression (Li et al., 2010), an adaptation of logic regression (Ruczinski et

al., 2003) to case-parent trio data implemented in the trio package is one such method. The

algorithm considers all possible interactions of SNPs (encoded as two binary variables in

dominant and recessive coding) by using a stochastic search algorithm (simulated annealing;

Koza, 1993) to directly search for a Boolean combination of these binary (“logic”) terms.

Trio logic regression can be carried out using the function trioLR() in the trio package. We

describe this more specialized procedure and present R code in the Supplementary Materials

(Section 3.1).

Trio Feature Selection—Since trioLR() is based on a stochastic search algorithm,

repeated applications of the algorithm to the same data often yield different and competing

models, for example consisting of different SNPs from the same LD block. To stabilize the

search for interactions and to quantify the importance of these interactions on disease risk,

Schwender et al. (2011) proposed a method called trio Feature Selection (trioFS). In this

resampling-based procedure, trio logic regression is applied to several bootstrap or

subsamples of the data, and the out-of-bag trios in each iteration are used to determine the

importance of the detected interactions, and to rank these interactions by their influence on

disease risk. We describe this procedure and present R code in detail in the Supplementary

Materials (Section 3.2).

Discussion

In this manuscript, we presented a software vignette for genome-wide analyses of case-

parent trio data using the open source Bioconductor package trio, which includes

functionality for marginal association tests, assessment of parent-of-origin effects, power

and sample size calculations, and functions to detect gene-gene and gene-environment

interactions. This approach allows for completely reproducible analyses and results also in

conjunction with the Sweave environment (Leisch, 2002). In addition, the objects created by

trio functions can easily be interfaced with other functionality provided by specialized

packages such as Gviz for visualization (see Figure 1), or can be exported and made

available for example as input into meta-analyses (see for example Lud-wig et al., 2012). All

functions presented in this document are implemented in the Bioconductor package trio

version 3.2.1 and later, available at http://www.bioconductor.org/. Some additional

functionality not presented here is available in trio, as documented in the online manual at

http://www.bioconductor.org/, and also available by calling

> vignette(“trio”, package=“trio”)
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One example for additional functionality is a method for efficient retrospective simulation of

case parent trios where disease risk can also depend on complex gene-gene and gene-

environment interactions (as described in Li et al., 2013). We also offer an implementation

of the EM algorithm proposed by Weinberg (1999a) in the function colEMlrt(), based on a

likelihood-based method including genetic information from incomplete trios, thereby not

suffering from a loss of power and induced bias, compared to a complete case analysis (see

Curtis and Sham, 1995).

Open source Bioconductor packages such as trio can readily be extended, and we plan to

make updated software releases available to the community in the future. Additional

functionality will for example include methods to test for epistatic interactions when

markers are from the same haplotype block as proposed by Cordell and Clayton (2002), in

addition to the ones currently available assuming unlinked markers (see Cordell, 2002). We

also plan a major extension of the available functionality in the future by incorporating

methods for copy number variant analyses, such as the MinimumDistance approach to detect

de novo DNA copy number deletions associated with disease (Scharpf et al., 2012; Younkin

et al., 2014).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We gratefully acknowledge the financial support provided by the Deutsche Forschungsgemeinschaft (SCHW
1508/3-1 to HS; SFB 823 “Statistical Modelling of Nonlinear Dynamic Processes” to C.N.), the National Institute
of Health (R01 HL090577 to QL and IR; R01 GM083084 to IR; R03 DE021437 to SGY, THB, and IR; U01
DE018993 and R01 DE014581 to THB), and a CTSA grant to the Johns Hopkins Medical Institutions. We
particularly acknowledge Jeffrey C. Murray, Mary L. Marazita, and Alan F. Scott who played critical roles in
generating the data for the International Cleft Consortium, used in this manuscript. The manuscript is dedicated to
the late Trio member Gert “Kralle” Krawinkel.

References

Baggerly KA, Coombes KR. What information should be required to support clinical ”omics”
publications? Clin Chem. 2011; 57:688–690. [PubMed: 21364027]

Beaty TH, Murray JC, Marazita ML, Munger RG, Ruczinski I, Hetmanski JB, Liang KY, Wu T,
Murray T, Fallin MD, Redett RA, Raymond G, Schwender H, Jin SC, Cooper ME, Dunnwald M,
Mansilla MA, Leslie E, Bullard S, Lidral AC, Moreno LM, Menezes R, Vieira AR, Petrin A,
Wilcox AJ, Lie RT, Jabs EW, Wu-Chou YH, Chen PK, Wang H, Ye X, Huang S, Yeow V, Chong
SS, Jee SH, Shi B, Christensen K, Melbye M, Doheny KF, Pugh EW, Ling H, Castilla EE, Czeizel
AE, Ma L, Field LL, Brody L, Pangilinan F, Mills JL, Molloy AM, Kirke PN, Scott JM, Arcos-
Burgos M, Scott AF. A genome-wide association study of cleft lip with and without cleft palate
identifies risk variants near MAFB and ABCA4. Nat Genet. 2010; 42:525–529. [PubMed:
20436469]

