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INTRODUCTION

A fellow of my acquaintance, on seeing a
colleague drink undiluted water (55.5 molal),
has been known to comment in disapproval
that water at such a concentration should not
be used for that purpose and that its main
function is for putting around the outside of
boats. He conceded that dilution with a little
salt is acceptable for boats but for no other
purpose. The proponent ofthis philosophy is not
a biologist and it is unlikely that many biolo-
gists would accept his generalization without
some qualification. Nevertheless, it is a point of
view.
Another point of view with which all biolo-

gists might not agree, at least initially, is one
which I wish to advance in this review. It is

that, notwithstanding the indispensability of
water in living systems and the unique proper-
ties of solvent water, quantitative variations in
the amount of water available are of less direct
microbiological significance than is generally
conceded.

Discussions of microbial water relations usu-
ally emphasize the stresses associated with lim-
iting water availability rather than with an
excess of water. A major reason why this is so,
as already pointed out (19), is that any distribu-
tion curve of microbial biomass or number of
microbial species against salt concentration
would be asymmetrical, with the peak or peaks
in the freshwater-seawater region. Similarly,
plant and animal physiologists usually treat
water stress as a stress of deficiency rather
than of abundance. This review is no exception,
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and emphasis is placed on those microorga-
nisms that tolerate and sometimes require an
environment in which the amount of thermo-
dynamically available water is greatly reduced.
Tolerance, in this context, refers to the ability
to thrive, not merely survive.

In very general terms, there is probably not
much difference in the range of habitats, as
defined by water availability, tolerated by ap-
propriate representatives of higher plants, ani-
mals, and microorganisms. The mechanistic
details of adjustment to water stress are quite
distinct in the case of microorganisms, how-
ever, although microbial adaptive mechanisms
are sometimes encountered to a limited extent
in higher organisms.
The nutritional physiology of the protista is

itself sufficient to cause a distinctive type of
adaptation mechanism. Since prokaryotes, and
many unicellular eukaryotes, can acquire their
nutrients only from solution, they can be grown
only in direct contact with liquid water (there
are some marginal situations associated with
ice). A desiccated environment for a growing
prokaryote is therefore a concentrated solution
with which the microbial cell must come di-
rectly to thermodynamic terms. Although it is
true that plants also obtain their nutrients
from solution, land plants, at least, have a
large aerial component. Their water relations
are affected profoundly by intermittent wetting
and the problem ofreducing water loss by evap-
oration. This is achieved partly by control of
gas exchange by mechanical means such as
closing stomata. The same kind of generaliza-
tion is applicable to animals that, in many
examples of adaptation to a desert situation,
conserve water by excreting concentrated ur-
ine, coprophagy, and by various dodges that
reduce evaporation.
As the following quantitative treatment ex-

plains, however, no plant or animal is known
whose cells can tolerate solute concentrations
even remotely approaching the extreme levels
at which some groups of microorganisms can
thrive and which some exceptional microorga-
nisms even require. This review is concerned
primarily with such organisms.

PHYSICOCHEMICAL PARAMETERS
Biological water relations have been tradi-

tionally and, to a large extent still are, dis-
cussed in terms of osmotic pressure. This pa-
rameter is useful when turgor and related phe-
nomena are under consideration, but it is much
less useful in relation to the rigid-walled pro-
karyotes in which turgor pressure cannot be
reliably measured by current techniques and
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for which attempts to derive them indirectly
have been handicapped by many assumptions
and oversimplifications (19). Nevertheless, os-
motic pressure, as a colligative property of solu-
tions, can be validly employed if its limitations
are recognized.
By strict definition, osmotic pressure is not a

pressure that can be measured directly. If a
solution is placed in an osmometer, however, a
hydrostatic pressure will develop, and this
pressure can be measured. With a pure ideal
solvent on one side of the osmometer mem-
brane, the hydrostatic pressure necessary to
prevent a flow of solvent is, by definition, nu-
merically equal to the osmotic pressure of the
solution.

Notwithstanding textbook definitions, there
is confusion and some disagreement about the
physical implications of osmotic pressure. Two
schools ofthought can be identified among biol-
ogists. The first (group 1) considers, in essence,
that osmotic pressure is an intrinsic property of
a solution that exists independently of any os-
mometer; as already stated, the osmometer re-
veals a derived hydrostatic pressure. The other
school (group 2) considers that osmotic pressure
is not an intrinsic property and is manifest only
with the involvement of an osmometer.
Statements such as "the osmotic pressure of

the suspending solution was increased," which
are common in microbiological publications,
will mean different things to the two groups. To
group 1, the cell is subjected to an increased
external pressure; to group 2, the cell is sub-
jected to a decreased internal pressure. Fur-
thermore, the expression "osmotically active
solute" should logically have a different mean-
ing to the two groups. In fact, it seems to mean
much the same thing to everyone, suggesting a
breakdown in the logic of group 1 and, once
again, confusion between osmotic and hydro-
static pressures. To group 1, all solutes must,
by definition, be osmotically active, but in prac-
tice they are so described only if they are effec-
tively retained by a membrane and can contrib-
ute thereby to the generation of a hydrostatic
pressure in an osmometer. Considerations of
this type have led some cell physiologists to use
the term "osmotic potential" to denote a capac-
ity to develop a specified hydrostatic pressure
under appropriate conditions (97).
Osmotic pressure is related positively to the

concentration of solutes. For a dilute ideal solu-
tion, the Van't Hoff relation states:

(1)i= RT -
j Vw-nw

in which IIL is osmotic pressure (the subscript s
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being used to denote an ideal solvent), R is the
universal gas constant, T the absolute temper-
ature, fj the number of moles of species j, V,,
the partial molal volume of the solvent (wa-
ter), and n,, is the number of moles of water.
The summation, I, denotes that all solutes in

the system are considered. The expression
nj/ V,,,n,,, is a statement of concentration and
can be substituted by a symbol for concentra-
tion, c,. Thus, equation 1 becomes

H = RTEc, (2)

(The derivation of this equation and those that
follow is given in a number of books on the
physical chemistry of solutions. Those by
Robinson and Stokes [1151 and Nobel [97] are
of particular relevance, the latter being ori-
ented throughout to biological systems.)

In a solution of "real" (that is, nonideal)
solutes in an ideal solvent, equation 2 be-
comes:

H = RT E yjcj = RT Y2 a, (3)
i j

where yj is the activity coefficient (1 in an
ideal solution, <1 in nearly all other cases),
and aj is the activity of the solute.
There is no evidence that osmotically gener-

ated hydrostatic pressure is a factor of any
significance in distinguishing the physiology
of, say, a halophilic bacterium from one thriv-
ing in a dilute environment. Although the
natural environment of halophils would de-
velop an enormous pressure in an osmometer,
their internal contents are also very concen-
trated (see below) and, as a consequence, these
organisms are subjected to a net hydrostatic
pressure that is probably less than that devel-
oped in freshwater microorganisms. The evi-
dence generally is that the only serious require-
ment of hydrostatic pressure is that it be kept
within those limits sufficient to maintain a
cell in a satisfactory state of turgor. There is
no evidence, of which I am aware, that varia-
tions in hydrostatic pressure within the limits
operable in a functioning cell, or within the
limits encountered between healthy cells of
different habitats, have any measurable effect
on enzyme function. Of course, hydrostatic
pressure can be a factor of great significance in
a transient situation, such as a change in sol-
ute concentration of the environment of a mi-
croorganism. Under such conditions hydro-
static pressure sufficient to burst susceptible
cells can be generated, but this is not the kind
of phenomenon with which we are concerned
in this review.

Nevertheless, between dilute and concen-
trated environments there are fundamental
physicochemical differences that require
quantitative description. The other colligative
properties of a solution, namely, elevation of
boiling point, depression offreezing point, and
the lowering of vapor pressure of the solvent,
are no less useful than osmotic pressure in
providing a numerical expression related to a
thermodynamic property of the solution.
These measures are rarely used in biology,
however, presumably because they lack the
apparent direct physiological significance that
is commonly attributed to osmotic pressure.
This independence could be advantageous.
There are two fundamental properties of so-

lutions directly related to all four colligative
properties. These are the chemical potential of
a solvent and the thermodynamic solvent ac-
tivity. The chemical potential, u, of substance
j is defined as the partial molal Gibbs free
energy and is denoted thus,

u = (an) ni, T, P,E, h (4)

where F is the Gibbs free energy, nfj the num-
ber of moles of substance j, ni the number of
moles of all other substances present, and T,
P, E and h being temperature, pressure elec-
trical potential, and height, respectively.
Chemical potential is calculated from the

equation,

itj = hi° + RTlnaj + VjP (5)
+ ZiFE + migh

where AO is the chemical potential of sub-
stance j in a standard state that can be arbi-
trarily chosen, aj is the thermodynamic activ-
ity of substance j, Vj is the partial molal vol-
ume of substance j, ZjFE is a term represent-
ing the effect of electrical potential on chemi-
cal potential, and mjgh is a gravitational term
that is of importance, for example, in relation
to sap movement in trees but of negligible
significance for microorganisms. The electri-
cal term can be omitted for nonelectrolytes
and for water, and thus the chemical potential
of water in a situation where gravitational
effects are ignored can be written:

g4,0 = gO~j° + RTlnaO + 'VP (6)
where al,, is the thermodynamic activity of wa-
ter. The dimensions of chemical potential are
expressed as energy per mole, the units com-
monly used being calories per mole or joules
per mole.
Equation 6 shows that assignment of an ab-
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solute value to ,t requires an absolute value
for le that is not obtainable. This is no prob-
lem in biological situations, however, in which
the significance of a chemical potential, like
that of other potential notations, lies in poten-
tial difference and the value for the standard
state is constant.
The potential difference, (A, - p.,10)/(V,), is

sometimes called the water potential and is
given the symbol /. Thus, from equation 6:

RTln,
V W +P (7)
vw

The parameter, 4i, has received little attention
from microbiologists but is frequently used by
plant physiologists, although not always cor-
rectly. Thus Hsiao (61) equated i with
lnaw(RT/V), which is, in fact, an expression
for the determination of osmotic pressure (see
below).
Over recent years, microbiologists have

tended to discuss microbial water relations in
terms of water activity, aw, as used in the
preceding equations. This practice received a
major impetus in food microbiology, largely
from the work of W. J. Scott (see, for example,
reference 121). As the previous equations
show, lnaw is related directly to water poten-
tial and there are some practical advantages
in its use. Among these advantages are its
relative ease of experimental determination,
its simple mathematical manipulation, and its
direct relation to some other easily recognized
and measured properties of solutions.

In the foregoing discussion, aj, the activity
of substance j, can be defined on a molar or
molal concentration scale or as a mole frac-
tion. The activity of a solvent is usually based
on its mole fraction. Water activity, aw, is
defined as vyNw where yw is the activity coeffi-
cient and Nw is the mole fraction of water =
nw/(nw + ni) in which nw is the number of
moles of water and ni is the number of moles of
all solutes. This definition, of course, has the
same form for any other solvent. Therefore, in
a pure ideal solvent, ni = 0 and aw = 1.
One form of expressing Raoult's law is

shown in equation 8:

P
=

nw
Po nw +N (8)

where P and PO are the vapor pressures of
solution and solvent, respectively. Thus, wa-
ter (or solvent) activity is numerically equal to
the vapor pressure of the solution relative to
that of the pure solvent.
A convenient numerical example sometimes

used to illustrate equation 8 is that of a 1 molal

ideal aqueous solution. Since the molecular
weight of water is 18.016, 1 kg of water con-
tains 55.51 mol; in other words, pure water is
55.51 molal. For a 1 molal solution, the right-
hand side of equation 8 is 55.51/56.51 = 0.9823.
Furthermore, it is apparent that such a solu-
tion will equilibrate with an atmosphere of
98.23% relative humidity. The water activity
of a solution is therefore numerically equal to
10-2x the equilibrium relative humidity of a
solution when the latter is expressed as a per-
centage.

In an ideal solution, a, is independent of
temperature. The effect of temperature is
small for dilute nonideal solutions and, for
concentrated nonideal solutions, is significant
to the extent that it affects the activity coeffi-
cient of solvent or solute.

Finally, the fundamental relation between
osmotic pressure, 11, and a, is shown in equa-
tion 9:

-RT lna.
Vw

(9)

The negative sign demonstrates that osmotic
pressure responds oppositely to changes in a,.

Table 1 shows a relation between water ac-
tivity and the ability of microorganisms to
grow. Some other biological and biophysical
phenomena, as well as representative food-
stuffs, are included in the table as a series of
reference points. Conspicuous among these
reference points is the high at,, at which plants
wilt. No vascular plant is known whose cells
can tolerate levels of water activity as low as
those of a wide range of common bacteria, let
alone yeasts or molds.
This observation not only exemplifies a fun-

damental physiological difference in the water
relations of plants and microorganisms, but it
also illustrates an ecological aspect of micro-
bial water relations mentioned in the intro-
ductory comments of this review. When soils
dry out, the water that remains eventually
becomes discontinuous, the zones most resist-
ant to evaporation being occluded within soil
particles. Plants can obtain this occluded wa-
ter via their root hairs. Since water obtained
in this fashion will prevent wilt, it follows that
the occluded soil water must be more dilute
than the wilt point of plants; in other words, it
must have a water activity greater than about
0.98 a.. These and other aspects of plant water
relations have been discussed extensively by
plant physiologists (for example, Slatyer
[127]). In turn, this emphasizes that the water
relations of soil bacteria are not commonly a
manifestation of growth at low a, but are,
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TABLE 1. Approximate limiting water activities for microbial growth"
Water ac- Reference points Foods Bacteria Yeasts Fungi
tivity (a,,)

1.00 Blood JVegetables Caulobater
Plant wilt {Meat, fruit Spirillum spp.
Seawater

0.95 Bread Most gram rods Basidiomycetous Basidiomycetes
yeasts

0.90 Ham ~~~~~~~~(Mostcocci (Fusarium0.90 | Ham {Lactobacillus Ascomycetous yeasts I Mucorales
WBacillus

0.85 Salami Staphylococcus Saccharomyces rouxii,
(in salt)

Debaryomyces (in salt)
0.80 Fruit cake S. baijii (in sugars) Penicillium

Conserves
0.75 Salt lake Salt fish Halophils Wallemia

Aspergillus
{Cereals Chrysosporum

0.70 Confectionary
tDried fruit

0.65 Eurotium

0.60 S. rouxii (in sugars) Xeromyces bisporus

0.55 DNA disordered

a This table was obtained in its essentials from J. I. Pitt. With the exception of the halophilic bacteria, the organisms
listed had a tolerance range from a,, 1.00 (approximately) down to their tabulated level. The halophilic bacteria, together
with halophilic species ofthe alga Dunaliella and the halophilic actinomycete Actinospora halophila, have an upper limit as
well (see text). The growth characteristics of halophilic bacteria suggest that they are limited at 0.75 a,, by the solubility of
salt rather than by their physiology.

instead, a consequence of physical discontinui-
ties of liquid water. Under such circum-
stances, the problem confronting a soil bacte-
rium is one of surviving equilibration with air,
or whatever the gas phase might be, in a soil
microenvironment. Survival under these cir-
cumstances is a very complex phenomenon
and involves more than peculiarities of micro-
bial physiology. Thus, for example, the clay,
montmorillonite, enhances the survival dur-
ing desiccation of fast-growing strains of Rhi-
zobium but not the slow-growing strains (91).

SOME ECOLOGICAL ASPECTS OF
MICROBIAL WATER RELATIONS
Microbial Water Relations and Foods

Human foods, which are usually reasonably
nutritious for heterotrophic microorganisms,
even if not always for humans, are preserved
essentially by eliminating viable microorga-
nisms and preventing readmission (as in can-
ning) or by adjusting physicochemical condi-
tions so that microbial growth is retarded or
prevented. Lowering water availability is one
of the major processes in this second category.
It can be achieved by freezing, by the physical
removal of water, or by the addition of solutes,
as in curing.
As already indicated, the use of the parame-

ter, a, in microbial physiology and ecology
received a major impetus from food microbiolo-
gists. Notwithstanding the comments later in

this review in which the direct physiological
significance of a,,, is questioned, there can be no
doubt that a,, is a very useful, perhaps the most
useful, parameter so far employed to describe
microbial water relations in a complex environ-
ment, such as a foodstuff. This is reflected in
Table 1, which, among other things, puts sal-
monellosis and staphylococcal food poisoning,
as well as outright food spoilage, in perspective
on a water activity scale and in relation to
specific types offoods. The table also shows that
some of the extreme types of microorganisms,
such as the halophilic bacteria and xerotolerant
(osmophilic) yeasts, are potential spoilage orga-
nisms for various types of relatively dry foods.
A detailed discussion of this topic, however,

is beyond the scope of the present review. Addi-
tional information is contained in articles by
Ingram (62), Scott (121), Christian and Waltho
(40), Pitt and Christian (109), and Pitt (108).

The Saline Environment
Table 1 states, in essence, that the prokar-

yotes that can tolerate the lowest a,. are the
extremely halophilic bacteria that grow well at
0.75 a,,,, the value for a saturated solution of
sodium chloride. The physiology of these bacte-
ria is dominated by an absolute requirement for
sodium chloride at a high concentration; they
will not grow at less than about 2.9 M sodium
chloride. Although some other salts such as
calcium chloride are tolerated at moderate con-
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centration, sodium chloride, as Brown (19) has
pointed out, is the only readily soluble salt,
which is known to be able to support some form
of life over its entire concentration range. No
other salt of any monovalent cation is known
even to approximate that capability.
A requirement for salt at concentrations

above 3 M is, of course, associated with a very
distinctive ecology. Highly concentrated and of-
ten saturated solutions of salt occur naturally
in marine pools concentrated by solar evapora-
tion, the Dead Sea (total salt concentration, 23
to 33%, wt/vol) and various inland lakes, for
example in Australia and the United States, in
which salt concentration reaches saturation.
Halophilic microorganisms have been isolated
from all of these sources. Some soils are quite
saline but, as already pointed out, uneven dis-
tribution of water, both temporally and spa-
tially, presents special problems of microbial
survival in soils over and above ability to thrive
in an environment of specified composition.
There is little reliable information about the
occurrence of halophilic microorganisms in
soils. Halophils are well known in some indus-
tries. The preparation of salt by solar evapora-
tion of seawater is sometimes accompanied by
the appearance of a red coloration attributed to
the growth of halophilic bacteria. The develop-
ment of this color has been recognized since
ancient times and frequently used as a guide to
the degree of concentration of the brine (7).
Brines used for curing meat and fish products
by modern techniques usually contain about
12% (wt/vol) sodium chloride, together with
some other salts such as sodium nitrate. There
is also a significant amount of organic nutrient
extracted from the food being processed. Such
brines provide excellent growth media for mod-
erately halophilic and salt-tolerant microorga-
nisms; according to Ingram, counts of 107 to 108/
ml are common (49). Some of these bacteria
have a role in the curing process by reducing
nitrate and contributing to the color and flavor
of the foodstuff. An account of the microbiology
of curing brines is contained in a symposium
edited by Eddy (49). A salt-tolerant strain of
Desulfovibrio has been implicated in the
spoilage of brines used for pickling olives (110).

