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INTRODUCTION
Over the past three decades, bacteriophage

T4 has been genetically, biochemically, and
structurally characterized to the point where it
is now one of the best understood biological
systems. T4 is a complex deoxyribonucleic acid
(DNA) virus with a genome large enough to
accommodate between 160 and 170 "average-
size" genes of 1,000 nucleotide pairs. About 140
T4 genes now have been identified genetically
and, to some extent, characterized functionally.
The resulting information provides a fairly
complete picture of how such a genome is orga-
nized and how it programs the process of viral
multiplication in a host bacterial cell.
This article provides an overview of the orga-

nization and function of the T4 genome, as well
as a current reference source of information on
the individual genes of T4. The number of es-
sential genes defined by amber (am) and tem-
perature-sensitive (ts) mutations has not
changed appreciably from the 65 identified in
the early studies of Epstein, Edgar, and their
collaborators (67), although the functions of
these genes continue to become more com-
pletely understood (34, 58, 214). However, a
considerable number ofnew so-called nonessen-
tial genes has been identified and characterized
in the past few years. A review prepared in 1973
(214) included 30 of these genes, and the total
now has increased to over 70.
We have summarized current knowledge on

the locations, sizes, and functions ofT4 genes in
the form of a detailed linkage map, tables of
gene functions, and a chart showing classes of
gene functions. To keep the bibliography to a
reasonable length, we have not attempted to
reference all of the papers from which informa-
tion has been taken. Instead, wherever possi-
ble, we have cited recent research publications
or review articles that in our judgment provide
the most convenient access to earlier literature.
Additional references to original work may be
found in several other recent compilations of
information on the T4 genome (34, 58, 62, 140,
155a, 214).

GENE CLASSES AND GENE NAMES
Laboratory growth conditions for T4 most

commonly employ Escherichia coli B as the
host bacterium and Hershey broth or agar as
the growth medium. These conditions were
used in the early isolation ofmutants that carry
conditionally lethal am and ts mutations (67).
Consequently, the genes defined by these mu-
tations have been termed "essential genes." As
a matter of historical practice, essential genes
in T4 have been designated by numbers or, in
three cases, by single lowercase letters (e, t,
and y). In general, the numbering of these
genes is in map order, but since not all were
discovered when the original set was num-
bered, map order and numerical order do not
correspond strictly.
More recently, increasing numbers of nones-

sential genes have been discovered. These
genes are defined by mutations that alter or
prevent phage growth under some conditions,
but do not prevent plaque formation on E. coli
B grown in Hershey medium. The nonessential
genes are designated by two-letter or three-
letter mnemonic symbols for the corresponding
gene functions or defective phenotypes. Excep-
tions are the classically described r genes, of
which five are now known (rI-rV), defined by
mutations that cause rapid (premature) lysis.
We have replaced four other previously used
one-letter symbols with more descriptive three-
letter designations. The three genes v, w, and
x, defined by mutations to increased ultraviolet
(UV) sensitivity, have been redesignated as
denV, uvsW, and uvsX, respectively. Likewise,
gene m, defined by a suppressor of gene 30
mutations, has been redesignated sum. Other-
wise, we have used the gene designations ofthe
original authors.
There are a number of possible confusions

concerning gene nomenclature in phage. The
designation of a gene as nonessential is neces-
sarily arbitrary; many of the known nonessen-
tial genes clearly are essential under certain
conditions (see, for example [48]). Never-
theless, we have elected to retain this distinc-
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tion, since the standard growth conditions are
widely used, and since renaming all the known
essential genes would cause much unnecessary
confusion. It should be kept in mind, however,
that outside ofthe laboratory the essentiality or
nonessentiality of phage genes is a relative
rather than an absolute distinction.
Another confusion can arise between nones-

sential gene names and the generic names for
classes of mutants obtained by a particular se-
lection procedure, such as am, ts, cs (cold sensi-
tive), hus (hydroxyurea sensitive), far (folate
analogue resistant), and so on (see Tables 1 and
2). For example, there are three mutations to
hydroxyurea sensitivity, hus-1, hus-3, and hus-
7, that have been shown to fall into three differ-
ent genes with different names: 49, dexA, and
39, respectively (78). To minimize such confu-
sion in the future, we strongly recommend that
new phenotypic classes of mutants be given
two-letter designations, and that, in accord
with the accepted conventions for bacterial
gene nomenclature (46), new nonessential
genes be given three-letter designations.