Beaty TH, Ruczinski I, Murray JC, Marazita ML, Munger RG, Hetmanski JB, Murray T, Redett RJ,
Fallin MD, Liang KY, Wu T, Patel PJ, Jin SC, Zhang TX, Schwender H, Wu-Chou YH, Chen PK,
Chong SS, Cheah F, Yeow V, Ye X, Wang H, Huang S, Jabs EW, Shi B, Wilcox AJ, Lie RT, Jee
SH, Christensen K, Doheny KF, Pugh EW, Ling H, Scott AF. Evidence for gene-environment
interaction in a genome wide study of isolated, non-syndromic cleft palate. Genet Epidemiol. 2011;
35:469–478. [PubMed: 21618603]

Schwender et al. Page 12

Genet Epidemiol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Beaty TH, Taub MA, Scott AF, Murray JC, Marazita ML, Schwender H, Parker MM, Hetmanski JB,
Balakrishnan P, Mansilla MA, Mangold E, Ludwig KU, Noethen MM, Rubini M, Elcioglu N,
Ruczinski I. Confirming genes influencing risk to cleft lip with/without cleft palate in a case-parent
trio study. Hum Genet. 2013; 132:771–781. [PubMed: 23512105]

Cordell HJ. Epistasis: What it means, what it doesn’t mean, and statistical methods to detect it in
humans. Hum Mol Genet. 2002; 11:2463–2468. [PubMed: 12351582]

Cordell HJ, Clayton DG. A unified stepwise regression procedure for evaluating the relative effects of
polymorphisms within a gene using case/control or family data: Application to HLA in type 1
diabetes. Am J Hum Genet. 2002; 70:124–141. [PubMed: 11719900]

Curtis D, Sham PC. A note on the application of the transmission disequilibrium test when a parent is
missing. Am J Hum Genet. 1995; 56:811–812. [PubMed: 7887437]

Freidlin B, Zheng G, Li Z, Gastwirth J. Trend tests for case-control studies of genetic markers: Power,
sample size and robustness. Hum Hered. 2002; 53:146–152. [PubMed: 12145550]

Gauderman WJ, Thomas DC, Murcray CE, Conti D, Li D, Lewinger JP. Efficient genome-wide
association testing of gene-environment interaction in case-parent trios. Am J Epidemiol. 2010;
172:116–122. [PubMed: 20543031]

Koza, JR. Genetic programming – On the programming of computers by means of natural selection.
Cambridge, Mass: The MIT Press; 1993.

Laird NM, Lange C. Family-based designs in the age of large-scale gene-association studies. Nat Rev
Genet. 2006; 7:385–394. [PubMed: 16619052]

Leisch, F. Sweave: Dynamic generation of statistical reports using literate data analysis. In: Härdle,
W.; Rönz, B., editors. Compstat 2002 — Proceedings in Computational Statistics. Physica Verlag;
Heidelberg: 2002. p. 575-580.

Li Q, Fallin MD, Louis TA, Lasseter VK, McGrath JA, Avramopoulos D, Wolyniec PS, Valle D,
Liang KY, Pulver AE, Ruczinski I. Detection of SNP-SNP interactions in trios of parents with
schizophrenic children. Genet Epidemiol. 2010; 34:396–406. [PubMed: 20568257]

Li Q, Schwender H, Louis TA, Fallin MD, Ruczinski I. Efficient simulation of epistatic interactions in
case-parent trios. Hum Hered. 2013; 75:12–22. [PubMed: 23548797]

Ludwig KU, Mangold E, Herms S, Nowak S, Reutter H, Paul A, Becker J, Herberz R, AlChawa T,
Nasser E, Bhmer AC, Mattheisen M, Alblas MA, Barth S, Kluck N, Lauster C, Braumann B,
Reich RH, Hemprich A, Ptzsch S, Blaumeiser B, Daratsianos N, Kreusch T, Murray JC, Marazita
ML, Ruczinski I, Scott AF, Beaty TH, Kramer FJ, Wienker TF, Steegers-Theunissen RP, Rubini
M, Mossey PA, Hoffmann P, Lange C, Cichon S, Propping P, Knapp M, Nthen MM. Genome-
wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk
loci. Nat Genet. 2012; 44:968–971. [PubMed: 22863734]

Maestri NE, Beaty TH, Hetmanski J, Smith EA, McIntosh I, Wyszynski DF, Liang KY, Duffy DL,
VanderKolk C. Application of transmission disequilibrium tests to nonsyndromic oral clefts:
Including candidate genes and environmental exposures in the models. Am J Med Genet. 1997;
73:337–344. [PubMed: 9415696]

Murray T, Taub MA, Ruczinski I, Scott AF, Hetmanski JB, Schwender H, Patel PJ, Zhang TX,
Munger RG, Wilcox AJ, Ye X, Wang H, Wu T, Wu-Chou YH, Shi B, Jee SH, Chong SS, Yeow
V, Murray JC, Marazita M, Beaty TH. Examining markers in 8q24 markers to explain differences
in evidence for association with cleft lip with/without cleft palate between asians and europeans.
Genet Epidemiol. 2012; 36:392–399. [PubMed: 22508319]

Neumann C, Taub M, Younkin S, Beaty T, Ruczinski I, Schwender H. Analytic power and sample size
calculation for the genotypic transmission/disequilibrium test in case-parent trio studies. 2014
under review.