Since high salt concentrations constitute a
powerful selective influence, the ecology of salt
lakes is inevitably simpler (that is, there are
fewer species) than that of marine or freshwater
environments. Early reports (7) that brine
shrimps, worms, etc., die out as salt concentra-
tion approaches saturation do not seem to have
been disproved. I am not aware ofany reports of
animals or vascular plants in saturated-salt
lakes. Aspects of salt tolerance by some ani-

mals have been discussed by Bayly (10). Never-
theless, such lakes commonly harbor microbial
communities, which implies either chemo-
trophs sustained entirely by elution of nutrient
from the surrounding land or else an ecosystem
that contains both photosynthetic and hetero-
trophic microorganisms. The latter condition is
the general one, although there has been one
report (94) of an Antarctic pond with a freezing
point of about -480C, which apparently con-
tained bacteria and yeasts but no viable algae.
(One diatom frustule was observed.) The pre-
dominant cation in the pond was Ca2+. The
authors reported culturing several bacteria and
yeasts, but the significance of this is uncertain,
since they apparently used nonsaline growth
media. On the other hand, K. Kerry (personal
communication) observed bacteria, yeasts,
blue-green algae, and eukaryotic algae in an-
other Antarctic lake which contained salts in
the same proportion as in seawater but which
remained unfrozen at -180C.

In warmer climates, evaporation from salt
lakes can proceed to the point of saturation
with sodium chloride. The concentration proc-
ess is accompanied by sequential changes in the
viable population of the lakes; in the later
stages, a red or pink color is sometimes devel-
oped in the water or on the salt crystals that are
deposited on the foreshores. Apparently, such a
color can be caused by ferric oxides or hydrox-
ides (7), but it can also indicate a microbial
bloom. There seem to be differences of opinion
as to whether the blooms are predominantly
algal (such as Dunaliella salina) or bacterial,
and it can reasonably be assumed that both
types occur. The bloom expresses a selection by
salt concentration of extremely halophilic or
halotolerant microorganisms. It also implies, of
course, an unusually high nutrient concentra-
tion. Evaporation would increase nutrient con-
centration in at least the same proportion as it
increased salt concentration. In fact, the pro-
portion is likely to be greater, since the increas-
ing salt concentration would normally kill off
some organisms present in the "dilute" lake
and convert them, thereby, from biomass to
nonviable organic matter available to the sur-
viving heterotrophs. There is also evidence (see
below) that some extremely halophilic bacteria
(species ofHalobacterium) are capable ofphoto-
phosphorylation, in which case they might be
expected to make very efficient use of organic
nutrients for biosynthesis under appropriate
conditions.
Few types of halophilic microorganisms have

been identified. Those that have been are so
ubiquitous in highly saline environments that
there can be little doubt that they are indeed
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the major representatives of the halophils. On
the other hand, it is unlikely that they are the
only types. Among the algae, the genus Duna-
liella is outstanding and, indeed, is commonly
the only algal species encountered in saturated-
salt lakes (17). This genus has marine and halo-
philic representatives. The three best known
halophilic species are Dunaliella salina, Duna-
liella viridis, and Dunaliella parva; their salt
relations are a little different from each other
and substantially different from those of the
extremely halophilic bacteria (see below).
Nonetheless, at least the first two can grow in
saturated solutions of sodium chloride. A halo-
philic photosynthetic bacterium, Ectothiorho-
dospira halophila, has been isolated (113); its
salt relations are closer to those of the halo-
philic Dunaliella than to the extremely halo-
philic bacteria. Recently, an extremely halo-
philic actinomycete, Actinopolyspora halo-
phila, has been isolated and described (54).
The extremely halophilic bacteria are hetero-

trophic,- aerobic, and usually highly pig-
mented-either red or pink. There are two ma-
jor types. One is rod shaped and lacks a "con-
ventional" bacterial wall (see below) and
should therefore be classified as gram negative.
(Direct Gram stains on halophils are of doubt-
ful value unless adequate precautions are
taken against disruption of the bacteria on the
slide.) This genus is Halobacterium, the major
species being Halobacterium halobium, Halo-
bacterium salinarium, and Halobacterium cu-
tirubrum. The validity of the species differen-
tiation is questionable. The other major type is
a thick-walled (i.e., gram-positive) coccus for
which the nomenclature is less clear than for
the halobacteria. The generic names Sarcina,
Micrococcus, and Halococcus have been used
(70). The name Halococcus will be used hence-
forth in this review. In addition there are ap-
parently fragile (gram-negative) cocci that
have not been investigated systematically. We
have encountered such organisms in water
samples from Australian salt lakes.

I am not aware of reports of extremely halo-
philic chemotrophic anaerobes, nor reliable re-
ports of yeasts or molds in saturated salt lakes.
Table 2 lists the approximate salt relations of a
number of microorganisms.
A curious aspect of the ecology ofthe extreme

halophils is their ubiquity. The natural habitats
of these organisms are discrete and widely sep-
arated, yet, so far as we know, all salt lakes that
are not otherwise inhibitory contain halophilic
microorganisms. Presumably, this ubiquity is
the result of dissemination rather than inde-
pendent evolution in each lake. Halophils, es-
pecially the bacteria, are extremely sensitive to
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dilution (the halobacteria are killed at salt con-
centrations less than about 2.8 M) and to vir-
tual dissolution in a dilute environment. They
would seem, therefore, to be highly vulnerable
to rain, especially during transport by wind,
birds, etc.

The Nonionic Environment
There are few natural habitats in which a

low water activity occurs predominantly be-
cause of a high concentration of a nonelectro-
lyte. To some extent, of course, this generaliza-
tion is modified by one's definition of a natural
habitat. When such environments do oc-
cur, their major microbial inhabitants are the
sugar-tolerant yeasts and fungi. Sugar-tolerant
yeasts are normally found in nectar and are
transmitted by bees among nectaries and to
honeycomb (62). When honey is spoiled by fer-
mentation, these yeasts are usually responsi-
ble.
The circumstances under which sugar- or

salt-tolerant yeasts are most commonly encoun-
tered by microbiologists are associated with the
food industry, in which they frequently appear
as spoilage organisms and the agents of unde-
sirable fermentations. Some indication of their
spoilage potential, as a function of water activ-
ity, is given in Table 1. Since most known
sugar-tolerant yeasts and molds are tolerant of,
but do not require, high solute concentrations
(there are some exceptions; see below), they are
able to grow over a very wide range of water
activity. Thus, they have been associated with
the spoilage of honey, wine must, maple syrup,
fruit juices, dessert wines, dried fruits, molas-
ses, malt extract, conserves, etc. Salt-tolerant
yeasts frequently inhabitat pickling brines and
are needed in the preparation of some oriental
fermented foods such as soy sauce and miso
paste. The biology, distribution, and nomencla-
ture ofthese yeasts are described by Scott (121),
Ingram (49, 62), Onishi (106), and Pitt (108).
Scott's and Pitt's reviews include two of the few
accounts of aspects of the biology of xerophilic
molds.

Regardless of their ecological and industrial
significance, however, these organisms war-
rant physiological study because, as Table 1
implies, they are able to thrive at water activi-
ties far lower than any other known organism
or, more specifically, the cells of any other type
of organism.
HYPOTHETICAL EXPLANATIONS OF
THE TOLERANCE OF LOW WATER

ACTIVITY
Microbiologists with even a passing ac-

quaintance with the extreme types of microor-



TABLE 2. Approximate salt (sodium chloride) relations of some representative microorganismsa
Organism Salt tolerance (M) Salt optimum (M)

Non-halophilic bacteria
Gram-negative
Spirillum serpens
S. undula
Enterobacteriaceae

Pseudomonas I
Achromobacter
Serratia )
Vibrio parahaemolyticus
Marine bacteria

Gram-positive
Anaerobic sporers

Aerobic sporers

Lactobacillus plantarum
Streptococcus faecalis
Cocci
Staphylococcus aureus

Moderately halophilic bacteria
Vibrio costicolus
Micrococcus halodenitrificans

Halophilic and extremely halophilic bacteria
Ectothiorhodospira halophila
Halococci
Halobacteria

Marine and halophilic algae
Dunaliella tertiolecta
D. viridis

Halophilic actinomycete
Actinospora halophila

0-0.2

0-0.7
0-1.4

0-0.7

0.2-0.3

0.2-0.3

0.2-1.5
0.2-0.7
0.2->1.4
0.3-0.7

0.7
0.7->1.4

0-0.9
0-1.6
0-2.6
0-3.4
0-1.6
0-1.7
0-2
0->3

0.2-4.0

1.5-5.1
2-saturated

2.6-saturated

0. 17-1.5
1.7-saturated

2-saturated

0.2

0.2

Low
Low
Low
0.2

1.0

1.9-3.8
3.4-5.0
3.4-5.0

0.17
1.7

a The salt relations listed in this table are simplifications and are intended primarily as a general guide.
Salt tolerances vary with other environmental factors such as temperature, pH, and nutrition. The listing of
more than one tolerance range for a type of organism implies that subgroups have been recognized. When
given as a single concentration, salt optima should be treated even more cautiously than the tolerances, but
the optima do indicate which end of the tolerance range supports better growth. A tolerance limit of 0
indicates that growth can occur, at least in some media, without the specific addition ofsodium chloride. The
information listed in this table was compiled from various sources, including my observations and refer-
ences 15, 38, 39, 54, 75, 92, and 113.

ganisms under discussion have generally' been
intrigued by the physiological basis of their
unusual environmental tolerances. The ex-
tremely halophilic bacteria have attracted the
most attention. It is of some interest that the
U.S. National Aeronautics and Space Adminis-
tration (NASA) supports a research program
into these bacteria, presumably because that
they are among the most extraordinary micro-
organisms on earth, at least in their environ-
mental requirements, and therefore more
likely than any others to resemble any extra-
terrestrial organisms which might be encoun-
tered in NASA's exploratory activities.

For many years biologists were reluctant to
accept the idea that any living system could
operate in a saturated salt solution and, for this
reason, sought explanations of halophil physi-
ology in a supposedly dilute interior. It is now
well known that the interior is not dilute and,
moreover, that there is no mechanism availa-
ble to bacteria that could make it so (see
Brown, reference 19).
A microorganism responds to a new physico-

chemical situation essentially in two stages.
The first occurs when the organism, which
might or might not be growing, is transferred
to a new environment. The changes that occur
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in stage 1 are associated with the cell's thermo-
dynamic adjustment to the new conditions and
are comparatively rapid. When, as in the cir-
cumstances under discussion, the environmen-
tal change involves a change in water activity,
the thermodynamic adjustment always in-
volves a transient osmotic stress. The adjust-
ment process can be modified if the organism
has a source of energy.
The second stage of adaptation occurs when

the organisms have adlusted thermodynami-
cally and then grow.'Stige 2 involves altera-
tions in the organism's metabolism, levels of
enzyme activity, etc., by the new environmen-
tal conditions. The processes are more complex
and much slower than those of stage 1. Initially
they involve changes in enzyme activities and
in the details of enzyme regulation (each of
which can be relatively fast) and subsequently
modification ofbiosyntheses and changes in the
details of control of enzyme formation. These
latter processes can be expected to have a time
scale similar to that of a generation of the
organism.
When an organism is transferred to a new

environment, it faces, in stage 1, a simple, bi-
nary choice, death or survival. If it survives,
the limits of its environmental tolerance are
then determined by the nature and extent of
the adaptive processes that occur in stage 2.
Once an organism is through stage 2 and into a
physiological steady state, or something like a
steady state, there are two basic types of expla-
nation that are theoretically possible for a tol-
erance of or requirement for a low a,,. These
are: mechanism I, the proteins of a tolerant
organism are fundamentally and generally dif-
ferent from those of a nontolerant organism
and are intrinsically better able to function
under the extreme environmental conditions;
or mechanism H, the proteins of tolerant and
nontolerant organisms are essentially similar
but, in the tolerant species, enzymes can func-
tion because intracellular conditions are modi-
fied so that the inhibitory effect of the environ-
ment is diminished. As discussed below, halo-
philic bacteria fit into class I; a functional halo-
phil enzyme can be selected at random and
recognized by its response to salt. On the other
hand, although bacterial endospores do not rep-
resent the type ofbiological phenomenon under
discussion, they do provide a good example of
a type H situation, that is, enzyme protection
by a highly specialized set of intrasporal (intra-
cellular) conditions. The water relations of "os-
mophilic" yeasts, "xerophilic" molds, and halo-
philic algae can also largely be explained on the
basis ofmechanism II (see below). Of course, it
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is an oversimplification to suggest that only
two mechanisms are possible or that they are
mutually exclusive. For example, notwith-
standing the salt tolerance ofhalophil enzymes,
it will be shown that halophilic bacteria depend
also on mechanism II.
A variation or combination of both mecha-

nisms can be invoked if, for example, tolerant
organisms use distinctive metabolic pathways.
Metabolic peculiarities might be relevant
either because they are catalyzed by enzymes
that, in any organism, have intrinsically favor-
able water (or solute) relations (mechanism IA)
or because the end product of the distinctive
pathways can modify intracellular conditions
so as to diminish environmental inhibition
(mechanism IIA). We are not aware of any
examples of IA but, as will be shown, HA is
used by all known xerotolerant eukaryotic mi-
croorganisms.

HALOPHILIC BACTERIA
The extremely halophilic bacteria grow in

sodium chloride at concentrations between
about 2.8 M and saturated (6.2 molal). The
lower limit varies slightly with genus (Halo-
bacterium and Halococcus), with nutritional
conditions, and with temperature. The growth
curves suggest that these bacteria would grow
at sodium chloride concentrations above 6.2 mo-
lal were it possible to achieve them. The gen-
eral biology of the extreme halophils is well
documented (19, 70, 75, 76) and does not war-
rant extensive repetition here. There are sev-
eral distinctive and intrinsically interesting
characteristics of these organisms, however,
which are presumably a result of environmen-
tal selection but which, on present evidence, do
not appear to have a deterministic role in halo-
phil salt relations.

Cell Envelope and Lipid Biochemistry
One such characteristic is the absence of bac-

terial peptidoglycan, not only in the envelopes
ofthe halobacteria (19, 27) but also in the walls
of the gram-positive halococci (24). The latter
bacteria, as already mentioned, have very thick
walls of the gram-positive type, the polymeric
details of which have not yet been determined.
Acid hydrolysates of halococcal walls contain
sugars and amino sugars, together with sub-
stantial amounts of glycine, but no muramic
acid (24). Presumably it is an inability to syn-
thesize this compound that is responsible for
the lack ofpeptidoglycan in halophilic bacteria.
Recent evidence suggests that the major halo-
coccal wall polymer is a complex sulfated het-
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eroglycan (131). On the other hand, the halo-
philic actinomycete Actinopolyspora halophila
does contain diaminopimelic acid and is lyso-
zyme sensitive (54).
The extreme halophils are also noteworthy

for their membrane lipids, which do not contain
esterified fatty acids in any more than trace
amounts, but which have, instead, hydrocar-
bon side chains bound to glycerol by an ether
bridge. The definitive work on halophilic bacte-
rial lipids has come from Kates and his associ-
ates and has been collated and reviewed by
Kates (66). The major phosphatides of halobac-
terial lipids are derivatives of 2,3-di-O-phy-
tanyl-sn-glycerol. The predominant halobacter-
ial phospholipid is the diether analogue ofphos-
phatidyl glycerol phosphate, which can account
for more than 70% of lipid phosphorus in H.
cutirubrum (122) and as much as 80% in H.
halobium (89). The next most abundant phos-
phatide in both these species is the ether ana-
logue of phosphatidyl glycerol, which accounts
for 6.0 to 7.5% of lipid phosphorus in-each spe-
cies. Phosphatidyl choline (lecithin, diether an-
alogue) has been detected in trace amounts;
phosphatidyl choline has not been reported. The
membrane lipids of the halococci are similar
(149), but the halophilic actinomycete A. halo-
phila, in contrast, contains esterified fatty
acids, not phytanyl ether-linked lipids (54).
Ether lipids are not unique to halophils (129),

but they are unusual in bacteria. They have
been reported, however, in some other bacteria
with extreme environmental tolerances. These
are the acidophilic thermophilic organisms,
Thermoplasma acidophilum, which requires a
growth medium at pH 2.00 or less and 590C or
more, and the sulfur oxidizer, Sulfolobus aci-
docaldarius, which requires a pH of 3.0 or less
and a temperature in the range 65 to 90°C.
Neither of these species produces fatty acids to
any significant extent, and both contain as
their major lipid component isopranol (C40H0)
glycerol diethers (71, 72, 128). Sulfolobus acido-
caldarius is also distinguished by some unu-
sual glyco- and phosphoglycolipids (71).
Halophil lipids are very acidic, a property

that is of direct relevance to the salt relations of
these organisms (see below). The synthesis of
their ether lipids, however, seems to be almost
a chance result of a selection process rather
than an essential mechanism of adaptation to a
highly saline environment. The synthesis of
these lipids provides an interesting biochemical
example of"where there's a will there's a way."
H. cutirubrum does, in fact, have the genetic

specification of a fatty acid-synthesizing system
and does, in fact, produce enzymes that can

synthesize fatty acids from malonyl-coenzyme
A. The enzymes are very salt sensitive, how-
ever, and indeed, are inhibited by salt to a
greater extent than is the corresponding fatty
acid-synthesizing system from Escherichia coli
(I). Apart from any of its other implications,
this curious set of circumstances argues that
halophils evolved from organisms with much
lower salt requirements rather than by any
other process. From the point of view of fatty
acid synthesis, the adaptive process might be
said to be incomplete but, since the bacteria
manage well enough without fatty acids, there
is no apparent evolutionary disadvantage in
this.
Most extreme halophils are highly pig-

mented with carotenoids which, indeed, are the
major nonpolar lipid constituents. The bio-
chemical ingenuity of halophil lipid metabo-
lism lies in the adaptation of a pathway used
for the biosynthesis of the isoprenoid chain of
carotenoids to the production of the phytanyl
chain of the lipid. This pathway includes the
following steps (66):

Acetate -, --* Mevalonate --+ Isopentenyl pyrophosphate

ll~
Phytanyl pyrophosphate 4- 4-- Dimethyl allyl pyrophosphate

The metabolic peculiarities of the extreme
halophils which culminate in their lack of mur-
amic acid and fatty acids are perhaps reflected
in an aspect of the antibiotic sensitivity pattern
of these bacteria. Neither the halobacteria nor
the halococci are affected by the so-called wall
antibiotics (i.e., those, like penicillin, that
specifically inhibit peptidoglycan synthesis)
with the notable exception of bacitracin which,
at a concentration of 20 ug/ml, completely in-
hibits the growth of H. halobium and H. sali-
narium (unpublished observation from S. Cum-
ming in our laboratory). Recently, bacitracin
has also been reported to cause sphere forma-
tion in a Halobacterium species (93).
The biosynthesis of peptidoglycan and some

other polysaccharides associated with bacterial
cell envelopes involves the transfer of a sugar
or sugar complex from anhydride combination
with a nucleotide (as, for example, in a uridine
diphosphate sugar) to the growing polymer
through its intermediate attachment to a lipid-
soluble compound known as glycosyl carrier
lipid (GCL) (117). According to the type of poly-
mer being synthesized, attachment ofthe sugar
to the GCL is either through a pyrophosphate
(sugar-P-P-GCL) or a monophosphate (sugar-P-
GCL) group. The sugar or sugar complex is
then transferred to the growing polymer with-
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out the pyrophosphate (or phosphate), which
remains bound to the GCL as GCb-P-P (or
GCL-P). The function of the GCL in this sys-
tem, as its name suggests, is the catalytic one of
a carrier that is used repeatedly in a cycle. To
accept another molecule of sugar from the nu-
cleotide, the GCL must be available as the
monophosphate (GCL-P). In those pathways
that involve a GCL-P-P-sugar, therefore, a de-
phosphorylation is required after the GCL has
released its sugar:

GCL-P-P -- GCL-P + P1
It is this reaction that is inhibited by bacitra-
cin.
The GCL has been identified in other bacte-

rial systems as a C55-polyisoprenoid alcohol.
This might be fortunate for the halophils that,
as stated, do not have an effective means of
making fatty acids but do synthesize other
polyisoprenoid compounds. Both the mem-
brane and outer layer of the halobacterial cell
envelope yield sugars and amino sugars on
acid hydrolysis. It can reasonably be assumed
that these sugars are incorporated into enve-
lope polymers, whether glycoproteins or poly-
saccharides, with the mediation of a GCL of
the type similar to that found in nonhalophilic
bacteria.