GENE LOCATIONS AND GENE SIZES
Early maps of T4 (63, 185) were constructed

from frequencies ofrecombination between con-
ditionally lethal mutations, using an empiri-
cally derived mathematical mapping function
to correct for systematic effects of high negative
interference and thereby obtain internally con-
sistent map distances (185). By this approach
the genetic map first was shown to be circular
(188). The total map length was estimated to be
about 2,500 map units, where a map unit corre-
sponds to a recombination frequency of 1% as
determined by measurements made in the
range of 0.01 to 1%, over which recombination
distances are generally additive (185). (There is
some confusion in the literature on this point. It
is incorrect to estimate distance in map units
directly from uncorrected recombination fre-
quencies in the nonadditive range of greater
than 1%. For example, the distance between
two markers that recombine with a frequency
of 4% is 9.5 map units, as calculated using the
four-parameter switch function of Stahl et al.
[185; Fig. 6], but assuming a total map length
of 2,500 map units.)

Genetic distances determined from recombi-
nation frequencies using the mapping function
can be related to physical distances only by
assuming that the physical length of a map
unit is constant over all intervals of the ge-
nome. There is now considerable evidence that
this assumption cannot be made. The ingenious
marker-rescue test of Mosig using incomplete

T4 genomes (138, 139) (formally analogous to
cotransduction mapping in bacteria) permitted
the first estimates of physical distances be-
tween markers by a method independent of
recombination frequencies. The results showed
that the recombinational map was distorted in
some regions. This conclusion has been sup-
ported by subsequent, more direct measure-
ments of physical map distances, made from
electron micrographs of heteroduplex DNA
molecules containing one strand from each of
two deletion mutants (106). In addition, esti-
mates of intragenic physical distances have
been made by comparing the electrophoreti-
cally determined molecular weights of polypep-
tide fragments resulting from different am mu-
tations in a given gene (8, 30), and have shown
that in at least one gene, recombination fre-
quencies per nucleotide pair differ drastically
in two adjacent intervals (8). Since the polypep-
tide products of many T4 genes now have been
identified as bands of approximately known
molecular weight by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (120, 147,
198), this method now provides a general means
for estimating minimum physical gene sizes,
and thus minimum distances between adjacent
genes.
The most reliable estimate of T4 genome size

is now 1.66 x 105 nucleotide pairs (106), or 166
kilobase pairs (kb). Thus, the average physical
length of a genetic map unit can be estimated
as 1.66 x 105 divided by 2,500, or about 70
nucleotide pairs. Denatured T4 DNA fragments
exhibit the renaturation kinetics of a single
frequency class, with a CAtM12 value of about 0.3
mol-s/liter under standard conditions, indicat-
ing that the genome contains less than about
3% repetitive sequences (24).
In apparent disagreement with the genome

size, the DNA molecules in T4 phage particles
are 170 kb in length. Moreover, they are linear,
despite the circularity of the genetic map.
These discrepancies are explained by the ar-
rangement of the nucleotide sequences in T4
DNA molecules. In a population ofT4 genomes,
the sequences are circularly permuted with re-
spect to one another. That is, different mole-
cules begin and end at different points in the
sequence, and this property accounts for the
observed circularity of genetic linkage (194,
195). In addition, each molecule is terminally
redundant; that is, the sequence at one end is
repeated at the other (126, 189). Each molecule
therefore contains somewhat more than one ge-
nome-equivalent of DNA. The extent of the
redundancy is about 2% of the genome size
(106).
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TABLz 1. Bacteriophage T4 genesa

Map Po

Gene" posi- Mutations moter Gene product, function, or defective Molecular weighttionc isolatedd claSSe phenotype of gene product
(kb)

74 am Q Deoxyribonucleotide kinase (56)
75 am [LI Head completion (61); d: filled inactive

heads and killing noninfectious phage
particles (107), incomplete processing
(cleavage) of head proteins (123, 198);
may function to protect phage DNA fol-
lowing injection (52, 174, 175)

76 am, ts L Tail tube, sheath stabilizing component
(107, 108, 110)

79 am [LI Head completion (61); d: filled inactive
heads and empty capsids (107)

81 am, ts L Baseplate (107), central plug component
(105)

82 am, h, ts L Baseplate (107), outer wedge component
(105)

85 am, h, ts L Baseplate (107), outer wedge component
(105)

87 am, h, ts L Baseplate (107), outer wedge component
(105)

88 am, ts L Baseplate completion (105, 107)
90 am, h, ta L Baseplate (107), outer wedge component