Peng RD. Reproducible research in computational science. Science. 2011; 334:1226–1227. [PubMed:
22144613]

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker
PIW, Daly MJ, Sham PC. Plink: a tool set for whole-genome association and population-based
linkage analyses. Am J Hum Genet. 2007; 81:559–575. [PubMed: 17701901]

Ruczinski I, Kooperberg C, LeBlanc M. Logic regression. J Comput Graph Stat. 2003; 12:475–511.

Schwender et al. Page 13

Genet Epidemiol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Schaid DJ. General score tests for associations of genetic markers with disease using cases and their
parents. Genet Epidemiol. 1996; 13:423–449. [PubMed: 8905391]

Schaid DJ. Likelihoods and TDT for the case-parents design. Genet Epidemiol. 1999; 16:250–260.
[PubMed: 10096688]

Scharpf RB, Beaty TH, Schwender H, Younkin SG, Scott AF, Ruczinski I. Fast detection of de novo
copy number variants from SNP arrays for case-parent trios. BMC Bioinformatics. 2012; 13:330.
[PubMed: 23234608]

Schwender H, Bowers K, Fallin MD, Ruczinski I. Importance measures for epistatic interactions in
case-parent trios. Ann Hum Genet. 2011; 75:122–132. [PubMed: 21118192]

Schwender H, Taub MA, Beaty TH, Marazita ML, Ruczinski I. Rapid testing of SNPs and gene-
environment interactions in case-parent trio data based on exact analytic parameter estimation.
Biometrics. 2012; 68:766–773. [PubMed: 22150644]

Self SG, Longton G, Kopecky KY, J Liang K. On estimating HLA/disease association with application
to a study of aplastic anemia. Biometrics. 1991; 47:53–61. [PubMed: 2049513]

Spielman RS, Ewens WJ. The TDT and other family-based tests for linkage disequilibrium and
association. Am J Hum Genet. 1996; 59:983–989. [PubMed: 8900224]

Spielman RS, McGinnis R, Ewens WJ. Transmission test for linkage disequilibrium: The insulin gene
region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993; 52:506–516.
[PubMed: 8447318]

Taub MA, Schwender H, Beaty TH, Louis TA, Ruczinski I. Incorporating genotype uncertainties into
the genotypic tdt for main effects and gene-environment interactions. Genet Epidemiol. 2012;
36:225–234. [PubMed: 22678881]

Wang H, Zhang T, Wu T, Hetmanski JB, Ruczinski I, Schwender H, Liang KY, Murray T, Fallin MD,
Redett RJ, Raymond GV, Jin SC, Chou YHW, Chen PKT, Yeow V, Chong SS, Cheah FSH, Jee
SH, Jabs EW, Scott AF, Beaty TH. The fgf and fgfr gene family and risk of cleft lip with or
without cleft palate. Cleft Palate Craniofac J. 2013; 50:96–103. [PubMed: 22074045]

Weinberg CR. Allowing for missing parents in genetic studies of case-parent triads. Am J Hum Genet.
1999a; 64:1186–1193. [PubMed: 10090904]

Weinberg CR. Methods for detection of parent-of-origin effects in genetic studies of case-parents
triads. Am J Hum Genet. 1999b; 65:229–235. [PubMed: 10364536]

Weinberg CR, Umbach DM. A hybrid design for studying genetic influences on risk of diseases with
onset early in life. Am J Hum Genet. 2005; 77:627–636. [PubMed: 16175508]

Weinberg CR, Wilcox AJ, Lie RT. A log-linear approach to case-parent-triad data: assessing effects of
disease genes that act either directly or through maternal effects and that may be subject to
parental imprinting. Am J Hum Genet. 1998; 62:969–978. [PubMed: 9529360]

Wilkins JF, Haig D. What good is genomic imprinting: the function of parent-specific gene expression.
Nat Rev Genet. 2003; 4:359–368. [PubMed: 12728278]

Younkin SG, Scharpf RB, Schwender H, Parker MM, Scott AF, Marazita ML, Beaty TH, Ruczinski I.
A genome-wide study of de novo deletions identifies a candidate locus for non-syndromic isolated
cleft lip/palate risk. BMC Genet. 2014; 15:24. [PubMed: 24528994]

Schwender et al. Page 14

Genet Epidemiol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
Results (–log10 p-values, y-axis) from the genotypic TDTs under an additive genetic model

are shown as a function of genomic location (x-axis) for a subset of SNPs on chromosome 8.

The specific region shown in detail is indicated by a rectangle on the cytoband.
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