Nutrition
Extreme environmental conditions should

be expected, a priori, to select against some
metabolic pathways. Such a selection is re-
flected in the cell envelope and lipid composi-
tion already discussed and also, presumably,
in halophil nutritional requirements. The hal-
obacteria and halococci are somewhat fastidi-
ous nutritionally. They make little use of
sugars as an energy source and do not usually
produce, from carbohydrates, carboxylic acids
in quantities large enough to be measured by
conventional diagnostic bacteriological meth-
ods. Halobacterium salinarium produces a
glucose dehydrogenase and a glucose-6-phos-
phate dehydrogenase only when induced, and
then the enzymes do not have a high specific
activity (1).

Synthetic media have been devised for halo-
philic bacteria. Dundas et al. (48) used a me-
dium containing 10 amino acids and cytidylic
acid which supported limited growth. Onishi
et al. (107) used a medium containing 15
amino acids, 2 nucleotides, glycerol, and
either asparagine or NH4+, which gave better
results, although Gochnauer and Kushner
have pointed out that the concentration of K+
in this medium is suboptimal and, under some

conditions, limiting for both growth rate and
yield of the bacteria (53). The two sets of au-
thors differed as to which amino acids were
essential for growth. Dundas et al. concluded
that valine, methionine, isoleucine, and leu-
cine were essential for the growth of H. sali-
narium. Their results showed, among other
things, that lysine was not essential. On the
other hand, Onishi et al. (107) found the amino
acids essential to H. cutirubrum to be argi-
nine, leucine, lysine, and valine. A. Markides,
in our laboratory, using the medium of Onishi
et al., has confirmed that lysine is essential for
all the halophils in our collection, which in-
cludes species of Halobacterium and Halococ-
cus. Dundas et al. (48) diluted but did not
wash their inocula; the discrepancy can possi-
bly be attributed to this.

Miscellaneous Characteristics
Gas vacuoles. An unusual feature of some

strains ofHalobacterium is the presence of gas
vacuoles. They were first reported by Hou-
wink (60); they are unusual among microorga-
nisms but are not unique to halophils. Their
formation requires the presence of a specific
type of thin, lipid-free protein membrane. Mi-
crobial gas vacuoles have been discussed at
length by Walsby (145).

"Satellite" DNA. Extreme halophils have
another peculiarity that is not related in any
obviously directly deterministic manner to
their salt requirements but which might have
important indirect implications. This is a "sat-
ellite" deoxyribonucleic acid (DNA) originally
described by Joshi et al. (64) in preparations
of DNA from H. salinarium and H. cutiru-
brum and later by Moore and McCarthy (95)
for a number of other extreme halophils, in-
cluding the halococci. The "satellite" compo-
nent accounted for 11 to 36% ofthe DNA in the
various preparations. DNA prepared by Moore
and McCarthy from two moderate halophils
and from E. halophila was homogeneous.
The satellite DNA was, in all cases, less

dense than the major component and had a
different base composition from it. For reasons
outlined previously (19), there is a possibility
that the satellite DNA is an artifact of prepara-
tion. If it is not an artifact, then it is not
unique. Satellite DNAs have been discussed in
the context of information theory with interest-
ing evQlutionary implications (51).

Halophil bacteriophages. Until recently no
virus of halophilic bacteria had been reported.
Even the halophils have been overtaken by
inevitability, however, and two reports now at-
test to the existence of salt-dependent bacterio-
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pha~ges able to infect species of Halobacterium
(138, 143).

Light Reactions of the Red Halophils
Most extremely halophilic bacteria are heav-

ily pigmented with carotenoids that might rea-
sonably be expected to modify halophil physiol-
ogy, especially in a brightly illuminated en-
vironment such as constitutes the common nat-
ural habitat of these bacteria. Larsen (75) has
discussed a possible role of carotenoids in pro-
tecting the organisms against damage by visi-
ble radiation and, in collaboration with Dundas
(47), has shown a colorless mutant of H. sali-
narium to be more vulnerable to visible light
than the pigmented parent strain. More re-
cently, however, Hescox and Carlberg (58)
questioned this simple interpretation and pro-
duced evidence that the carotenoids are in-
volved in an energy transfer capacity that facil-
itates photoreactivation by visible light after
exposure to damaging doses of ultraviolet.
The evidence is now clear that radiant en-

ergy trapped by membrane pigments is used by
halophilic bacteria. First, at a simple level, H.
halobium produces more pigment when grown
in the light than in the dark (A. D. Brown,
unpublished observation). In this respect it re-
sembles other carotenoid-pigmented bacteria
(136).
The membrane of H. halobium contains a

pigmented protein complex that in many re-
spects resembles rhodopsin (101). This protein
has been named "bacteriorhodopsin"; it occurs
in the membrane bound to vitamin A aldehyde.
The production of bacteriorhodopsin is en-
hanced by growing the organism at reduced
oxygen tensions. The pigment forms patches of
"purple membrane" that can account for as
much as 50% of the membrane surface. If the
bacteria are incubated anaerobically in the
dark, their adenosine 5'-triphosphate (ATP)
content decreases sharply but it can be restored
by 02 or by anaerobic incubation in the light.
Respiratory-chain inhibitors abolish the re-
sponse to oxygen but not to light. Uncouplers of
phosphorylation that function as proton trans-
locators abolish the light response (44).

Unlike rhodopsin, bacteriorhodopsin is not
bleached by light. Instead, it responds to a light
flash by a reversible change in its absorption
peak from 560 to 415 nm and a concomitant
release of protons. Illumination of whole bacte-
ria leads to proton excretion, inhibition ofrespi-
ration, and an increase in intracellular ATP.
These effects can be observed to best advantage
in starved bacteria that are heavily pigmented.

If bacteriorhodopsin is illuminated continu-

ously, the pigment apparently oscillates be-
tween the two forms identified by their absorp-
tion peaks. When it is incorporated into a mem-
brane, the oscillation is accompanied by a vec-
torial release and uptake of H+, which results
in a net outward flow of protons from the bacte-
rium (44). The direction of the proton flux (out-
wards) is the same as that which occurs during
respiration ofthe bacteria or ofmitochondria. It
is the opposite of the light-induced proton flux
of chloroplasts. The proton flux causes an elec-
trochemical gradient which, according to
Danon and Stoeckenius (44), can be used in
phosphorylation within the framework of
Mitchell's chemiosmotic mechanism.
Racker and Stoeckenius (112) reported the

incorporation of bacteriorhodopsin into phos-
pholipid vesicles which then transported pro-
tons in the opposite direction from that which
occurred in whole bacteria. In other words, they
accumulated protons in the light and released
them in the dark. Uncouplers of oxidative pho-
tophosphorylation abolished the proton uptake.
Inclusion of a mitochondrial adenosine triphos-
phatase in the vesicles, however, enabled them
to catalyze phosphorylation. Furthermore, illu-
minated cell envelope vesicles of H. halobium
actively accumulate leucine. The leucine trans-
port system is not dependent on ATP hydrolysis
nor is it a function of the proton gradient. It
does respond to membrane potential, however,
and there is some evidence that leucine trans-
port is facilitated by the associated transport of
Na+ (85). Cyclic electron flow also energizes
amino acid transport in vesicles from Rhodo-
pseudomonas spheroides (56).

The overall process of photophosphorylation
in halobacteria is not yet well understood, but
it apparently involves a cyclic electron flow
inasmuch as there seems to be no need for an
electron donor (in isolated vesicles), nor are
there reports of the production of reduced pyri-
dine nucleotides. Recently, Oesterhelt (100) de-
scribed the whole phenomenon in some detail.
Illumination also elicits a motor response in H.
halobium; the response is apparently mediated
by the purple membrane (59). A three-dimen-
sional model at 0.7-nm resolution of the purple
membrane has been obtained by electron mi-
croscopy (57).
There is no evidence yet that their capacity

for photophosphorylation has any determining
role in their salt requirements or water rela-
tions, but presumably it gives the bacteria an
ecological advantage in their peculiar environ-
ment. It should enable them to function anaero-
bically in the day time, and it would also lessen
their demand for organic energy sources. This
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last factor is likely to be of importance in the
halophil blooms that are reported from time to
time (see above). Their capacity for photophos-
phorylation might also reflect a phylogenetic
relationship with photosynthetic bacteria, al-
though there is a substantial difference in DNA
base composition between the red halophils and
two photosynthetic bacteria, R. spheroides and
Ectothiorhodospira halophila (95).

Halophilic Characteristics
Up to this point the properties that have been

discussed, although generally characteristic of
halophilic bacteria and of intrinsic interest, do
not have an obvious directly deterministic role
in the salt or water relations of the organisms.
One exception is the acidic nature of the mem-
brane phospholipids (see below). Indeed, the
halobacterial and, by inference, the halococcal
membranes in toto do have a major function in
determining the environmental requirements
of these bacteria. This is to be expected, of
course, when a microorganism has an absolute
specific requirement for a high concentration of
a solute and where, as is usually the case, there
is effective exclusion of that solute from the
cell.
The halobacterial envelope comprises a lipo-

protein membrane with an outer glycoprotein
layer (19, 27, 32, 90, 133). If the halobacterial
environment is diluted, the bacteria, predicta-
bly, will burst. Osmosis is a major factor in
their bursting but, in addition, there is an
equally significant change in the cell envelope
itself; this change is not a result of osmotic
factors. If isolated envelopes are exposed to pro-
gressively more dilute suspending solutions,
they soon lose the outer glycoprotein layer and
later disaggregate to give what, for most practi-
cal purposes, is a lipoprotein solution (18, 25,
26, 73, 90).
Although the halococcal membrane has not

yet been examined in these terms, it probably
behaves similarly to the halobacterial mem-
brane. Halococcal lipids are similar to halobac-
terial lipids (149) and, although the halococci do
not burst in dilute solutions, they are disorgan-
ized internally.
The osmotic disruption of halobacteria has its

counterpart in any sufficiently fragile microor-
ganism that equilibrates with a concentrated
solution and is then transferred to a dilute one.
But for the inherent instability of the envelope
it would be reasonable to assume that (in mor-
phological terms) halobacteria could be
"trained" to accept the simple osmotic conse-
quences of a dilute suspending medium or the
replacement of salt by sucrose. In this sense,

part of the halophilic salt relations can be seen
as a tolerance, rather than a requirement.

This aspect of halophil physiology falls
within the province of microbial water relations
in the sense in which that expression is com-
monly used. On the other hand, the instability
of the cell envelope reflects a very specific sol-
ute requirement that can be described as "wa-
ter relations" only by severely stretching defi-
nitions and concepts. The role of salt in main-
taining the structural integrity of halophil en-
velopes has been discussed by Brown (19) in
terms of the possible contributions of the salt to
water structure, hydrophobic bonding, and
electrostatic forces; it was attributed largely to
the electrostatic effects (18-21) of salts in neu-
tralizing excess charges on the membrane. A
similar explanation had been invoked earlier
by Baxter (9) to explain the inactivation in
dilute solution of a halophil lactate dehydro-
genase. The electrostatic events in the mem-
brane were attributed by Brown to a net nega-
tive charge caused by an excess of aspartic and
glutamic acids in the membrane protein. More
recently, Lanyi (74) has argued persuasively
that hydrophobic interactions are a major fac-
tor in the salt relations of halophil proteins
generally.

Lanyi's argument, however, is not that elec-
trostatic effects do not occur but, rather, that
they do not need very high concentrations of
salt to overcome them. He points out (validly)
that, as a general rule, the net charge on poly-
anions is overcome by salt concentrations of 0.5
M or less. He also points out that the a-helical
structure of polyglutamic acid, which is highly
charged, becomes unstable at very high salt
concentrations. He suggests that the electro-
static phenomena attributed to halophil pro-
teins do, in fact, occur at relatively low salt
concentrations (0.5 M or less) and that the de-
mand for very high concentrations is probably a
reflection of other factors such as hydrophobic
interactions. His evidence includes specific dif-
ferences of various anions, an effect which he
points out is difficult to reconcile with a simple
charge-shielding hypothesis. For example, the
order of effectiveness of various sodium salts in
stabilizing the envelope of H. cutirubrum was
NaCl > NaNO3 > NaClO4 (73). Those compo-
nents that remained particulate at less than
about 0.7 M salt, however, had little specificity
in their salt requirements. The order of effec-
tiveness of the salts in stabilizing the envelope
is also the order of increasing "salting in" capa-
bility. Lanyi's results have an experimental
error large enough to cast some doubt on the
differences attributed to sodium chloride and
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sodium nitrate, but there was no doubt about
the difference of sodium chlorate from the other
two.
Other evidence relevant to the involvement

of electrostatic forces and hydrophobic bonds in
determining the characteristic properties of
halophil proteins, and especially the halophil
envelope, is (briefly) as follows.

First, there is a theoretical basis, in the De-
bye-Huckel theory, for stabilization of polyions
and polyionic aggregates by salts although,
strictly, this theory is quantitatively applicable
only to dilute solutions. A more recent and
mathematically more versatile theory of ionic
solutions has been advanced by Olivares and
McQuarrie (104). Second, the disintegration
of halophil envelopes responds quantitatively
to pH to give titration curves with pK values
very close to those of the (8- and y-carboxyl
groups of aspartic and glutamic acids (18). Fur-
thermore, there is a substantial excess of these
amino acids (over the basic amino acids) in the
membrane proteins (18, 90). Structural changes
in the envelopes of halobacteria occur in re-
sponse to changes in salt concentration within
any range, but the response is steep at low
concentrations (21). The outer layer, which ac-
counts for about 15% of the envelope, is lost
competely in 1 M sodium chloride (90). The
sequence of events in envelope disintegration
has been described in some detail by Lanyi (73).
Magnesium chloride, at a concentration of

0.02 M, however, will substitute for 4 M sodium
chloride in stabilizing the membrane, but it
does not prevent loss of the outer layer (28, 90).
Stabilization of the membrane by 0.02 M mag-
nesium chloride is effective even to the extent
of keeping the respiratory chain intact (31). Bi-
and multivalent cations can form bridges be-
tween neighboring negative charges and, be-
cause of this, they are much more effective than
Debye-Huckel atmospheres of monovalent
counterions in neutralizing charges on the sur-
face of a polymer or aggregate. When a phe-
nomenon of this kind, that is, effective replace-
ment of a high concentration of a monovalent
ion by a low concentration of a divalent one, is
encountered, it provides strong evidence that
electrostatic forces are involved in the struc-
tural changes under investigation. Bivalent
cations are also able to form coordination com-
plexes. Since the magnesium in a halophil en-
velope can be displaced by suitably high con-
centrations of sodium chloride, however, coor-
dination complexes are not likely to be impli-
cated to a major extent in membrane stabiliza-
tion by magnesium chloride. It is thus very
difficult to avoid the conclusion that unneutral-

ized charges provide the forces that disinte-
grate the halophil envelope. Of course, this con-
clusion does not exclude a role of hydrophobic
interactions as one of the types of bond that
stabilizes or tends to stabilize the envelope
against the disruptive forces generated by re-
moving neutralizing counterions. Indeed, in a
lipoprotein membrane, hydrophobic interac-
tions are axiomatic. The question is whether
these bonds assume abnormal significance in a
halophil and whether their strength is substan-
tially affected by changes of salt concentration
above about 0.5 M.
The relative ease with which the outer glyco-

protein layer of H. halobium is lost from the
envelope on lowering salt concentration might
reflect a particular involvement of hydrophobic
bonds in its attachment. The outer layer is
marginally more acidic than the membrane
proteins, but it contains no lipid and it has a
slightly lower content of amino acids with non-
polar side chains (90). Furthermore, such ac-
cess as it might have to the membrane lipid and
to the nonpolar side chain of the membrane
proteins is likely to be restricted. Its attach-
ment to the envelope is easier to reconcile with
polar bonds of some kind (hydrogen bonds, ion
pairs, or salt bridges) than it is with hydropho-
bic bonding.
Other evidence for a role of surface charges in

membrane disaggregation was given by succi-
nylating the envelope of a marine pseudo-
monad (20). This treatment, which substituted
-COO- for -NH3+ groups, increased the sur-
plus of carboxyls in the envelope to a level only
slightly less than that occurring naturally in
the membrane of H. halobium. Succinylation
eliminated the autolytic properties that charac-
terized the untreated pseudomonad envelope
and endowed it with an ability to disaggregate
in a similar manner to the halophil envelope.
Salt inhibited disaggregation, but at lower con-
centrations than required by halophil enve-
lopes. Furthermore, acetylation, which, by
merely masking -NH3+ groups, caused a
smaller surplus of excess carboxyls than did
succinylation, produced an intermediate level
of salt dependence.
The obvious rigidity of whole halobacteria

and isolated envelopes in high salt concentra-
tions requires, in the absence of peptidoglycan,
an explanation that is almost certain to involve
environmental salt. A plausible explanation,
based on "relaxation effects" is available (19);
relaxation effects are electrostatic phenomena.
It can also be assumed that any increase in the
strength of hydrophobic interactions that oc-
curs at high salt concentrations would also
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stiffen an aggregated structure such as a mem-
brane and thus supplement the electrostatic
stiffening.
A factor of perhaps crucial importance in the

membrane, however, is the effect of lipid phos-
phate on the charge density of protein carbox-
yls. This factor is frequently ignored in those
arguments based on the simple numerical ex-
cess of acidic over basic amino acids in the
membrane proteins. It has already been
pointed out that halophil membrane lipids are
very acidic and that there is almost a complete
absence of neutral phospholipids. Brown (21)
showed that essentially all the carboxyl groups
on the membrane proteins could be titrated
with hydrogen ions (in fact, more carboxyls
titrated'on the envelope than in the dispersed
lipoproteins, a phenomenon attributed to con-
formational stabilization on the membrane).
The majority of basic groups, namely, the E-
amino groups of lysine, the phenolic hydroxyls
of tyrosine and, by inference, the guanidinium
ion of arginine, did not titrate in the envelope.
This apparent "burial" of the basic groups was
attributed to ion pairing with lipid phosphate.
Such an association is not, in itself, sufficient to
prevent titration, but it is a condition necessary
for the group to remain "buried" and inaccessi-
ble to the titrant; burial ofan unmasked charge
requires an expenditure of 40 to 400 kJ of free
energy/mol (137). In the membrane, the groups
most likely to be associated with the basic
groups on the protein are lipid phosphate. Nei-
ther the titer ofphosphate nor the guanidinium
ion of arginine could be determined accurately
in these experiments (21), but some calcula-
tions suggest that all the lipid phosphate
groups are likely to be involved in ion pairs in
the intact membrane. Under the relevant ex-
perimental conditions, the membrane of H.
halobium contains about 0.8% P (89). This is
equivalent to four to five atoms of P/100 amino
acid residues, assuming an average molecular
weight of 150 for the amino acids. One hundred
moles of amino acids include about 6.5 mol of
arginine + lysine (90). In each molecule of
phosphatidyl glycerophosphate, there are two P
atoms, with a total of three dissociable groups.
If all the lipid phosphorus were present in this
form, four atoms ofP would be equivalent to six
dissociable groups, which is approximately the
number needed to neutralize the basic amino
acids. In fact, about 80% of the lipid P occurs as
phosphatidyl glycerol phosphate, with another
7.5% as phosphatidyl glycerol, which has one
dissociable group/P atom. It is thus evident
that the membrane contains phosphate and
basic amino acids in about the proportions

needed for neutralization.
The immediate effect of this arrangement is

to increase the effective net surplus of acidic
groups in the membrane protein from about 19
to about 26 mol/100 mol. Of probably greater
significance, however, is the effect the ion pair-
ing has on protein orientation. The carboxyl
groups, which are not compensated by basic
groups, are held firmly on the membrane sur-
face to give a charge density substantially
greater than they could possibly achieve in the
dispersed lipoprotein.
Furthermore, there are at least two types of

bonds involved in stabilizing the intact mem-
brane. One of these is ionic, which disrupts
when the membrane disintegrates; this type of
bond was detected only because it broke on
disaggregation of the membrane. The other is a
noncovalent and probably nonpolar association
of lipid with protein, which is highly stable and
remains intact when the membrane disaggre-
gates into dispersed lipoprotein (21).
The conclusion seems inescapable that the

forces which are directly responsible for the
gross disaggregation of halophil membranes
originate predominantly in protein carboxyl
groups on the membrane surface and that the
exposure of their charges is effected by the re-
moval of neutralizing cations. It is equally ines-
capable that, since there are demonstrably hy-
drophobic interactions in a lipoprotein mem-
brane, such interactions must supply part of
the total bond strength that holds the mem-
brane together. There is a body of indirect evi-
dence and some good argument that, in halo-
phils, hydrophobic bonds are intrinsically
weaker than in nonhalophils and that they re-
quire the "salting out" effect of high concentra-
tions of sodium chloride to bring them up to
"normal" strength. It is therefore reasonable to
assume that the structural changes that occur
in halophil membranes in response to a slight
lowering of salt concentration are primarily the
result of weakening cohesive bonds, whereas
the structural disruption that occurs on lower-
ing the salt concentration further is primarily
the result of generating disruptiveforces. Un-
fortunately, there is insufficient evidence to en-
able this statement to be rephrased quantita-
tively, nor is it easy to distinguish between
conformational changes of membrane proteins
and the separation of lipoprotein complexes
from one another.