(105)
92 am, ts L Baseplate (61, 177), outer wedge compo-

nent t103, 105)
93 am, ts L Baseplate completion (61, 105, 177), sub-

unit of short tail fibers (101)
95 am, t" L Head completion (61), neck assembly,

probably structural (40)
96 am, ts L Head completion (61), neck assembly, pos-

sibly structural (40)
97 am, ts L Tail completion, connector to collar (107,

110)
98 am [LI Head completion (61), required for DNA

packaging into capsid (107)
98 ac, am, ts L Head completion (61), quinacrine resist-

ance (q; 154), required for DNA packag-
ing into capsid (107), probably nonstruc-
tural (198)

100 am, CBW, ts L Tail, sheath subunit (107, 109)
101 am, ta L Tail, central tube subunit (107, 108, 109,

110)
102 am, ts L Head component; d: polyhead (61, 122)
103 am, ts L Head assembly (61, 122), protease for

cleavage of head structural proteins
(123, 151, 196)

104 am, ts L Head assembly (61, 122), major protein of
assembly core in r particle; degraded
(120, 121, 123, 151, 170, 196)

105 am, mi, ts L Head component (61, 122), major capsid
subunit; cleaved during assembly (30,
120, 196); defects can alter head size (54)

107 am, os, ts L Head component (61, 100, 122), minor cap-

sid subunit; cleaved during assembly
(120, 196); defects can alter head size (17)

112 am L Baseplate (107), outer wedge component
(105)

113 am, ts [LI Baseplate (107), central plug formation,
probably nonstructural (105, 114)

115 am, ts L Baseplate (107), central plug component
(105)

116 am, to L Baseplate (107), central plug formation,
probably nonstructural (105, 114)

117 am, ts L Baseplate (107), central plug component
(105)

22,000 (147)

29,000 (105)

37,000 (198)

78,000 (198)

127,000 (198)

39,000 (198)

30,000 (198)
90,000 (198)

25,000 (198)

57,000 (198)

33,000 (198)

30,000 (198)

32,000 (198)

69,000 (198)

70,000 (198)
20,000 (198)

65,000 (198)
25,000"

32,000 (198)

Small peptides
55,000 (198)

47,000
47,000 (198)

45,000
15,000 (104)

48,000 (12)

77,000 (198)

Essential
genes
1
2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18
19

20
21

22

23

24

25

26

27

28

29
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TABLE 1-Continued

Map Pro-
Geneb posi- Mutations iso- motoer Gene product, function, or defective pheno- Molecular weight oftionc latedd clae typeV gene product"

(kb)cls,
30 122 am, ts

127 -am, ts

145

147

am, ts

am

149 am, c, ts

152 am, ts

153 am, CBW, ts

155 am, h, ts

157 am, ts

4 am, ts

20 am, ts
22 am, ts

23 am, ts

27 am, ts

32 am, ts

33 am,hus,ts

36 am, ts

38 am, ts

118 am

45 am, hus, ts

78 am

114 am, ts

161 am

80 am, ts

E or Q DNA ligase (ig) (69); d: arrested DNA
synthesis; suppressed by denA, sum (see
entry under this gene), and rnI muta-
tions (98)

E or Q" Head assembly (61, 122); interacts with
host in organization of capsid subunits
(41, 76, 77, 191, 192, 218)

Q DNA-binding protein (3, 4); translational
repressor of its own synthesis (163)

[Q] Polypeptide associated with host RNA po-
lymerase (157, 187); d: no synthesis of
late proteins (23)

L Tail fiber (63, 111), subunit of proximal
half; carries A antigens (18, 215)

L Tail fiber (63, 111), minor component of
distal half (18, 215)

L Tail fiber (63, 111), minor component of
distal half (18, 215)

L Tail fiber (63, 111), major component of
distal half (18, 215); carries bacterial
host range determinants (6, 7)

L Tail fiber (63, 111), assembly of distal half-
fiber precursor; nonstructural (18, 19,
215)

E d: delayed DNA synthesis; leaky at 37"C
(141, 229), no DNA synthesis at 25"C
(141)

[Q] Head assembly; d: polyhead (122)'
Q DNA replication, lagging strand chain ini-

tiation(?) (4); d: lack of or arrest ofDNA
synthesis, production of single-stranded
DNA (149)