Quantitative information could probably be
obtained by exploiting the different relative ef-
fects of temperature and pressure on hydropho-
bic bonds, hydrogen bonds, and electrostatic
bonds (ion pairs); increasing temperature
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strengthens hydrophobic bonds but weakens
the other two; increasing pressure has the oppo-
site effect (99). To my knowledge, there is no
information about effects of hydrostatic pres-
sure on halophil membrane stability and only
limited data about temperature. Such evidence
as there is does not, in fact, support a signifi-
cant quantitative role of hydrophobic bonds in
determining the response of halophil mem-
branes to changes of sodium chloride concentra-
tion within the range 0.31 to 1.25 M. Within
that range, the extent ofmembrane disaggrega-
tion was much greater at 300C than at 00C (18),
but it is of interest and relevance to Lanyi's
argument that the proportional difference
between the extent of disaggregation at the two
temperatures was greatest at the intermediate
salt concentration of 0.62 M.
There is clearly room for additional measure-

ments of the type suggested but, inasmuch as it
is relevant to the main theme of this review,
the disaggregating properties of the halophil
membrane give no support whatever to any sup-
position that they are a response to a, rather
than the type and concentration of salt in the
suspending solution.

Intracellular Physiology
The intracellular physiology of extreme halo-

phils is dominated by the massive accumula-
tion of K+ and Cl- and by the effective exclu-
sion of Na+. This was first demonstrated by
Christian and Waltho (37), who found that H.
salinarium, when grown to stationary phase in
a medium containing 4 M sodium chloride and
0.03 M potassium chloride, accumulated potas-
sium to a concentration of about 4.5 molal and
had apparent sodium and chloride contents of
about 1.4 and 3.6 molal, respectively. They also
reported that Sarcina (Halococcus) morrhuae
contained about 2 molal potassium and 3 molal
sodium after similar growth conditions. It is
possible that the sodium content reported forH.
salinarium was too high because of leakage
during centrifugation and technical difficulties
of accounting accurately for Na+ in interstitial
water. It is virtually certain that the sodium
and potassium contents reported for H. mor-
rhuae were substantially too high and low, re-
spectively, because of errors associated with
occlusion of "extracellular" salts in the enor-
mously thick cell walls of these bacteria (see
reference 24). Nevertheless, the basic observa-
tion of massive potassium accumulation and
effective sodium exclusion by halophilic bacte-
ria has been amply confirmed in many labora-
tories. For example, C. E. Armstrong (Ph.D.
thesis, University of New South Wales, Syd-

ney, 1975) reported potassium concentrations of
4.5, 5.5, and 7.5 molal in mid-exponential-phase
H. salinarium grown in media containing 3.4,
4.3, and 5.1 M sodium chloride, respectively.
Sodium content was apparently 0.4 to 0.8 molal
in all cases. It is noteworthy that 7.5 molal
exceeds the solubility of KCl. Conditions of this
sort naturally raise many questions about the
details of enzyme function within the cell.
The discussion that follows is confined to

those features of the salt relations of halophil
enzymes that are of immediate relevance to the
main theme of this review. A broad spectrum of
halophil enzymes has been discussed in some
detail by Lanyi (74). From the outset, however,
a clear distinction should be made between ef-
fects of salt on the activity, on one hand and, on
the other, the stability of an enzyme. Condi-
tions that allow an enzyme to function vigor-
ously might also allow a significant rate of
inactivation. Conversely, some enzymes are
stable under conditions that severely inhibit
activity. Thus, a halophil isocitrate dehydro-
genase is quite stable in but severely inhibited
by 4 to 5 M sodium chloride (3).

This section is confined almost entirely to
enzyme activity, since it is reasonable to as-
sume that, in the viable organism, enzyme sta-
bility is not a major variable in determining the
response of halophils to the environment. Nev-
ertheless, the different effects that salts can
have on stability and activity of an enzyme are
relevant to the interpretation of enzymological
results and to arguments about cell physiology
that might arise from such interpretation.
Thus, a question that is seldom answered is to
what extent the history of an enzyme prepara-
tion might affect its properties as measured in
the ensuing experiments.
A special case of an interaction of stability

with measured activity is to be found in the
interesting work of Louis and Fitt (79-83) on a
DNA-dependent ribonucleic acid (RNA) polym-
erase ofH. cutirubrum. According to Louis and
Fitt, this halophil enzyme comprises two sub-
units, each of about 18,000 molecular weight.
The subunits, designated a and A, have very
different degrees of stability on removal of salt
by dialysis. The a subunit retains virtually full
activity for up to 24 h after dialysis against a
salt-free buffer and 50% activity after 20 days of
dialysis. The 8 subunit, on the other hand, is
completely and irreversibly inactivated after
dialysis against a salt-free buffer. In a "high-
salt buffer" (2.5 M potassium chloride plus 1.0
M sodium chloride) the subunits are stable, but
they do not aggregate, nor do they catalyze the
synthesis of RNA unless bivalent cations are
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present. The addition of manganous chloride
(10 mM) to the high-salt buffer causes the sub-
units to dimerize to a complex of molecular
weight 36,000, which is the active form of the
enzyme. Magnesium will not substitute for
manganese in the dimerization but, even when
dimerized, the enzyme will not function with-
out the addition of Mg2+ (100 mM), which is
needed for attachment of the enzyme to the
DNA template.
The effect of salt concentration on template

specificity is of special interest. At a high salt
concentration (1.5 M potassium chloride + 0.6
M sodium chloride), halobacterial DNA is tran-
scribed, whereas calf thymus DNA is not. In
the absence of added salt the converse is true:
calf thymus DNA promotes RNA synthesis,
whereas halobacterial DNA is inactive.
The effects of salt on substrate specificity are

not correlated with the guanine + cytosine con-
tent of the DNA. The assay used by Louis and
Fitt lasted 1 h at 3700, during which time the (3-
protein would presumably have been exten-
sively inactivated under conditions of low salt
concentration. In fact, this is apparently the
cause of the changed template specificity that
occurs at low salt concentration. The a-protein
alone can synthesize RNA from 'a DNA tem-
plate provided the reaction is primed with a
suitable dinucleoside phosphate that supplies
the first diester bond of the new polymer. The
a-protein alone will not initiate polymerization
without a primer and, in this respect, it resem-
bles the much larger core enzyme of Esche-
richia coli RNA polymerase. Furthermore, in a
primed reaction, the a-protein alone shows no
template specificity with any of four different
types ofDNA, nor does it show any salt depend-
ence. The ,8-protein, which is unstable in the
absence of salt, cannot catalyze RNA polymeri-
zation, but it is entirely responsible for chain
initiation and template specificity in the com-
plete enzyme. In these respects, it resembles
the o- factor of the E. coli RNA polymerase.
Thus, the halophil RNA polymerase has

some properties that distinguish it sharply
from other halophil enzymes on one hand, and
from the corresponding polymerase from E. coli
on the other.

Halophil enzymes have now been sufficiently
well studied to enable a working generalization
of their salt requirements to be advanced; of
course, there are exceptions. In general, en-
zymes associated with the cell membrane have
an optimum in the region of 4 M NaCl or KCI;
ribosomal enzymes have a specific requirement
for KC1 at a sharp optimum of about 4 M.
Soluble enzymes of intermediary metabolism

collectively have a wider range of salt optima,
but there are many, such as the nicotinamide
adenine dinucleotide phosphate (NADP)-spe-
cific isocitrate dehydrogenase, which have an
optimum in the vicinity of 0.5 to 1.0 M salt
(NaCl or KCI).
Thus, from the outset, halophilic bacteria

can be recognized as having a physiology that
invites explanation by both the hypothetical
mechanisms already advanced. The high salt
optima must reflect proteins intrinsically dif-
ferent from those of other organisms, whereas
the accumulation of K+ and virtual exclusion of
Na+ denotes an intracellular environment with
enzymological implications that are likely to be
very different from those of the bacterium's
habitat. An apparent anomaly lies in the rela-
tively low salt optimum of some soluble cyto-
plasmic enzymes, with the implication that
those enzymes function under conditions of in-
hibition in the intact cell.
A simple explanation of this is shown for

isocitrate dehydrogenase in Fig. 1. At the opti-
mal salt concentration, enzyme activity was
higher in either lithium chloride or sodium
chloride than in potassium chloride, but the
activity fell off very sharply in the first two
salts at higher concentrations. On the other
hand, the inhibition caused by potassium chlo-
ride at concentrations above optimal was rela-
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FIG. 1. Effects ofsalts on the activity ofa halophil
NADP-specific isocitrate dehydrogenase. Symbols:
0, LiCi; 0, NaCL; A, KCI; 0, NH4Cl. Results of
Aitken et al. (3) are reprinted with permission.
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tively slight. Thus, although potassium chlo-
ride was less effective than either sodium chlo-
ride or lithium chloride in activating the en-

zyme, it was also less effective as an inhibitor
at concentrations approaching physiological
conditions for the organism. Figure 1 allows
two other points to be made. First, there is no

evidence whatever that au is a determinant of
enzyme activity under the experimental condi-
tions, although the range of salt concentrations
used was great enough to cause substantial
changes in a,. This is scarcely surprising. With
most biological systems and, especially with
cell-free enzyme preparations, we are accus-
tomed to thinking in terms of direct interac-
tions between electrolytes and proteins rather
than indirect interactions in which the electro-
lyte has a nonspecific role in merely changing
au. This does not exclude a possible indirect
effect of the salt on water structure and hence,
presumably, on hydrophobic bonding within
the protein molecule(s); indeed, there are rea-

sons already discussed for supposing that, at
high concentrations, salts act partly in this
way.
Second, generalizations about the relative ef-

fects of salts on enzymes are of little value
unless the comparison makes due allowance for
salt concentration. Clearly, a comparison
within Fig. 1 would lead to a set of conclusions
which were completely different at, say, 3.0 M
salt on the one hand, and 1.0 M salt on the
other. For this reason comparisons like that
given, for example, in Lanyi's (74) Table 2 are

of doubtful value.

(a) (b)

A similar but more sophisticated comparison
is shown in Fig. 2: a series of values of apparent
Vmaj are plotted against salt concentration.
The comparison between the effects of potas-
sium chloride and sodium chloride is qualita-
tively similar to that of Fig. 1, but it differs
quantitatively and introduces a new parame-

ter, inasmuch as the concentration of fixed sub-
strate affects the comparison. This is another
reason why simple comparisons of salt effects
are difficult to defend. Figure 1 shows that it is
the effect of sodium chloride on enzyme activity
which is conspicuously susceptible to fixed sub-
strate concentration. In potassium chloride the
substrate effect was minor.
Thus, the apparent anomaly of an enzyme's

having a salt optimum well below the salt con-

centration within the cell can, at this stage, be
given a simple explanation. The organism vir-
tually excludes Na+ and accumulates such mas-
sive concentrations of KCI that its intracellular
contents are dominated by it. Although these
concentrations are well above the optimum for
some enzymes, KCI is a poor inhibitor and,
even at those concentrations, produces only a

minor degree of inhibition. Both from the point
of view of its accumulation and its effective
"protection" of enzymes at high salt concentra-
tions, potassium chloride is a physiologically
compatible substance for halophilic bacteria.
The use, by halophilic bacteria, of both the

physiological mechanisms proposed above is
now evident. The proteins are intrinsically dis-
tinctive and nearly all require a salt concentra-
tion that is very high by nonhalophilic stan-
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FIG. 2. Effects of salt concentration on apparent Vm~a of a halophil NADP-specific isocitrate dehydrogen-
ase. The results were obtained at several concentrations ofeach fixed substrate. In the top panels (a-d) NADP+
was used at fixed concentrations of (left to right) 0.80, 0.60, 0.40, and 020 mM. In the lower panels (e-h)
sodium isocitrate was used at fixed concentrations of (left to right) 1.0, 0.50, 0.25, and 0.125 mM. Symbols:
0, Sodium chloride; 0, potassium chloride. Results ofAitken and Brown (2) are reprinted with permission.
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dards. This is true even of enzymes which, like
isocitrate dehydrogenase, have a salt optimum
at 1.0 M or less. (It it not true of the fatty acid
synthetase system, which is not functional in
the viable organism.) On the other hand, those
cytoplasmic enzymes that are inhibited by high
salt concentrations can function because the
intracellular composition is such that the im-
pact of the organism's environment is softened.
If potassium chloride were not accumulated,
the intracellular au and, hence, total solute
concentration would still be about the same. Its
thermodynamic adjustment to the environment
would be achieved either by loss of water, in
which case the major intracellular solutes
would be "pool" intermediary metabolites, mis-
cellaneous salts, etc., which, for reasons dis-
cussed below would be severely inhibitory at
such concentrations, or else the bacteria would
accumulate sodium chloride which, as shown
above, is also inhibitory.
Potassium chloride thus has a physiological

function in halophilic bacteria which is very

similar to that of the polyhydric alcohols in
xerotolerant yeasts and halophilic algae (see
sections, Xerotolerant Yeasts and Halophilic
Algae). We have called such substances "com-
patible solutes" (29). Their essential properties
and mode of action are discussed in the section,
Compatible Solutes.

XEROTOLERANT YEASTS
General Biology

The adjective "osmophilic" was first used by
Richter in 1912 (106). The word has been useful,
but it is misleading in both of its components.
For reasons already outlined, osmotic pressure

is not a major factor in the peculiar physiology
of these yeasts, and most known species (not
all, however) are tolerant, not "-philic" of high
solute concentrations. The term "sugar-toler-
ant" is used and has been advocated (5), but
there is some evidence for the existence of a

group ofyeasts distinguished by their salt toler-
ance. The dominant sugar-tolerant genus is
Saccharomyces. Two species and one variety
have been clearly identified; they are Saccharo-
myces rouxii (Table 1), Saccharomyces rouxii
var. polymorphus and Saccharomyces mellis
(Lodder and Kreger-van Rij). Yeasts associated
with moderate salt concentrations include sev-

eral genera among which Saccharomyces
(rouxii), Debaryomyces, Hansenula, and Pichia
are prominent. The nomenclature and distribu-
tion of the tolerant yeasts have been discussed
by Onishi (106).
A term that involves minimal bending of

descriptions already in use and is generally

applicable to the group as a whole is "xerotoler-
ant"; it will be used henceforth in this review.
The subdivisions of sugar- and salt-tolerant
will also be used where appropriate.
A definition of xerotolerance will not be at-

tempted at this stage since any definition based
on growth characteristics will be either vague
or inaccurate. The major physiological charac-
teristics of the group should become clearer in
the discussion which follows. Scarr and Rose
(119) defined "osmophilic" yeasts as those that
can grow in sugar solutions at concentrations
above "65° Brix" (65%, wt/wt) at 200C; this defi-
nition can be used as a useful working descrip-
tion of the sugar-tolerant group.
A reliable definition based on tolerance at

low a, cannot be advanced because the water
relations of these organisms vary greatly with
solute used to adjust a,. This is revealed in
Table 1, for example, which attributed widely
different water relations to S. rouxii in sugar
and salt solutions. There are many other exam-
ples of this kind of phenomenon, some of which
are cited by Onishi (106). The differences, how-
ever, are not confined to those between salts
and nonelectrolytes. One interesting example
reported by Anand (Ph.D. thesis, University of
New South Wales, 1969) occurred with a sugar-
tolerant strain that could not grow in a medium
adjusted with sucrose to 0.85 a,, but did grow in
the same medium when the water activity was
lowered even further (to 0.80) by the supple-
mentary addition of glycerol. Furthermore,
growth in media adjusted to specified levels of
water activity with polyethylene glycol (molec-
ular weight, 200) generally diminished the dif-
ference in minimal levels of water activity tol-
erated by sugar-tolerant and nontolerant
yeasts (Fig. 3 and 4).

Results of this type illustrate very clearly, at
least for a simple environment, that any direct
deterministic effect of a,, on the yeast is over-
whelmed by the type and concentration of sol-
ute used to adjust a,,,. Figures 3 and 4 also show
a fairly consistent difference in maximal
growth rates between tolerant and nontolerant
strains; the tolerant strains have exponential
growth rates which, on average, are about half
those of their nontolerant counterparts. (The
paper by Anand and Brown [5] should be con-
sulted for comments on the "water relations" of
some of the intermediate strains.)
There is, moreover, a complication intro-

duced by temperature. Opposing effects on bio-
logical processes of increasing temperature, on
the one hand, and increasing solute concentra-
tion, on the other, are common (19). With some
strains of xerotolerant yeast these effects can
become large enough to cause a change from a
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FIG. 3. Response ofexponential growth rate of nine xerotolerant yeasts to water activity in media adjusted
with polyethylene glycol (molecular weight, 200). Results ofAnand and Brown (5) are reprinted with per-
mission. The original paper should be consulted for the identity of the yeasts.
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FIG. 4. Response ofexponential growth rate ofsix
nonxerotolerant yeasts to water activity in media ad-
justed with polyethylene glycol (molecular weight,
200). Results ofAnand and Brown (5) are reprinted
with permission. The original paper should be con-
sulted for the identity of the yeasts.

tolerance of to a requirement for a high solute
concentration. For example, Onishi (105) has
reported that, at 3000, the yeast Torulopsis
halonitratophila would not grow in a dilute
medium but did grow in the presence of6% (wt/
vol?) sodium chloride. At 2000, however, it grew
in dilute medium. Thus at the higher tempera-
ture the organism was halo- or xerophilic,

whereas at 20TC it was xerotolerant. Onishi
(106) has cited several other examples of this
type of phenomenon. In our own experience,
the yeast Zygosaccharomyces nectarophilus
(5), which will not grow in a dilute basal me-
dium at 3000 (Fig. 3), will do so in the tempera-
ture range of 16 to 2300 (M. Edgley, unpub-
lished data).

Physiology
The available evidence will not support many

generalizations about the nutritional require-
ments of xerotolerant yeasts. One of the few
supplementary growth factors that appears to
be generally required is biotin (130). The strain
of S. rouxii used extensively in this laboratory
requires biotin and pantothenate (A. J. Mar-
kides, unpublished data).
Some effects of solute concentration on the

ability of yeasts to assimilate sugar have been
reported and summarized by Onishi (106). For
example, a strain of S. rouxii assimilated glu-
cose readily in a dilute medium or in the pres-
ence of 18% sodium chloride. It also grew read-
ily in basal medium with galactose or maltose
as sole carbon source but very poorly on either
of those sugars in 18% sodium chloride. Onishi
has added the comment that very few strains
would assimilate or ferment these sugars in
highly saline media. Observations of this kind
are to be expected. They need reflect no more
than differential effects of au. (or solute concen-
tration) on the kinetics of the relevant reac-
tions. Similar effects occur with other physico-
chemical factors such as temperature.
Although the xerotolerant yeasts can thrive

at levels ofwater activity even lower than those
tolerated by the extremely halophilic bacteria,
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the two types of organism are fundamentally
different, inasmuch as the yeasts have no abso-
lute requirement for a specific solute. Neither
do they generally require a low a,, although, as
stated, there are some exceptional strains that
do appear to have such a requirement, which is
temperature dependent. Partly for this reason
and partly because ofthe great strength oftheir
thick walls, xerotolerant yeasts do not have the
problems of structural integrity which beset the
halophilic bacteria in dilute solutions.
There was, therefore, no a priori reason to

look initially to the cell membrane of the
yeasts, as was done with the halophils, for di-
rect explanations of their environmental pecu-
liarities. Of course, the yeast membrane is in-
volved in the overall deterministic physiology
(see below) but, on present evidence, not in any
specific sense. Instead, it seemed probable that
the primary explanation of their water rela-
tions would lie inside the cell within the broad
framework of mechanism I or II as outlined
above.
Ofimmediate relevance to these mechanisms

was a comparison of the kinetics, water rela-
tions, and electrophoretic properties of an
NADP-specific isocitrate dehydrogenase from
the tolerant S. rouzxii and the nontolerant S.
cerevisiae. This comparison, which was made
by Anand (Ph.D. thesis, University of New
South Wales, 1969) and extended by Brown (un-
published data), failed to show any significant
difference, by the criteria used, between the
enzyme preparations from the two yeasts. Al-
though the systematic comparison was confined
to one enzyme it was, in our view, sufficient to
discount mechanism I (above) as an explana-
tion of the sugar tolerance of S. rouxii. As
already noted, any functional halophilic bacte-
rial enzyme has distinctive salt requirements.

It followed, therefore, that mechanism II, or
some modification of it, should operate and that
some intracellular property such as composi-
tion should be substantially and consistently
different in the two types of yeasts. Broadly
speaking, intracellular composition will be de-
termined by the 'uptake of solutes from the
extracellular fluid and by the retention of me-
tabolites. Since the different water relations of
the tolerant and nontolerant strains show up
clearly in high sugar concentrations, any differ-
ences in composition arising from solute uptake
might reasonably be expected to show up with
sugars and other nonelectrolytes. Evidence for
significant penetration of some solutes lies in
the effects of different solutes on the growth
responses of the yeasts to a,, (see above). It is
difficult, for example, to explain the effects of
supplementary addition of glycerol to a me-

dium containing sucrose (above) without invok-
ing significant penetration of at least one of the
solutes.
Brown (22) found consistent differences be-

tween S. cerevisiae and S. rouxii in the amount
of solute taken up as a function of the extracel-
lular solute concentration when the yeasts were
incubated in buffered solutions ofany of several
sugars or glycerol. S. rouxii had a lower capac-
ity for the nonelectrolytes than S. cerevisiae.
The way in which the two species responded to
sucrose is of some practical significance, since
this sugar is often encountered at high concen-
trations in foods and because the differences
were consistent between all sugar-tolerant and
-nontolerant strains examined. Saccharomyces
cerevisiae produces an invertase; S. rouxii does
not. As a consequence, solute uptake by S.
cerevisiae was an active process dominated by
metabolism to the extent that no free sucrose
was recovered from the yeast. In S. rouxii,
however, sucrose uptake occurred by diffusion
and, under the experimental conditions, the
strain used (YA) equilibrated with the suspend-
ing solution in such a way that the intracellular
concentration was about 40% of that of the ex-
tracellular fluid (22). In this sugar, then, there
are major qualitative differences in the intra-
cellular composition of the two species, differ-
ences attributed directly to metabolism in one
type but not the other.

Quantitative differences between the species
attributable simply to uptake of nonmetabo-
lized sugars can be illustrated by lactose which,
in S. cerevisiae, equilibrated at about 70% of
the extracellular concentration and, in S.
rouxii, at about 10% (which probably means
exclusion from the protoplast, since the walls
can take up about as much as this). Glycerol
equilibrated in S. cerevisiae at about the same
concentration as in the suspending solution
with an upper limit to the intracellular accu-
mulation of about 1 M. S. rouxii, on the other
hand, approximated an equilibrated condition
at 35 to 40% of the extracellular concentration
(22).
These differences were minor, however, and

doubtless themselves partly determined by an-
other major difference in intracellular composi-
tion between the two types of yeast. All our
xerotolerant strains contained high intracellu-
lar concentrations of a polyhydric alcohol; the
nontolerant strains did not. With one excep-
tion, the major polyol accumulated was arabitol
(presumably the D-isomer) when the yeasts
were grown in a basal medium. The exception
was a small unidentified yeast, YO (29), which
accumulated mannitol. Another variant was
YE (5), the temperature-dependent xerophilic
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yeast (see above). In addition to arabitol, this
yeast accumulated significant quantities of
glycerol and a hexitol, presumably mannitol.
The concentration of polyol within S. rouxii

(strain A, reference 5) when growing exponen-
tially in a basal nutrient medium containing
(initially) 0.2% glucose is normally within the
range 0.6 to 0.9 molal (22). At mid-exponential
phase, the growth medium is likely to contain
about 0.002 M polyol, although polyol yields are
variable in response to nutritional and other
environmental factors (106, 130). Nevertheless,
the quantities cited indicate a concentration
factor within the yeast of several hundred.
One of the environmental parameters that

affects both polyol production and intracellular
polyol accumulation is the water activity (or
the solute concentration) of the growth me-
dium. Onishi (106) and Spencer (130) have dis-
cussed effects of salt on (extracellular) polyol
production by various species and strains of
salt-tolerant yeasts. Onishi reported a range of
responses to sodium chloride (18%, wt/vol) by
various strains from a doubled yield of polyol
with S. rouxii strain N28 to a halved yield with
S. acidifaciens var. halomembranis. The re-
sponses were also affected by aeration.
Spencer (130) has summarized related results

from various sources, among which is a report
of a shift in the type of polyol produced by
Pichia miso in response to potassium chloride
within the range 0 to 3 M. Increasing concen-
trations of this salt shifted polyol production
from predominantly erythritol to predomi-
nantly glycerol. M. Edgley (unpublished data)
has observed an increase in the proportion of
intracellular glycerol (relative to arabitol) on
growing S. rouxii in elevated concentrations of
polyethylene glycol (molecular weight, 200) or
especially sodium chloride. The reviews of Oni-
shi (106) and Spencer (130) should be consulted
for their extensive tabulation of polyol yields
under various growth conditions.
As already intimated, however, the pub-

lished information refers only to extracellular
polyol. The intracellular polyol content is more
difficult to determine accurately, especially
after growth of the yeast in a high concentra-
tion of sugar.
There are, nevertheless, some clear trends in

the response ofintracellular polyol content ofS.
rouxii to the water activity of the growth me-
dium. The basic trend is that a decrease in a,
causes an increase in the intracellular polyol
concentration. This happens not only when a
sugar is the solute, under which conditions
such an effect might be expected as a direct
consequence of extensive metabolism of the

sugar, but also with nonmetabolites such as
polyethylene glycol. Polyol can reach a concen-
tration of at least 5 molal within S. rouxii in
media adjusted to 0.95 a, or lower (22). The
amount of polyol that leaks out on washing is
also affected by the growth conditions, by polyol
content, and by the solute concentration in a
washing fluid. Thus yeast grown at a low a,
and containing polyol at a high concentration
leaks more when washed in water in 00C than
yeast grown in a dilute medium and containing
less polyol. The result of this is that, at least
under the experimental conditions used by
Brown (22), S. rouxii grown in several media at
300C and then washed with water at 00C con-
tained, after the washing, polyol in the range
approximately 9 to 15% of the dry mass of the
washed yeast.
As already stated, there is no evidence that

mechanism I (above) explains the water rela-
tions of the xerotolerant yeasts, but their intra-
cellular composition, which is consistently and
substantially different from that of their nontol-
erant counterparts, provides the basic require-
ment for mechanism II. Since the difference in
composition obviously arises from a metabolic
peculiarity, mechanism IIA is implied.
What remains to be demonstrated is a role of

the polyol in yeast water relations. Working
with nonelectrolytes, Anand (Ph.D. thesis,
University of New South Wales, 1969) showed
that the extent of enzyme inhibition at reduced
water activity was dependent on the solute
used to adjust a,. Specifically, he showed differ-
ences in the rates of the reaction catalyzed by a
yeast isocitrate dehydrogenase in solutions of
polyethylene glycol (molecular weight, 200) and
of sucrose. He also obtained preliminary evi-
dence that glycerol was far less inhibitory than
the other two solutes. This second observation
was confirmed by Brown and Simpson (29) and
is illustrated in Fig. 5. Glycerol and sucrose
functioned solely as inhibitors; there was no
evidence of their activating the enzyme as salt,
at low concentrations, activated the corre-
sponding halophil enzyme.
Thus, in solutions of nonelectrolytes as well

as electrolytes, water activity (a,) is neither a
simple nor a direct determinant of enzyme ac-
tivity. Simpson (Ph.D. thesis, University of
New South Wales, Sydney, 1976) has since ex-
tended these comparisons to a wide range of
nonelectrolytes; some aspects of her findings
are discussed in the section, Compatible Solutes.

Briefly, then, polyols make two major physi-
cochemical contributions to the physiology of
xerotolerant yeasts; they function (i) as an "os-
moregulator" and (ii) as a compatible solute, a
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FIG. 5. Activity ofan NADP-specific isocitrate de-
hydrogenase from the xerotolerant yeast, Saccharo-
myces rouxii, measured in various concentrations of
glycerol (0) and sucrose (a). The upper and lower
panels show the same results with solution properties
represented in two different ways. Curves showing
enzyme activity as a function of molal solute concen-

tration were basically similar to those in the lower
panel. Results of Brown and Simpson (29) are re-
printed with permission.

substance that at high concentration protects
enzymes against inhibition or inactivation. In
addition, polyols can be expected to serve as a
reserve food supply, but there are some con-
straints on this role as discussed for halophilic
algae (below). The physiological role is thus
very similar to that of K+ (and KCI) in halo-
philic bacteria; it is discussed in greater detail
in the section, Compatible Solutes. Fungal wa-
ter relations have recently been discussed by
Pitt (108). The physiological basis of xerotoler-
ance by fungi imperfecti has not been studied in
any detail, but there is reason to assume a
general similarity with that of the xerotolerant
yeasts. Polyol accumulation by fimgi is com-
mon (78).

HALOPHILIC ALGAE
The terms "halophyte," as applied to higher

plants, and "halophil," as applied to unicellular
algae, are commonly used loosely to denote
some degree of salt tolerance without necessar-
ily giving a very clear indication ofthe range of
concentrations tolerated. This interpretation is
too broad for present purposes and the noun,
halophil, will be used to apply, somewhat arbi-
trarily, to those algae with a requirement for
salt, usually at concentrations of about 1.5M or
more. In fact its use, even in this way, is ques-
tionable. As will be shown, there are no eu-
karyotes known to have absolute and clearly

defined salt requirements similar to those of
the extremely halophilic bacteria. There are
indeed halophilic algae with a salt requirement
of the order of 1.5 M and a tolerance of up to
saturated sodium chloride but, for reasons
which will become apparent, the designation of
even these organisms as halophilic is open to
challenge.

Halophilic algae are found within the phy-
lum Chlorophyta, order Volvocales. The princi-
ple genera with halophilic species are Duna-
liella and Chlamydomonas. Both are flagel-
lates; the major morphological distinction be-
tween them is the lack of a cell wall in Duna-
liella. The halophilic algae that have been sub-
jected to the closest scrutiny are species ofDun-
aliella. Little detail is known of the salt rela-
tions of Chlamydomonas, but ecological evi-
dence (17) suggests that the genus is much less
halotolerant than Dunaliella. The best known
halophilic species ofDunaliella are Dunaliella
parva, Dunaliella viridis, and Dunaliella sal-
ina which, in that order, appear to have in-
creasing tolerance of high salt concentrations.
In addition, the marine species Dunaliella ter-
tiolecta has also been the subject of a number of
investigations and has been used for compari-
son with the halophilic algae.
The species named above are characterized

collectively and individually by a remarkably
wide range of salt tolerance, probably the wid-
est known for any unicellular organisms. D.
salina has been reported (L. A. Loeblich, Ph.D
thesis, University of California, San Diego,
1972) to grow throughout the range 0.3 M to
saturated sodium chloride and to be able to
withstand sudden substantial changes in salin-
ity (87, 88, 139). Ben-Amotz and Avron (14)
have reported that D. parva can withstand a
change in salt concentration from 1.5 to 0.6 M
sodium chloride without apparent leakage of
cell contents.
The halophilic D. viridis grew over the range

of approximately 1.6 M to saturated sodium
chloride when the culture medium was inocu-
lated directly with a suspension grown in 3.4 M
sodium chloride, with the maximum growth
rate occurring close to the bottom ofthe concen-
tration range (15). Similarly, the optimum salt
concentration for the marine species Dunaliella
tertiolecta was at the bottom of its effective
tolerance range (approximately 0.17 to 1.5 M
sodium chloride) when the inoculum was grown
in 0.17 M sodium chloride (15). The range of
salt concentrations tolerated and the location of
the optimum each differentiate Dunaliella
clearly from the halophilic bacteria.
A more fundamental distinction from halo-

I I
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philic bacteria lies in the ability of the algae to
be "trained" to extend their limits of salt toler-
ance, both up and down, with the implication
that these limits are determined in part by the
history of the organism. Thus, McLachlan (86)
reported that D. tertiolecta grew within the
range approximately 0.06 to 2 M sodium chlo-
ride. Craigie and McLachlan (43) extended this
to about 2.6 M by serial subculturing through
intermediate salt concentrations. Latorella and
Vadas (77) adapted this species to 3.6 M salt.
Conversely, D. S. Kessly (personal communica-
tion) has trained the halophil, D. viridis, again
by serial subculture, down to 0.3 M sodium
chloride.
Another biological difference from halophilic

bacteria lies in the ability ofD. viridis to accept
replacement of a major part of its salt require-
ment by a nonelectrolyte such as sucrose. Suc-
cessful transfer to a sucrose medium can be
made in one step, but growth is much slower
than in purely saline media of the same water
activity (D. S. Kessly, personal communica-
tion). In its ability to accept substitution of salt
by a nonelectrolyte, D. viridis has, at least qual-
itatively, a property in common with the xero-
tolerant yeasts. There is, nevertheless, an ap-
parent minimal requirement by the species for
sodium chloride. In the presence of 1.0 M su-
crose this is about 0.05 M sodium chloride (D. S.
Kessley, personal communication).
At yet another level, the fundamental differ-

ence between halophilic algae and bacteria is
reflected in the complete absence of any evi-
dence of halophilic characteristics in algal pro-
teins. Thus, although the Dunaliella surface
carries a net negative charge (A. C. T. Jokela,
Ph.D thesis, University of California, San
Diego, 1969), as indeed do most microbial sur-
faces, they show none of the instability at re-
duced salt concentrations which is so character-
istic of halobacterial membranes. Again, al-
though halophilic algal enzymes have not been
studied nearly as extensively as their halo-
philic bacterial counterparts, ofthose that have
been studied, there is no evidence whatever of
any unusual salt requirements. Halophilic al-
gal enzymes are sharply inhibited by salt con-
centrations well below that encountered in the
growth medium (63, 15). Furthermore, the salt
relations of two enzymes, glucose-6-phosphate
dehydrogenase and glycerol dehydrogenase, are
functionally identical in preparations from the
marine species D. tertiolecta and the halophil
D. viridis (15). Admittedly, these comparisons
are limited but, as pointed out elsewhere in this
review, a random selection of a functional halo-
bacterial enzyme will reveal its peculiar salt
requirements.

Intracellular Composition

The inevitable debate over the internal com-
position of halophilic algae has resembled in
some respects the early speculation about halo-
philic bacteria, although there does not seem to
have been explicit advocacy of a "dilute inte-
rior." The debate has centered predominantly
on whether or not salt of any kind is accumu-
lated to a concentration to match that outside
the cell. Technical problems of estimating salt
concentrations within the cells have facilitated
the expression of opposite opinions. These prob-
lems are substantial with Dunaliella, which is
a mechanically delicate organism and suscepti-
ble to leakage and salt exchange during centrif-
ugation.
The evidence for and against high concentra-

tions of salt within halophilic species ofDuna-
liella has not, in general, been based on direct
analyses. Thus, Trezzi et al. (139) drew infer-
ences from volume changes in D. salina in
response to changes in environmental salinity.
They concluded that the plasma membrane is
freely permeable to salt and that the algae
should therefore contain salt at a concentration
close to that of the growth medium. Similar
conclusions were drawn by Marre and Servet-
taz (88) and Ginzburg (52). On the other hand,
Johnson et al. (63) argued from the salt sensi-
tivity of a number of cell-free enzyme prepara-
tions from D. viridis that this species excludes
salt. Ben-Amotz and Avron (12), however, in-
terpreted similar findings, together with the
salt sensitivity of isolated chloroplasts, as indic-
ative ofcompartments of low salt concentration
within the cell. Borowitzka and Brown (15) con-
firmed the salt sensitivity of two enzymes from
D. viridis and D. tertiolecta (and, as already
stated, demonstrated the functional identity of
the corresponding enzymes from the two spe-
cies).
Of more immediate relevance to the question

of intracellular composition was the demonstra-
tion that species ofDunaliella accumulate glyc-
erol. Craigie and McLachlan (43) had demon-
strated glycerol production by D. tertiolecta in
1964. Later, Ben-Amotz and Avron (14) showed
that glycerol accumulated to a concentration of
about 2 M in D. parva when the alga was
adapted to 1.5 M sodium chloride. Ben-Amotz
and Avron recognized glycerol as an "osmore-
gulator," as had Wegmann (147), inasmuch as
its concentration responded positively to envi-
ronmental salinity changes. Similarly, Boro-
witzka and Brown (15) demonstrated glycerol ac-
cumulation in direct proportion to extracellular
salt concentration in D. tertiolecta and D. viri-
dis. In the latter species, glycerol reached a

BACTEINOL. REV.