E Deoxycytidylate hydroxymethylase (206,
222); d: no DNA synthesis

E, Q DNA polymerase (pol) (4, 49, 201); d: no
DNA synthesis

[El Component of DNA replication complex
(4); d: no DNA synthesis

[El Component of DNA replication complex
(4), also associated with host RNA po-
lymerase (183); participates in control of
late transcription (224, 225); d: no DNA
synthesis

E DNase(?) (25, 135, 155); d: arrest of DNA
synthesis, decreased recombination, and
impaired degradation of host DNA (16,
205); suppressed by das mutations (see
das entry, below)

E DNase(?) (25, 135, 155); d: arrest of DNA
synthesis, decreased recombination, and
impaired degradation of host DNA (16,
205); suppressed by das mutations (see
das entry, below)

L Baseplate component (12, 107), probably
on top surface (108, 110)

[E or Q1 DNase(?) (71); required for DNA packag-
ing into capsid (125); defect suppressed
by fdsA, fdsB mutations (see entries un-
der these genes, below)

[LI Head completion (61); d: filled, inactive
heads (107), incomplete processing
(cleavage) of head proteins (123, 198)

L Baseplate (107); plug formation; may be
nonstructural (105, 114)

E d: delay in DNA synthesis at 37"C (141,
229), no DNA synthesis at 25"C (141)

L Baseplate (107), outer wedge component
(105)

31

32

33

34

35

36

37

38

39

40
41

42

43

44

45

46

68,000 (147)

36,000 (147)

10,000 (187)

145,000 (198)

39,000 (198)

24,000 (198)

115,000 (198)

28,000 (198)

64,000 (147)

13,000'
66,000 (147)

25,000 (147)

112,000 (147)

35,000 (147)

24,000 (147)

71,000 (147)

37,000 (147)

37,000 (198)

51,000 (147)

23,000 (104)

47

48

49

50

51

52

53
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TABLE 1-Continued

Map Prof
Geneb posi- Mutations iso- mtr Gene product, function, or defective pheno- Molecular weight of

tionc latedd motser typef gene products
(kb)cls
120 am L Baseplate component (12, 107); initiation

site for central tube polymerization(?)
(108, 110)

41 am, to Q Polypeptide associated with host RNA po-
lymerase (157, 187); d: lack of late pro-
tein synthesis (23)

18 am, t8 [E or Q] Deoxycytidine-deoxyuridine di- and tri-
phosphatase (dCTPase-dUTPase); d: no
DNA synthesis (201, 206)

73 am, other Q Assembly of long (18, 215) and short (101)
tail fibers, nonstructural (53); may act in
conjunction with a host component (160)

19 am [E or Q] d: delay in DNA synthesis at 37C, de-
creased recombination, increased UV
sensitivity, leaky (141, 229); no DNA
synthesis at 250C (141)

146 am [E or Q] d: arrest of DNA synthesis (167, 226); sup-
pressed by dar mutations (see dar entry,
below)

3 am E d: delay in DNA synthesis, leaky at 370C
(141, 229), no DNA synthesis at 250C
(141)

See 58-61 (229)
31 am [El Component of DNA replication complex

(4); d: no DNA synthesis
133 am, mi Q Catalyzes tail fiber attachment to base-

plate, nonstructural (215, 217, 220)
77 am [LI Head completion (61); d: filled inactive

heads (107), incomplete processing
(cleavage) of head proteins (123, 198)

78 am [LI Head completion (61); d: filled inactive
heads and empty capsids (107)

66 am, del, ts E, Q Endolysin (phage lysozyme) (190); d: no
cell lysis at end of normal infectious cy-
cle (142); suppressed by rnV mutations
(see nIV entry)

158 am [LI Lysis function, possibly a phospholipase
(144); d: impairment of cell lysis, ex-
tended infectious cycle (97); suppressed
by rIl mutations (97); T4B mutant st8l
has same phenotype and locus (117)

[110] am, uv8 d: lethality, uncharacterized (131)

162

[130]

[164]
[130]

7
[53]

dar [110]

das [1471

ac, i

ac

del,

hus

165 del

11 del,

del [E or Q] Acriflavin uptake, acriflavin resistance
(173)

- [E or Q] Allows late transcription of cytosine-con-
taining phage DNA (182); probably poly-
peptide 2 associated with host RNA po-
lymerase (187)k

- Injected T4 capsid protein, alters host RNA
polymerase a subunit; cleaved during
head assembly (93)

[E or Q1 Resistant to aminoacridine (156)
- [E or QI Deoxycytidylate deaminase (84, 85)
pha [E or Q] d: failure to grow on AR-8 (92)-
- [E or Q] DNAadenine methylase; mapped in phage