MICROBIAL WATER STRESS 827

concentration of about 4.4 molal when the orga-
nism was grown in 4.25 M sodium chloride.
This value is similar to the potassium concen-
tration in halophilic bacteria and to total polyol
in xerotolerant yeasts when grown at compara-
ble levels of a,

In simple terms, the physiological implica-
tion of glycerol accumulation is that it does not
leave room for much salt in the algal cell. The
experimental results suggest that glycerol con-
centration is sufficient to bring cellular water
potential to about the same level as that outside
the cell. Moreover, if salt did enter the cell to a
concentration similar to its external concentra-
tion, the delicate membrane of Dunaliella
would not be able to withstand the osmotic/
hydrostatic consequences of the considerable
reduction in internal water potential caused by
the additive effect of the two solutes. Thus,
with glycerol at the stated concentrations, salt
uptake should be no more than a minor event
sufficient to make up any discrepancy between
internal and external water potentials (with
allowance, of course, for the slightly lower in-
ternal water potential required for turgor).
This limited uptake is likely to be met by potas-
sium chloride rather than sodium chloride; ex-

perimental results with D. tertiolecta and D.
viridis support this assumption (15).

Polyol production is common in plants gener-
ally, including algae, and has been reviewed
extensively by Lewis and Smith (78), although
those authors specifically omitted glycerol from
consideration. Mannitol is a common algal po-
lyol, particularly among the brown seaweeds.
Lewis and Smith have also pointed out the
ubiquity of polyols at high concentrations in
lichens and noted the possible function of these
compounds as osmoregulators in marine algae
and seaweeds.

Physiological Role of Glycerol
Glycerol accumulation can be assumed to

have three major functions in the physiology of
marine and halophilic species of Dunaliella.
The first and most obvious function is that ofan
osmoregulator, that is, a substance whose con-
centration responds positively to extracellular
solute concentration (negatively to a,,), which
maintains thereby approximate parity between
internal and external a,, (or water potential)
and which therefore minimizes osmotic stresses
and dehydration to which the cell would other-
wise be subjected. Although this is a vital func-
tion, it is not particularly specific. Any solute
retained within a cell will contribute to its os-

motic status and, in the absence of a dominant
osmoregulatory solute, thermodynamic adjust-
ment to a low water potential will be achieved
by a water flux.

The second role is that of a compatible solute,
or protector of enzyme activity. Glycerol has
not been compared with other nonelectrolytes
in its effect on algal enzymes, as it has for a
yeast enzyme, and as potassium chloride has
been compared with sodium chloride for halo-
philic bacterial enzymes (see sections, Halo-
philic Bacteria and Xerotolerant Yeasts). Some
simple comparisons of glycerol and salt have
been made using algal enzymes (15, 55). Never-
theless, its protective action on yeast isocitrate
dehydrogenase (sections Xerotolerant Yeasts
and Halophilic Algae), its failure to inhibit
Dunaliella glucose-6-phosphate dehydrogenase
at concentrations below about 4 M (15) and the
simple proposition that the algae would not
grow if the glycerol were not protective make
its compatible nature in algae a virtual cer-
tainty.

Third, it can act as a food reserve under some
conditions. Lewis and Smith (78) have dis-
cussed polyols as food reserves, but it should be
noted that extensive consumption of the polyol
would deplete an algal cell of its compatible
solute and leave it with diminished protection
against environmental salinity. It is likely,
therefore, that glycerol becomes available as.a
carbon source in significant quantities only as a
result of a drop in salt concentration.
The biosynthetic pathway of glycerol inDun-

aliella has not yet been studied in any detail.
Since glycerol is an early product of photosyn-
thesis (43, 147) and can also be formed in the
dark from accumulated starch (D. S. Kessly,
personal communication), it is possibly pro-
duced in the chloroplasts. Furthermore, the
presence of an active NADP-linked dehydro-
genase (11, 13, 15) suggests that the final steps
of the sequence are:

Triose phosphate -t Dihydroxyacetone = Glycerol
Pi

Glycerol could be expected to diffuse readily
from the chloroplast into the cytosol. Normally,
dihydroxyacetone phosphate is the major prod-
uct of photosynthesis which passes from chloro-
plast to cytosol (144). If glycerol were produced
in the cytosol from triose phosphate, we could
expect glycolytic enzymes to catalyze the proc-
ess, in which case the sequence would probably
be:

Dihydroxyacetone phosphate = Glycerol-3-phos-
phate -< Glycerol

P.

In this case the reduction step would require
NADH, not NADPH. This is essentially the
mechanism suggested by Wegmann (146, 147),
but it does not seem to happen that way.
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Regulation of Glycerol Production
The regulation by extracellular solute con-

centration of production and accumulation of
compatible solutes is a complex process that is
poorly understood. It is apparent, however,
that glycerol content varies as a result of syn-
thesis or degradation, not simply by concentra-
tion or dilution caused by water fluxes (11, 15).
The NADP-specific glycerol dehydrogenase

of Dunaliella has a high apparent Michaelis
constant for glycerol (1.5 to 3.5 M) and a low
apparent Michaelis constant for dihydroxyace-
tone (0.8 to 2.2 mM) (13, 15; L. J. Borowitzka,
Ph.D. thesis, University of New South Wales,
1974). In spite of this big difference between the
two constants, the enzyme can be assumed to
function as a freely reversible dehydrogenase in
the cell, since the glycerol concentrations are of
the same order as the Michaelis constants; this
point has already been emphasized (15). More-
over, the enzyme does not have simple Michae-
lis-Menten kinetics. Under some circumstan-
ces, notably with glycerol as variable substrate,
it gives parabolic double reciprocal plots (15).
These, and related results described by Boro-
witzka (Ph.D thesis, University of New South
Wales, 1974), suggest that glycerol adds twice
in the reaction sequence, once as a substrate
and once as an effector. The enzyme is thus
likely to be crucial in the overall process of
regulating glycerol production.
Borowitzka (Ph.D. thesis, University ofNew

South Wales, 1974) has argued that there
should be two levels at which glycerol concen-
tration is regulated. One of these is the homeo-
static process by which glycerol is maintained
more or less at a constant concentration in any
one set ofenvironmental conditions. The second
level is that of the direct response of glycerol
content to environmental salinity.
Borowitzka has suggested that the nonlinear

kinetics are important at the first level since, at
low glycerol concentrations corresponding to
those normally encountered in D. tertiolecta,
reaction velocity changes sharply in response to
glycerol concentration. On the other hand, at
high glycerol concentrations, such as occur in
D. viridis, reaction velocity responds relatively
slightly to changes in glycerol concentration. In
other words, the enzyme kinetics suggest a
fairly coarse control of glycerol oxidation by
glycerol concentration in the marine species
and a fine control in the halophil. In turn, this
suggests that glycerol concentration should os-
cillate to a greater extent in D. tertiolecta than
in D. viridis. It is not yet known if, in fact, this
happens. The problem of regulating glycerol
concentration in response to environmental sa-

linity has many features in common with the
regulation of polyol production in xerotolerant
yeasts and, so far, is largely unexplored. Some
additional comments on regulation are made in
the section, Compatible Solutes.

Physiological Basis of Algal Halophilism
We have argued elsewhere (15, 29), and in

this review, that cells that thrive at biological
extremes of low water activity must accumu-
late a compatible solute. Glycerol accumulation
can explain in large measure the tolerance by
Dunaliella of high salt concentrations but, on
present evidence, it is insufficient to explain
the apparent requirement ofD. viridis for 1.5 M
sodium chloride. Nor does it explain the differ-
ent salt relations of D. tertiolecta and D. viri-
dis, since each can be trained to grow in the
other's domain and, when it does, it contains
glycerol at a concentration appropriate to that
domain (D. S. Kessly, personal communica-
tion).
The essential function of a compatible solute

is to confer a tolerance, not a requirement. It is
true that a mechanically delicate alga such as
Dunaliella might, for purely osmotic reasons,
require a certain minimal salt concentration to
maintain cellular integrity, but this is a
"chicken-and-egg" argument. The presence of
glycerol might explain why D. viridis needs
training to grow at a lowered salt concentra-
tion, but it does not explain why D. tertiolecta
needs training to grow at higher salt concentra-
tions.

In fact, there is no significant information of
which I am aware that can explain the basi-
cally different salt relations of D. tertiolecta
and D. viridis. Certainly the differences be-
tween these species do not appear to lie in any
generalized intrinsic properties of their en-
zymes. As already stated, there is no apparent
difference in their ability to adjust their abso-
lute glycerol content to a specific salinity.
A notable difference between the two species,

however, is observed when D. tertiolecta is
trained to grow in the salt concentration range
ofD. viridis. Under those conditions it (D. terti-
olecta) still has a substantially higher growth
rate than the halophil (D. S. Kessly, personal
communication). Kessly's experiments were
done under conditions of continuous illumina-
tion, and it is relevant, therefore, that D. terti-
olecta is reported (77) to require continuous
illumination when, after training, it grows at
salt concentrations greater than 2.5 M.
The difference in growth rate between the

two species is reminiscent of the generally low
growth rates of the xerotolerant yeasts (5) and
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suggests that a fundamental difference be-
tween the two algal types might be found in
their energy metabolism. Thus, if the halophil
were to divert a substantially greater propor-
tion of its carbon to glycerol production it would
have less carbon and NADPH available for
other biosynthetic processes. The greater
amount of glycerol so produced would impose a
need for a higher salinity for the osmotic rea-
sons already mentioned, but this is unlikely to
be the whole explanation. Inasmuch as the sol-
ute requirement ofD. viridis is not absolutely
specific for salt, the alga resembles those xero-
tolerant yeasts such as Torulopsis halonitrato-
phila (105) and Zygosaccharomyces nectarophi-
lus (strain YE, reference 5) which have an ap-
parent requirement for a lowered a,. Further-
more, both these yeasts lose this requirement.
with a reduction in temperature (105; M. Edg-
ley, personal communication). The effect of
temperature has not yet been satisfactorily ex-
plained nor, to my knowledge, have the effects
of temperature on halophilic algal salt require-
ments been investigated.

Algae Other than Dunaliella
The genus Chlamydomonas has species with

a minimal requirement of about 0.34 M sodium
chloride, an ability to grow in 1.7 M sodium
chloride, but an uncertain upper limit of con-
centration (102, 140). Blue-green algae have
been isolated from the Dead Sea and, ofthese, a
species ofAphanocapsa was reported to have a
minimum salt requirement of 1.0 M and to
grow best between 1.5 and 3 M sodium chloride
(142). The Dead Sea, like concentrated marine
pools and the saline Arctic pools mentioned
earlier, contains substantial concentrations of
Mg2+, which is itself a significant factor in a
definition of salinity tolerance.

Little is known of the physiological basis of
salt tolerance in any of these algae. Chlamydo-
monas is reported to contain about 0.2 M Na+
and 0.05 M K+ when grown in 1.7 M sodium
chloride (103). If these estimations are reasona-
bly accurate, then there is an obvious need for
an additional osmoregulatory solute(s). One
might fairly assume that such a solute would
be a polyol or something chemically similar. A
compatible solute of some kind can be assumed
to accumulate in all algae with significant salt
tolerance. This is discussed further in the sec-
tions, Compatible Solutes and Loose Ends.

COMPATIBLE SOLUTES
Electrolytes

The results discussed so far have shown that
all microorganisms capable of growth at biolog-

ically extremely low levels of au. and appropri-
ately studied accumulate compatible solutes to
a concentration of a similar order to that of the
extracellular solute(s). The solutes are K+, Cl-,
and KCl in halophilic bacteria and one or more
polyhydric alcohols in the other organisms we
have studied. It is likely that all other protista
with a conspicuously xerotolerant physiology
accumulate either a polyol or a closely related
hydroxylated organic metabolite. Compatible
solutes function partly as osmotically active
substances and partly as protectors of enzyme
activity. The mechanism of osmotic adjustment
is obvious and relatively nonspecific; it does not
warrant detailed discussion.
Enzyme protection, however, is less obvious.

A semantic distinction might be made between
an intracellular solute such as potassium chlo-
ride when it functions as an activator as, for
example, with halophil ribosomal enzyme sys-
tems and as an inhibitor as, for example, with
the isocitrate dehydrogenase under halophilic
physiological conditions. The compatible na-
ture of potassium chloride is apparent under
the latter conditions because it is a very poor
enzyme inhibitor. On the other hand, our lim-
ited experimental evidence supplemented with
a generous helping of intuition suggests that
the polyols function under inhibitory conditions
(i.e., at or above any optimum that might exist)
with nearly all enzymes other than those in-
volved directy in their metabolism. Like potas-
sium chloride, they are very poor enzyme inhib-
itors and, at high concentrations, display their
compatible properties because of this.
Potassium chloride inhibits halophil isocit-

rate dehydrogenase not only less severely than
does sodium chloride, but it does so in a much
simpler fashion. Figures 6 and 7 illustrate this
statement in kinetic terms. Secondary plots of
slope and intercept show potassium chloride to
be a simple linear noncompetitive inhibitor,
whereas sodium chloride gives a complex non-
linear inhibition pattern. The nonlinearity can
be overcome by increasing the concentration of
NADP+ (3).
Nonlinear kinetics of this kind imply a coop-

erative action of the inhibitor which, in turn,
means multiple addition of the inhibitor in the
reaction sequence and/or a change in state of
the enzyme caused by the inhibitor. It is likely
that a change in state is involved since (i) the
effect can be modified by high substrate concen-
trations amd (ii) the enzyme has a higher appar-
ent molecular weight in sodium chloride than
in potassium chloride. Apparent molecular
weights are: in a low ionic strength buffer with-
out added potassium chloride or sodium chlo-
ride, 70,900; in 1.0 M KCl, 122,000; in 4.0 M
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KCl, 135,000; in 1.0 M NaCl, 224,000; in 4.0 M
NaCl, 251,000 (2). Thus, the enzyme probably
has a monomeric molecular weight of about
71,000, dimerizes in 1 to 4 M potassium chloride
(the physiological condition), and forms a tri-
mer or tetramer in 1 to 4 M sodium chloride.
The higher apparent molecular weight in so-
dium chloride is consistent with the "salting
out" characteristics of this salt, as discussed by
Lanyi (74).
There is evidence that salt concentration af-

fects the reaction mechanism of the halophil
isocitrate dehydrogenase, but under physiologi-
cal conditions it has a sequential mechanism,
normal for pyridine nucleotide-linked dehydro-
genases, in which NADP+ is the first substrate
added and NADPH is the last product released.
The evidence also shows, however, that the
effects of salt in activating the enzyme, and at
high concentrations inhibiting it, can be inter-
preted in a kinetic sense as if salt were a third
substrate, causing substrate inhibition at high
concentrations. The reaction mechanism can be
represented as in reaction (10):

&

.< .0

E I I L

-Salt

E-Salt

c)

0.
Central T E (10)
Complexes

Thus, salt adds in a substrate-like manner
between NADP+ and isocitrate and also, in an
inhibitory manner, to form a dead-end complex
before addition ofNADP+. Whatever the physi-
cochemical explanation of this association
might be, there are extensive implications for
the physiology of halophilic bacteria in the fact
that a relatively nonspecific substance such as
a common inorganic salt can modify an enzyme
in such a way that the kinetics suggest a fairly
precise interaction with the active site of the
enzyme.
The kinetics also allow a calculation of the

dissociation constants of the constants of the
enzyme-salt complexes. The reaction mecha-
nism shown above implies two salt-enzyme dis-
sociation constants. One constant, that of the
enzyme-"substrate salt" complex is formally
similar to a Michaelis constant (Ki). The
other, that ofthe dead-end complex, is a normal
inhibitor constant (Kd). The values of these
constants for both salts are shown in Table 3.
The table shows that the two salts give iden-
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tical "Michaelis constants," and there is noth-
ing at this level to distinguish between them as
enzyme activators. The magnitude of the "Mi-
chaelis constants" is normal for a substrate. On
the other hand, the inhibitor constants show
some conspicuous and important differences.
First, for both salts they are orders of magni-
tude greater than the "Michaelis constants." A
difference in this direction is predictable from
the simple fact that the salts do activate at low
concentrations and do inhibit at high concen-
trations. The difference in magnitude is not
necessarily so obvious. The outstanding differ-
ence, however, is between the two salts, the K,
(KCl) being about 10 times as great as the Ki
(NaCl) and well in excess of the solubility of
either salt.

In simple terms, therefore, the "compatible"
nature of potassium/chloride for a halophil en-
zyme is a direct consequence of its very low
affinity for the enzyme at the "inhibition site";
sodium chloride is a much more powerful inhib-
itor because of its tighter binding. The aggrega-
tion ofthe enzyme is associated with the tighter
binding of sodium chloride.
The physicochemical processes underlying

this kinetic explanation are undoubtedly com-
plex. From the outset, the assumption can be
made that in the low (activating) range of salt
concentration the salts are extensively ionized
and the quantitative differences between the
salts under these conditions are attributable to
differences between K+ and Na+. Thus, there is
essentially no difference between the two cat-
ions as reflected by the "Ki" of the enzyme-salt
complex. There are differences, however, which
are shown in the relations between the enzyme
and its substrates. In the low (activating) range
of salt concentration, K. (isocitrate) was con-
sistently higher in sodium chloride than in po-
tassium chloride, but the opposite was true of
Km (NADP). Furthermore, at low salt concen-
trations apparent Vma. was higher in sodium
chloride than in potassium chloride except with

TABLE 3. "Dissociation constants" of salt (or cation)
complexes ofhalobacterial isocitrate dehydrogenasea

Constant NaCi KCl
"X^"pp 31-32 mM 30-31 mM
Ki 0.9 M 9.5 M

a The values were calculated from data of Aitken
et al. (3). In its role as an activator, expressed in the
"K,i," the salt probably exerted its effect largely
through the cation. On the other hand, the inhibitor
constant (Ks) must be assumed to reflect an interac-
tion with a substantial proportion of undissociated
salt (see text).
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very low fixed concentrations ofisocitrate (2).
The differences between the two cations as

well as Li+ and NH4+ (at low concentrations,
Fig. 1) can be interpreted superficially in terms
of radii or, inversely, of hydrated volumes ofthe
ions. Not only are explanations of this type
superficial, but they are also serious oversim-
plifications that are likely to be wrong on sev-
eral counts. Although it is true that the ionic
radii, or hydrated volumes, do correlate with
and can predict the behavior of ions under some
circumstances, these circumstances are usually
restricted by a number of factors including a
relatively narrow concentration range of the
salts.
Of far greater predictive value is the thermo-

dynamic explanation developed largely by Ei-
senman. A description of this theory is beyond
the scope of the present review, but it has been
discussed in detail in Diamond and Wright (45).
Some comment is appropriate, however. In an
aqueous environment the relative affinities of a
site on a protein, a membrane, etc., for two
different cations will be a function of the free
energies of hydration and of binding to the site;

AFNa+(site) - AFK+(site) (11)
- (AFNa+h - AFK+h)

where AFx (site) is the free energy of interac-
tion between the cation, X, and the site; AFXh
is the free energy of hydration of the cation, X.
Thus, the "K." values for the two salts,

which we assume actually reflect cation bind-
ing to the enzyme, suggest that the sum of
expression (11) is about the same for Na+ and
K+. Perhaps this is coincidental, since the free
energies of hydration are certainly not the
same (116). A complication, of course, is that
the "K." is not an equilibrium constant but, as
with any conventional Ki, it reflects a steady-
state phenomenon. Even though the cation
does not change in the reaction, it cannot dis-
sociate (after the reaction) from the same form
of the enzyme as that to which it initially
attached. This is evident from reaction 10.
There can be no recurrence of the enzyme-
NADP+ complex from which the cation would
dissociate to give a true equilibrium. Never-
theless, it is inconceivable that the thermody-
namic considerations discussed by Diamond
and Wright (45) do not apply in some measure
to an enzymic situation such as this. Clearly,
it is an area for detailed investigation.
In the high, inhibitory range of salt concen-

tration the situation is more complex because,
among other things, the salts become propor-

tionately less dissociated with increasing con-
centration. Furthermore, the activity coeffi-
cients of the two salts respond differently to
concentration: that for sodium chloride in-
creases over the relevant concentration range,
whereas that of potassium chloride remains
relatively constant (Fig. 8). This basic differ-
ence in solution properties of the two salts
possibly contributes to the complex inhibition
patterns caused by sodium chloride, but it is
unlikely to provide the whole explanation. For
one thing, it cannot explain the differences in
apparent molecular weight determined in the
two salts nor, for another, does it overcome the
differences in apparent Vmax encountered at
high salt concentration, although a correction
for activity does reduce those differences sub-
stantially (Fig. 9).
A physicochemical explanation of the spe-

cial properties of compatible solutes should
also take into account, wherever possible, the
relevant properties of solvent water. Solvent
properties and the thermodynamics of solva-
tion assume greater relative importance when
a solute has an affinity for an enzyme that is
not very different from the affinity of water for
the enzyme. In the extreme case in which sol-
ute and water are bound to a polymer in the
same proportion as they occur in solution, the
solute effectively has zero affinity for the poly-
mer and, by definition, is not adsorbed (30).
There is now very good experimental evi-

dence, based largely on nuclear magnetic reso-
nance and dielectric dispersion measure-
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FIG. 8. Activity coefficients of sodium chloride
(0) and potassium chloride (@) as a function of
concentration. Plotted from data in Robinson and
Stokes (115).
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FIG. 9. Halophil NADP-specific isocitrate dehy-
drogenase. V,,, as a function of salt activity in
sodium chloride (0) and potassium chloride (@). Re-
plotted from results ofAitken et al. (3).

ments, for three "types" of water in an
aqueous solution of a protein. Cooke and
Kuntz (42) have described these three types in
the following way. Type I -"bulk water," the
rotational and translational properties of
which do not appear to be appreciably altered
by binding to macromolecules. A protein solu-
tion (20%, wt/vol) has about 90% of its water in
this form. Type II-"bound water." The rota-
tional motions and freezing point of this water
are substantially modified by interaction with
the surface of macromolecules. This water
seems to exist as one to two monolayers and is
present in the proportion ofabout 0.3 to 0.6 g of
water/g of protein. A 20% protein solution has
about 10% of its water in this form. Type III-
"irrotationally bound water," in which water
molecules are essentially bound to specific
sites on the polymer for periods of microsec-
onds. A 20% protein solution has about 0.1% of
is water in this form.

It can be assumed that the dissolution of salt
to a high concentration will nonspecifically
affect the amount or activity of type I water,
will specifically affect type II water in some
way, and probably will not affect type III.
Physicochemical information about salt-pro-
tein interactions at high salt concentrations is
limited, but what information there is seems
to be consistent with the preceding comments
and with the properties of compatible solutes.
For example, Bull and Breese (30) have stud-
ied water and solute binding to egg albumin
over a salt concentration range of approxi-

mately 1 to 3 molal. Their results suggest that,
under these conditions, the chloride of the al-
kali cations are only slightly bound to the
protein and that their major effect is on the
amount of bound water. The values cited by
Bull and Breese suggest that their "bound wa-
ter" is the type II water as defined by Cooke
and Kuntz (above). For example, they quote
740 mol of water bound/mol of egg albumin at
97% relative humidity. This is equivalent to
0.3 g of water/g of protein. In solution with no
binding of salt, about 1,350 mol of water is
bound per mol of protein (0.5 g/g). These val-
ues are within the range of type II water.
Water bound to the protein over a salt con-

centration range of 1 to 3 molal was constant
in both potassium chloride and sodium chlo-
ride but different for each salt: 211 mol/mol
(0.08 g/g) for sodium chloride and 360 mol/mol
(0.14 g/g) for potassium chloride.

It thus seems likely that the compatible na-
ture of potassium chloride is expressed in part
through the limited disturbance that it causes
to the type II bound water. It would clearly be
desirable to examine the inhibition of a halo-
phil enzyme caused by rubidium chloride and
cesium chloride since, according to Bull and
Breese, they cause even less dehydration of
egg albumin than does potassium chloride.
Furthermore, sodium sulfate actually en-
hances the degree of solvation; kinetic studies
of its effects should also be informative.

It is also likely that salts modify enzymic
reactions through their effect on "activation
volume," that is, the change in volume that
occurs when an enzyme-substrate complex
changes from the ground state to the transi-
tion state. Effects of salt on this process, how-
ever, are generally restricted to salt concen-
trations below about 300 mM (84).

Nonelectrolytes
The compatible solute role of polyhydric al-

cohols was established in the first instance by
comparative studies of the effects of sucrose,
on the one hand, and glycerol, on the other, on
the kinetics of the NADP-specific isocitrate
dehydrogenase of S. rouxii. In a number of
respects this investigation was complemen-
tary to that of Aitken and Brown (2) on the
effects of salts on the halophil isocitrate dehy-
drogenase. At the time of writing, the greater
part of the nonelectrolyte studies is unpub-
lished but can be found in the Ph.D. thesis of
J. R. Simpson (University of New South
Wales, 1976).

Interpretation of the kinetics of this enzyme
was complicated by nonlinear double-recipro-
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FIG. 10. Yeast NADP-specific isocitrate dehydrogenase. Secondary plots ofintercept against water activity
in solutions adjusted with glycerol (left panel) and sucrose (right panel). The small numerals above the
abscissa indicate the concentration (molal) ofthe solutes at selected points. Previously unpublished data ofJ.
R. Simpson and A. D. Brown.

cal plots (concave down). Associated with the
nonlinearity was gel-electrophoretic evidence
that the enzyme occurred in several forms,
probably signifying different states of aggre-
gation. Multiple forms of isocitrate dehydro-
genases have been reported from other sources
(114, 118, 123). Because of the nonlinearity of
the double-reciprocal plots, secondary plots of
slope were not possible, although intercept
could be so treated. Figure 10 illustrates such
plots and gives a striking comparison with the
corresponding analysis of the halophil isocit-
rate dehydrogenase in potassium chloride and
sodium chloride (Fig. 6 and 7). Briefly, the
comparison shows intercept replots for glyc-
erol to be linear with a small slope (i.e., inhi-
bition changed only slightly with inhibitor
concentration), whereas the corresponding
plot for sucrose is steep and nonlinear (inhibi-
tion increased sharply with concentration and
the rate of increase was concentration depend-
ent).

In this respect glycerol, a compatible solute
in halophilic algae and some xerotolerant
yeasts, resembles potassium chloride, the com-
patible solute for halophilic bacteria. There is
an equally striking similarity between the non-
electrolyte sucrose, which is severely inhibi-
tory and partly excluded by xerotolerant
yeasts, and the electrolyte sodium chloride,
also severely inhibitory and largely excluded by
halophilic bacteria. Furthermore, by extrapo-
lating secondary plots of the type shown in Fig.

10, inhibitor constants can be derived for the
two nonelectrolytes. Obviously, any constant
derived in this way for sucrose can be, at best,
an approximation. Nevertheless, even a casual
inspection of Fig. 10 reveals a major difference
in the Ki of the two inhibitors, that for sucrose

being by far the smaller. The numerical values
derived for these constants are: Ki (glycerol),
13 molal; Ki (sucrose), 1.5 molal.
Thus, there is again a striking resemblance

to the values obtained for the halophil enzyme
(Table 3). It is evident that, with nonelectro-
lytes as well as electrolytes, compatible solutes
are distinguished as inhibitors with a very low
affinity for an enzyme.
To some extent, however, the selection of

sucrose for these comparisons was fortuitous.
Simpson has extended her investigation to
cover a range of nonelectrolytes to include the
fully hydroxylated polyols up to hexitols, in-
completely hydroxylated di- and triols, and a

range of sugars.
In all cases, inhibition was assessed from the

slope of plots of reciprocal velocity (1/v) against
inhibitor concentration; the steeper the slopes,
the greater the response of inhibition to inhibi-
tor concentration.
When measured in this way, the inhibition

caused by the fully hydroxylated alcohols was
positively correlated with chain length (molec-
ular weight), but the relation was sigmoidal
(Fig. 11). Thus, although chain length domi-
nated the inhibitory properties of the polyols,
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FIG. 11. Yeast NADP-specific isocitrate dehydro-
genase. Inhibition, expressed as the slope of double-
reciprocal plots, as a function of the chain length of
acyclic fully hydroxylated polyhydric alcohols. The
C1 alcohol was methanol. Previously unpublished
data ofJ. R. Simpson and A. D. Brown.

there was another determining factor(s) as
well. Some indication of the level at which this
additional factor operates was obtained by plot-
ting slope against the chromatographic Rf of
the polyol. Values of Rf were obtained for the
solvent butan-1-ol + acetic acid + water (6:1:2,
by volume) although, since the polyols are non-
electrolytes, virtually any solvent mixture ca-
pable of reflecting an "oil"-water partition coef-
ficient might be expected to illustrate the point.
When this was done an essentially linear rela-
tion was obtained between slope and Rf, the
highest Rf correlating with the lowest slope.
The probable implications of this are discussed
below.
The situation with sugars is far more com-

plex in that there was no correlation between
slope (as used above) and molecular weight.
Stereochemical factors apparently exert a ma-
jor influence and several sugars, including su-
crose, gave nonlinear plots of 1/v versus inhibi-
tor concentration. The generalizations that can
be made about inhibition by sugars are briefly:
(i) inhibition caused by straight-chain aldoses,
glyceraldehyde and erythrose, is substantially
irreversible, implying complexing between the
aldehyde group and the enzyme; (ii) hexoses
were generally less inhibitory than other
sugars, the least inhibitory being fructose
which gave about the same slope as glycerol (it
is probably no coincidence that some of the
lowest values ofa, supporting growth of micro-
organisms have been obtained in fructose); (iii)

some sugars, notably sucrose and ribose, gave
nonlinear plots of 1/v versus inhibitor concen-
tration, the slope increasing with inhibitor con-
centration. Moreover, there was no correlation
of slope with the chromatographic Rf of the
sugars.
The incompletely hydroxylated diols and

triols (propane and butane diols and butane
triol) all gave biphasic plots of 1/v versus polyol
concentration, the plots being divisible into two
straight lines, with the greater slope occurring
at the higher polyol concentration. The order of
increasing inhibition caused by these di- and
triols was: propane-1,2-diol; propane-1,3-diol;
butane-1,2,4-triol; butane-2,3-diol; butane-1,4-
diol; and butane-1,3-diol.

Physicochemical Mechanism of
Nonelectrolyte Action

To this point the evidence is clear that at a
series of specified levels of a,,, an enzyme be-
haves differently in solutions of different non-
electrolytes. The conclusion is inescapable that
a,, cannot account for the differences shown by
the various solutes and is thus unlikely to be
the major determinant in the total quantitative
effect produced by the nonelectrolyte solutions.
This should scarcely be surprising for solutions
which might contain 10 or 15% less thermody-
namically available water but several orders of
magnitude more solute than "conventional" di-
lute biological solutions. It is equally evident
that nonelectrolytes exert a direct action on
the enzyme. There is insufficient information to
enable any firm conclusions to be drawn about
the action mechanism, although there are some
useful pointers available from various sources.

Nonelectrolytes might affect enzyme action
by changing the viscosity, pH, ionic strength,
or dielectric constant of a solution, by changing
water "structure" or by directly reacting with
the protein molecule in any of several possible
ways. A partial correlation of enzyme inhibi-
tion with viscosity suggests that this might, at
most, be a supplementary factor in determining
inhibition (Brown, unpublished data). The mi-
nor effects of the solutes on pH do not explain
differences in inhibition (J. R. Simpson, Ph.D.
thesis, University of New South Wales, 1976).
Although ionic strength is increased in direct
proportion to the lowering ofa, and thus might
contribute to the total inhibition encountered
in nonelectrolyte solutions, the increase should
be the same for all solutes. Dielectric constant
(4) correlates with inhibition caused by at least
some polyols and one sugar (glucose), but not
with sucrose (J. R. Simpson and A. D. Brown,
unpublished data). The limited information
available for dielectric constant, together with
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that given by the correlation with Rf (see
above), suggests a possible involvement of hy-
drophobic interactions in the inhibition caused
by polyols and some sugars.
Another possible mechanism is the modifica-

tion of water "structure" by the solute. In this
case, it can be assumed from the outset that
any relevant changes in water structure would
occur in the type II bound water described
above.
There is evidence that the solutes can modify

the aggregation state of a protein. Thus, Simp-
son has shown by gel electrophoresis that am-
monium sulfate fractionation appears to depo-
lymerize the yeast isocitrate dehydrogenase,
and she has obtained some evidence that glyc-
erol (2 molal) has a similar effect. Ifthis is so, it
agrees with earlier findings of Contaxis and
Reithel (41) that glycerol depolymerizes an en-
zyme. These authors made a series of compari-
sons of propane-1,2-diol, ethylene glycol, and
glycerol on the physical chemistry and enzyme
activity of jack bean urease. They observed
that, on exposure to aqueous solutions (90% vol/
vol) of each of the alcohols, urease dissociated to
a molecular weight of 240,000, half the normal
value. The rate of dissociation increased in the
order: glycerol, propane diol, ethylene glycol.
There was no evidence ofany significant confor-
mational change in the 240,000-molecular-
weight monomers during the dissociation, and
enzyme activity remained at 80 to 82% of the
untreated enzyme. Moreover, the "monomer"
reassociated to the dimer on removal of the
alcohol. On prolonged exposure (2 days) to eth-
ylene glycol or propane diol, the enzyme reasso-
ciated in a manner different from that de-
scribed above to give an enzymically inactive
polymer. This did not happen in glycerol, in
which the enzyme remained active on pro-
longed exposure. (-Lactoglobulin also disso-
ciates to a "monomer" in about 10% ethylene
glycol and reassociates (dimerizes) in about
20% glycol (69).

Since the dissociation of urease did not ap-
parently cause a conformational change in the
protein, Contaxis and Reithel assumed that the
association was confined to a restricted zone on
the surface of the 240,000-molecular-weight
subunit. They also assumed that the alcohols
promoted dissociation by modifying water
structure and by "competing with water for
hydrogen bonding." A change in hydration was
presumed to occur near hydrophobic areas on
the protein and, by virtue ofthe entropy change
that accompanied it, to contribute to the nega-
tive free energy of dissociation in the polyol
solution.
Douzou, who, for some years, has studied

enzyme activity at subzero temperatures, has
recently reviewed the theory and methodology
of this field of investigation (46). High solute
concentrations are needed to prevent freezing
at the temperatures of Douzou's experiments,
and it is scarcely a coincidence that polyols,
notably, ethylene glycol, propane diol, and
glycerol, were the solutes used for this purpose.
Douzou comments that, at normal ambient
temperatures, these polyols are far less effec-
tive "denaturing" agents than monohydric alco-
hols, including ethanol, and that many proteins
are stable in 1:1 (by volume) aqueous solutions
of the polyols. At first sight this observation
conflicts with Simpson's finding (above) that
the inhibitory action of methanol on isocitrate
dehydrogenase was (marginally) less than that
of ethylene glycol or glycerol. This apparent
discrepancy might be explained by the distinc-
tion between inhibition and denaturation;
Simpson's measurements of enzyme activity
were limited to periods of a few minutes.

If nonelectrolytes do affect enzyme activity
by disturbing water structure, it is probably
type II water, as suggested already, which is so
affected. It is possible, however, the nonelectro-
lytes can act by more than one mechanism. The
negative correlation of inhibition by polyols
with chromatographic Rf (Rf being used as a
convenient measure of a hydrophobic/hydro-
philic partition coefficient), together with the
kinetic evidence of tight binding by inhibitors
(weak binding by compatible solutes), suggest
that the greater the affinity for a hydrophobic
region on a protein the more effective the inhi-
bition. Conversely, compatible solutes appar-
ently have a lower affinity for the hydrophobic
regions and a correspondingly greater affinity
for water (a low free energy of hydration). Al-
though it is phrased somewhat differently, this
interpretation is in general accord with the as-
sumptions made by Contaxis and Reithel. It is
also consistent with the interpretation of No-
zaki and Tanford (98) of thermodynamic as-
pects of protein denaturation in which ethylene
glycol was considered to be much less effective
than urea in reducing the free energy of hydra-
tion of nonpolar groups on the protein. More-
over, their interpretation agrees with the ac-
tion KCl proposed for as a compatible solute for
halophil enzymes (see above).
This reasoning cannot be easily extended to

the sugars, however, whose stereochemistry
appears to dominate their inhibitory efficiency
and for which there is no correlation with a
hydrophobic/hydrophilic distribution coeffi-
cient. Generalizations about the significance of
sugar configuration or conformation are diffi-
cult, partly because of inadequate understand-
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ing of effects of concentration on the equilib-
rium conformer composition of sugars in
aqueous solutions.
As already stated, the severe inhibition

caused by glyceraldehyde and erythrose is
partly irreversible, from which a direct, possibly
covalent reaction between the carbonyl group
and a reactive group on the protein might be
assumed. In dilute aqueous solution, glyceral-
dehyde equilibrates to a mixture that contains
about 20% free aldehyde. Glyceraldehyde is
substantially more inhibitory than erythrose
which, at equilibrium, contains about 1% free
aldehyde. Ribose contains about 0.01% free al-
dehyde, whereas the other sugars used have
negligible proportions (S. J. Angyal, personal
communication).

Sucrose was the most inhibitory of the
sugars giving strictly reversible inhibition.
The severity of its inhibition cannot be ex-
plained simply on the basis of its molecular
weight since another disaccharide, maltose,
was much less inhibitory and, in fact, was less
inhibitory than the pentose, arabinose. The
next most inhibitory sugar was ribose, which
shared with sucrose the property of causing
"nonlinear" inhibition, the plot of 1/v versus
inhibitor concentration being concave up in
both cases. The nonlinearity of ribose inhibi-
tion might be attributed to variations in ano-
meric and isomeric composition, which is
known to change with concentration, but the
same explanation cannot be applied to sucrose.
This sugar is apparently conformationally sta-
ble over a wide range of concentration in
aqueous solution (S. Angyal, personal commu-
nication).
The fructose moiety of sucrose is in the fura-

nose form; ribose, in dilute aqueous solutions,
contains about 24% furanose (a + 13) (6). On the
other hand, free fructose contains about 31% (3-
furanose (50). Fructose was the least inhibitory
sugar being roughly equivalent to glycerol.
There is no less difficulty in attempting to cor-
relate inhibitory properties with the propor-
tions of the 1C and C1 forms of the sugars.
Other aspects of sugar conformation in relation
to inhibition are discussed by Simpson (Ph.D.
thesis, University of New South Wales, 1976).

Finally, it cannot be assumed that all en-
zymes will respond quantitatively to nonelec-
trolytes exactly as described for the yeast isocit-
rate dehydrogenase. For example, Heimer (55)
reported substantial differences in glycerol in-
hibition of a nitrate reductase from D. parva,
Chlorella pyrenoidosa, and XD cells oftobacco.
In every case, however, glycerol was far less
inhibitory than sodium chloride, the only solute
with which it was systematically compared. On

the other hand, generalizations about nonelec-
trolyte action will probably be broadly applica-
ble to virtually any enzyme that does not have
a specific interaction with any of the solutes.

Regulation of Compatible Solute
Accumulation

The direct proportionality between potas-
sium concentration in halophilic bacteria and
sodium chloride concentration in their growth
medium can probably be explained physico-
chemically on the basis ofmaintaining approxi-
mate parity between internal and external wa-
ter potential, coupled with the relatively imper-
meant nature of Na+. A detailed discussion of
this mechanism is beyond the scope of this re-
view.
The eukaryotic polyol content also varies di-

rectly with external solute concentration (in-
versely with water activity). In this case, al-
though water movement must contribute to the
final internal polyol concentration, the major
variable is the actual proportion of polyol of the
dry cell mass. This is shown clearly in the
response ofthe glycerol content ofDunaliella to
external salt concentration (15). (The polyol
status of the eukaryotic organelles is not
known. Like bacteria in a concentrated me-
dium, the nucleus, mitochondria, and chloro-
plasts have no mechanism for maintaining a
dilute interior against a concentrated cyto-
plasm. We must assume that they contain a
compatible solute that might or might not be
the same as in the cytoplasm.)

It is thus evident that a control mechanism of
some kind operates across the plasma mem-
brane: the concentration of an intracellular sol-
ute regulates the biosynthesis of an intracellu-
lar solute. Such a regulatory process has exten-
sive implications for cell physiology generally
but, at present, little if anything is known of its
mechanism.
The following observations are relevant to a

study and ultimate explanation ofthe control of
compatible solute production.

(i) A similar response is shown by glycerol in
algae and by polyols in xerotolerant yeasts.

(ii) Internal polyol content varies broadly in
response to aw, with little effect of the chemical
nature of the external solute on the total polyol
accumulation. Thus, in Dunaliella, glycerol re-
sponds to sucrose or sodium chloride (Kessly,
personal communication); in S. rouxii, polyol
content responds to glucose, polyethylene gly-
col or salt (22; M. Edgley, personal communica-
tion).
There is, however, a specific aspect of the

effect of salt on polyol accumulation by S.
rouxii. It has long been recognized that S.
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rouxii gives increased yields of (extracellular)
glycerol in response to increased salt concentra-
tion of the growth medium (106). The earlier
work did not distinguish clearly between the
types of polyols produced; polyol yields were
commonly expressed as "glycerol." Neverthe-
less, the basic observation that more glycerol is
formed in response to increased salinity is true
and conspicuously includes intracellular polyol.
When grown in basal medium, S. rouxii accu-
mulates arabitol plus traces of glycerol (22, 29).
Increasing the salt concentration of the growth
medium causes an increase of total intracellu-
lar polyol, but the increase is entirely attribut-
able to glycerol and is, moreover, accompanied
by a slight diminution in arabitol content (M.
Edgley, personal communication).

(iii) Dunaliella contains an NADP-linked
glycerol dehydrogenase (13, 15). S. rouxii has
an NADP-dependent ability to dehydrogenate
D-arabitol and xylitol as well as an NAD-de-
pendent ability to dehydrogenate xylitol, ribi-
tol, sorbitol, and mannitol. It is apparently un-
able to dehydrogenate glycerol, at least via a
pyridine nucleotide dehydrogenase, but it can
dehydrogenate butane-1,2,4-triol and butane-
2,3-diol, both with NAD+ (J. R. Simpson, Ph.D.
thesis, University of New South Wales, 1976).

(iv) Dunaliella responds to increased salt
concentration in the dark, producing more glyc-
erol from accumulated starch (Kessly, personal
communication).

(v) Dunaliella produces extra glycerol in re-
sponse to increased salt concentration under
conditions of nitrogen starvation, suggesting
that the regulatory mechanism might not re-
quire the induction or repression of an enzyme
(Kessly, personal communication).
S. rouxii requires aerobic conditions for ara-

bitol production and reverts to an ethanolic
fermentation under anaerobic conditions (106).
Unlike S. cerevisiae, S. rouxii is not subject to
catabolite repression of its respiratory capabil-
ity by high concentrations of glucose in the
growth medium (23). It is not known whether
this reflects a fundamental difference in the
control of gene expression in the two species or
whether it represents another manifestation of
protection by the cell's compatible solute. It has
been shown, however, that glycerol, at concen-
trations up to about 2 M, will substitute for
cyclic adenosine 5'-monophosphate and cyclic
adenosine 5'-monophosphate receptor by stimu-
lating transcription of the gal operon in E. coli
(96).

LOOSE ENDS
There are many microorganisms with a sol-

ute tolerance substantially less than those of
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the extreme types already discussed. Marine
microorganisms tolerate about 3.5% (0.6 M) so-
dium chloride, plus smaller quantities of other
salts, and there are some bacteria, commonly
described as moderately halophilic, which re-
quire or tolerate salt at a concentration of 1 to
1.5 M or sometimes higher. Furthermore, the
genus Staphylococcus is well known for strains
with a wide range of salt tolerance, although in
no sense are these bacteria halophilic.
The physiological basis of intermediate sol-

ute (or a,,,) tolerance is not understood, al-
though there are some pointers. Moderately
tolerant cells, like their extremely tolerant
counterparts, must adjust thermodynamically
to reduced a, by sustaining a reduced internal
a,. This means that those solutes which are
retained within the cell will increase in concen-
tration and, by definition, be osmotically ac-
tive. Furthermore, since enzymes continued to
function under these conditions, it also follows
that the solutes which are present at such in-
creased concentrations are not excessively in-
hibitory. If the content (per dry mass of cell, as
distinct from the concentration) of any solute
increases under these conditions it should be
suspected as a possible intermediate type of
compatible solute.

In fact, there are solutes that accumulate in
various organisms under these conditions.
These substances lie within a limited range of
chemical types but occur within quite a wide
range of organisms. They accumulate in direct
response to a lowering of external a,,, and, al-
though they have not yet been studied gener-
ally as enzyme inhibitors, their occurrence un-
der these conditions suggests that they do, in
fact, act as compatible solutes at moderate lev-
els of water stress.

Polyols or their derivatives accumulate in
eukaryotic protista. Thus, as already described,
the marine alga D. tertiolecta accumulates
glycerol, but to a lower concentration than its
halophilic relative, D. viridis. The freshwater
alga, Ochromonas malhamensis, produces a-
galactosyl glycerol in response to the relatively
small changes in solute concentration which it
can tolerate (67, 68).

Bacteria, however, do not apparently accu-
mulate polyols or carbohydrate derivatives in
this manner. A positive correlation between K+
accumulation from a standard low-salt growth
medium and salt tolerance of some 32 bacterial
strains was demonstrated by Christian and
Waltho (36). Their experimental conditions in-
cluded values for a, down to 0.88 (plus one salt-
tolerant coccus that grew at a, 0.84); potassium
contents ranged between about 200 and 1,050
,tmol/g (dry mass). The water content of bacte-
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ria growing at 0.90 a,,, is about 0.83 g/g (dry
mass) (39). Assuming no additional uptake,
relative to cell mass, at the low levels ofa,, de-
hydration would result in a K+ concentration
within the tolerant species of about 1.3 molal
which, for KCl, is roughly equivalent to 0.95 to
0.96 a,,, (see reference 115). It is not known
whether any supplementary active uptake of
K+ occurs in nonhalophils in response to the
lowering of external aw, but Christian and
Waltho (39) have reported that the increased
K+ concentration in Staphylococcus aureus is
largely the result of dehydration. If that is so,
the value of 1.3 molal should be reasonably
accurate for bacteria grown at the low levels of
a.,, and a substantial concentration of addi-
tional solute(s) would be needed to meet the
thermodynamic requirements of the situation.
Furthermore, although the accumulation ofK+
is reminiscent ofthe situation in halophilic bac-
teria, we do not know whether K+ acts to any
appreciable extent as a compatible solute for
enzymes of salt-tolerant but nonhalophilic bac-
teria.
Some bacteria accumulate specific metabo-

lites in response to water stress and it is likely
that at least one such compound, proline, might
function as a compatible solute. In fact, three
amino acids correlate, like K+, in two ways
with a tolerance of reduced a,. The first corre-
lation is between "intrinsic" amino acid content
and inherent or potential tolerance of water
stress. The second correlation is the response of
intracellular amino acid content to changes in
aw. There are actually few reports of intrinsi-
cally high levels of these amino acids in toler-
ant bacteria. I have, however, observed a much
higher concentration of "pool" aspartate, gluta-
mate, and proline in salt-tolerant strains of
Staphylococcus than in nontolerant strains
(unpublished data). On the other hand, there is
ample documentation of responses of these
amino acids to changes in a.. Tempest et al.
(135) report that, in continuous culture, sudden
increases in the salinity of the growth medium
cause extensive and rapid increases in the
"pool" free glutamate concentration in gram-
negative bacteria and similar, but slower, re-
sponses in gram-positive bacteria. Whether or
not glutamate functions as a compatible solute
is uncertain. Tempest et al. (135) reported a

glutamate concentration of about 0.1 M in
Aerobacter aerogenes growing at a dilution rate
of 0.3 h-' in 4% sodium chloride. This was the
highest concentration obtained for any amino
acid in A. aerogenes, although slightly higher
concentrations were achieved in some other
bacteria. In fact, their reported concentrations
are almost certainly low by a factor of about 3.

A water content of 4 g/g (dry mass) had been
assumed, whereas under their growth condi-
tions a value of about 1.5 g/g is to be expected
(see, for example, reference 39; my experience
agrees with Christian and Waltho in this re-
spect). Thus, a glutamate concentration of
about 0.3 M was apparently achieved in bacte-
ria growing in 4% (about 0.6 M) sodium chlo-
ride. Glutamate could also serve as a counter-
ion for K+ and would presumably promote the
accumulation ofthat ion. Glutamate thus made
a significant contribution to the overall osmotic
balance ofA. aerogenes and, at a concentration
of 0.3 M, it is unlikely to be a very effective
general enzyme inhibitor.
There are also reports of enhanced proline

accumulation by bacteria in response to low-
ered a,, (16, 35). Christian and Hall (35) showed
that proline increased linearly in Salmonella
oranienburg with decreasing a,, to reach a
value of 1.5 mmol/g (dry mass) at about 0.95 a,,.
This is approximately equivalent to a concen-
tration of 1.36 molal.
Measures (92) has also demonstrated an ac-

cumulation of glutamate, y-aminobutyrate, or
proline in bacteria in response to increased salt
concentration. There was a qualitative trend in
the type ofamino acid accumulation; glutamate
predominated in the least salt-tolerant, whereas
proline predominated in the most tolerant bac-
teria of the group studied.
Prima facie evidence that proline might func-

tion as a compatible solute was provided in 1955
by Christian (33, 34) who showed that, in a
defined medium, this amino acid was essential
for the growth ofS. oranienburg at values ofa,,
less than 0.97. Cristian and Waltho (40) also
showed that proline stimulated the respiration
of this and other bacteria at reduced a,. It is
relevant to this interpretation that the use of
glycerol to adjust the a,, of the suspending solu-
tion did not appreciably inhibit respiration
down to about 0.96 a., (38).

Proline also accumulates in plants as a part
of their response to water stress. Contents ofup
to 3.9 mg of proline/g of dry tissue have been
reported for barley plants subjected to -10 to
-20 bars of osmotic potential, compared with
about 0.25 mg/g in watered plants (125). Up to 5
mg/g was detected in excised leaf laminae ex-
posed to polyethylene glycol (molecular weight,
4,000), producing an "osmotic potential of -20
bars" (126). This is equivalent to a proline con-
centration of about 10 mmolal (assuming 4 g of
water/g of dry tissue), which is negligible by
microbial standards.

Proline concentration in halophytes can be a
little higher. Stewart and Lee (132) have re-
ported that proline in the halophyte Triglochin
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maritima is equivalent to 113 umol/g of wet
tissue or about 10% of the dry mass of shoot
tissues of plants collected in the field. Together,
these figures imply a water content of about 6.7
g/g of dry tissue which, if true, suggests a sub-
stantial contribution by vascular tissue, with
the implication that the proline was unlikely to
have been distributed uniformly in the mate-
rial that was analyzed. Taken at their face
value, however, the figures imply a mean pro-
line concentration of about 17 mmolal, again
negligible by microbial standards. The general
trend of these results is entirely consistent with
the high a, at which plants, in general, wilt
(Table 1).
Nevertheless, Stewart and Lee have provided

some enzymological evidence of a possible func-
tion of proline as a compatible solute. Up to a
concentration of 0.7 M it did not inhibit gluta-
mate dehydrogenase, acetolactate synthase, ni-
trate reductase, or glutamine synthetase from
T. maritima. Sodium chloride (0.6 M), on the
other hand, caused more than 50% inhibition of
the enzymes.
There are many reports of osmoregulation by

metabolites, frequently amino acids, in a wide
range of plants, animals, and microorganisms
(e.g., 8, 65, 120, 134, 141, 148). Most, if not all,
of the multicellular organisms so considered
have a very limited range of cellular tolerance
ofa,. EVen under the relatively mild conditions
that prevail for the cells of multicellular orga-
nisms, however, thermodynamic adjustment
("osmoregulation") must occur and solute(s)
must concentrate to achieve that adjustment to
reduced a,. If salts are inhibitory, as they fre-
quently are even at relatively low concentra-
tions, then the continued activity of the orga-
nism will demand that osmotic balance be
achieved by a noninhibitory solute. At concen-
trations up to about 0.5 M, few common metab-
olites are likely to be general enzyme inhibi-
tors, although some would obviously inhibit
specific enzymes very effectively.
Thus, amino acids might well act as osmo-

regulators under mild conditions and function
as low-grade compatible solutes. It is not sur-
prising that aspartate and glutamate accumu-
late in some organisms, since these amino acids
are at the beginning of several biosynthetic
pathways and are thus unlikely to have any
widespread function as feedback inhibitors.
Proline seems to be in a somewhat different
class, however, and warrants a reasonably de-
tailed enzymological study.

Finally, it is to be expected that there will be
occasional circumstances in which a specific
substance at low concentration can relieve
some of the major effects of water stress in a

way reminiscent of the modification by a sub-
strate of effects of high salt concentrations on
an enzyme (see section, Halophilic Bacteria). A
substance acting in this way should not be re-
garded as a compatible solute. A possible exam-
ple involving whole bacteria lies in some inter-
esting work of Avi-Dor and associates. In a
recent report (124), it was shown that betaine
(0.5 mM) relieved the salt inhibition of growth
and respiration of a halotolerant bacterium.
Betaine was slowly accumulated (to an intra-
cellular concentration of about 800 mM when
the bacteria were suspended in 2.0 M sodium
chloride), but only extracellular betaine was
effective in relieving salt inhibition. Appar-
ently, the action of betaine is on the cell mem-
brane.

Survival
Although this review is concerned with mi-

crobial activity, not survival, some brief com-
ments on the latter situation might not be out
of order. It is a long- and well-established prac-
tice to assist the preservation of freeze-dried
microorganisms by the inclusion of a nonelec-
trolyte such as glycerol or a sugar. This practice
apparently reduces mortality during dehydra-
tion, storage, and rehydration. It is virtually
certain that, in this kind of circumstance, non-
electrolytes function by directly substituting as
a "solvating" molecule for the water that is
removed on dehydration. Hydration of the po-
lar sites on organic molecules commonly in-
volves hydrogen bonds; removal of the solvent
can, and frequently does, lead to the substitu-
tion of site-solvent H bonds by site-site H
bonds, which can be intra- or intermolecular.
This is exactly what happens in the manufac-
ture of a sheet of paper and, presumably, is the
significance of the use of glucose for obtaining
the three-dimensional 0.07-nm structure of the
purple membrane of H. halobium in the anhy-
drous environment of an electron microscope
(57).
The formation of intra- or intermolecular H

bonds under conditions of excessive dehydra-
tion, however, causes irreversible changes in
some proteins which lead to enzyme inactiva-
tion. The addition of hydroxylated compounds
provides an alternative source of H bonds that
can prevent the formation ofthe intersite bonds
and thereby prevent the protein inactivation
which accompanies them.
Thus, although there are some superficial

similarities between the function of glycerol,
etc., in this context and the role we have pro-
posed for compatible solutes, there is an impor-
tant basic difference in the mechanism of action
in the two situations. As discussed, our evi-
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dence suggests that in aqueous solutions com-
patible solutes have an unusually low affinity
for enzyme proteins, or at least for those re-
gions of the enzyme molecules where binding
would be inhibitory. The affinity of compatible
solutes is for solvent water.

SUMMARY

Microbial water stress has been discussed
primarily in relation to three distinctive groups
of microorganisms, namely, the extremely hal-
ophilic bacteria, the halophilic algae, and the
xerotolerant ("osmophilic") yeasts. Brief refer-
ence was also made to other xerotolerant fungi.
The halophilic bacteria are distinguished by

an absolute, specific requirement for high con-
centrations of sodium chloride. The halophilic
algae (notably Dunaliella), notwithstanding a
certain minimal salt requirement, have a phys-
iology that is generally much more characteris-
tic of a tolerance than of an absolute require-
ment for salt. Moreover, the halophilic algae
can be trained to grow outside their normal salt
tolerance ranges and they can accept replace-
ment of a substantial part of the salt require-
ment by a nonelectrolyte. In both respects, the
halophilic algae differ fundamentally from the
halophilic bacteria. In the second respect, they
are reminiscent of the xerotolerant yeasts. The
xerotolerant yeasts are generally distinguished
by a remarkable tolerance of low water activity
(a,,), although the tolerance range is dependent
on the solute used to adjust au.. Occasionally, a
requirement for a reduced water activity is en-
countered among the yeasts; such a require-
ment is usually temperature dependent.
The salt requirements of the extremely halo-

philic bacteria are determined by a need for salt
partly to maintain membrane integrity and the
function of those enzyme systems associated
with the cell membrane and with ribosomes.
Their overall salt relations are also affected by
the ability of some cytoplasmic enzymes to tol-
erate salt at intracellular concentrations. These
enzymes have an optimum in the region of 0.5
to 1 M salt. Their function is possible because
the bacteria accumulate potassium chloride
and effectively exclude sodium chloride. In
marked contrast to sodium chloride, potassium
chloride is a poor enzyme inhibitor at high con-
centrations. Because of this, it protects the rele-
vant enzymes against the inhibition that would
occur at the same water activity in its absence
(that is, if au. were determined by sodium chlo-
ride or by common intermediary metabolites).
Salt inhibition is discussed in some detail in
relation to an isocitrate dehydrogenase.

Halophilic algae and xerotolerant yeasts do

not apparently produce enzymes with a distinc-
tive tolerance of low au. (or increased solute
concentration). The water relations of these or-
ganisms are largely determined by the accumu-
lation of polyhydric alcohols to a concentration
commensurate with extracellular a,. As potas-
sium chloride does in halophilic bacteria, the
polyols function, not only as osmoregulators,
but also as protectors of enzyme activity. Sub-
stances that function in this way have been
called compatible solutes.
The enzymological and physiological signifi-

cance of compatible solutes was discussed. It is
evident that enzyme function responds, not to
changes in a, per se, but to the nature and
concentration of the solute used to adjust a,.
Nevertheless, a, remains a valuable parameter
to describe microbial water relations in a com-
plex medium.
The role of "intermediate" or "low-grade"

compatible solutes in cells with intermediate
levels of xerotolerance was considered briefly.
Perhaps the most notable solute of this type is
proline, which accumulates in response to wa-
ter stress in some higher plants as well as in
some bacteria.
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ADDENDUM

P. S. Low and G. N. Somero (Proc. Natl. Acad.
Sci. U.S.A. 72:3305-3309, 1975) have extended their
evidence and argue that salts affect the velocities of
enzyme-catalyzed reactions by changing the activa-
tion volume of an enzyme-substrate complex (See
section, Compatible Solutes and reference 84). They
demonstrated a linear relation between activation
volume and reaction rate, but pointed out that the
relation is not causal. Their interpretation supple-
ments the comments made in Compatible Solutes on
the role of water. It is important to note, however,
that the effects reported by Low and Somero are
confined to salt concentrations less than about 300
mM.
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