T2 (27); d: hypermethylation or failure to
methylate T2 or T4 phage DNA (88, 159)

[LI DNA arrest reversal; suppresses gene 59
mutations (223)

- [E or Q] DNA arrest suppression; suppresses gene
46 and 47 mutations (91); same as sua
(116)

[E or Q] Nonessential region defined by deletions
(48)

other [E or Q] DNA-dependent ATPase (9, 92)

36,000 (104)

17,000 (147)

15,000 (147)

18,000 or 6,000'

18,000 (147)

42,000 (198)

18,000 (198)

79,000 (93)

61,000

15,000 (45)

54

55

56

57

58-61

59

60

61
62

63

64

65

e

y

Nonessential
genes

ac

akc

alt

ama
cd
cef
dam

[Dl]

dda

BACTERIOPHAGE T4 GENOME 851VOL. 40, 1976



TABLE 1-Continued

Map Pro-
Geneb posi- Mutations iso- moter Gene product, function, or defective pheno- Molecular weight oftionc latedd moter typef gene products

(kb) classe
136 del, hus [E or Q] DNA endonuclease I (92, 158, 166); d: ina-

bility to degrade host DNA (89, 202),
suppression of ligase- (gene 30) muta-
tions in ligase+ host (200)

164 del, other [E or Q] DNA endonuclease IV (48, 199); d: fails to
degrade cytosine-containing T4 DNA
(119), impaired breakdown of host DNA
(119)

62 del, uvs [E or Q] DNA endonuclease V (227, 228); formerly v
(87); injected with phage DNA (168); d:
increased UV sensitivity

[9] del, hus [E or Q] DNA exonuclease A (92, 203); d: impaired
breakdown of host DNA

142 am, del, far, [E or Q] Dihydrofolate reductase (83, 92, 230); non-
other essential component of baseplate (113)

[22] - [E or Q] Suppresses gene 49 mutations (50); may be
the same as gene x1

[110] - [LI Suppresses gene 49 mutations (50); may be
the same as gene y'

- See Pgt
40 - [E or Q1 Grows on riF' host restrictive for T4; proba-

bly affects host RNA polymerase func-
tion (183)

39 am, other [E or Q] a-Glucosyl transferase (75, 94, 161); d: fail-
ure to glucosylate phage DNA

22 am, gor, [E or Q] f3-glucosyl transferase (74, 75, 161); d: fail-
other ure to glucosylate phage DNA; same as

gorl (183)
- - highly antigenic outer capsid protein (96)

[73] - [E or QI d: increased mutation frequency (55, 79)
24 - [E or QI d: lack of immunity to superinfection (42,

197)
73 am, del, pla E Internal protein I (20, 22); cleaved during

assembly (196)
65 am, del E Internal protein II (20, 22); cleaved during

assembly (196)
66 am, del E, Q Internal protein III (20, 22); cleaved during

assembly (120, 196)
See sum

- - [E or Q] Modifier of phage tRNA's (209)
- - Sensitive to methylmethanesulfonate; d:

defective DNA repair (57)
12 del, other [E or Q] Modifies host RNA polymerase a subunit

(92, 93)
159 far, ts [E] moderation of transcription of some early

enzymes; d: failure to activate Q pro-
moters (130); same as far P85 (33)

163 del, pla, [E or Q] nuclear disruption deficient (48, 179, 180);
other d: impaired host nuclear breakdown

140 del, other [E or Q] Ribonucleoside diphosphate reductase sub-
unit (92, 230)

138 del, other [E or Q] Ribonucleoside diphosphate reductase sub-
unit (92, 230)

49 del, other [E or Q] Thioredoxin (193)
7 del [E or QI Polypeptide of unknown function missing

from electropherograms of deletion mu-
tants (92)

[9] del [E or Q] Polypeptide of unknown function missing
from electropherograms of deletion mu-
tants (92)

6 del, pla [E or Q] d: failure to grow on CTr5X (92)
164 del, pla [E or Q] d: failure to grow on CT262 (48)
[9] del, other [E or Q] d: lack of a deoxyribonucleotide-5'-phos-

phatase activity (92)0
[130] pla, other [E or Q] d: lack of a deoxyribonucleotide-3'-phos-

phatase activity (47)

18,000 (137)

29,000 (68)

46,000 (95)

40,000 (96)

10,000-o8,900 (196)

11,700-o10,000 (196)

21,200-o18,300 (196)

[85,000 or 35,0001'

[85,000 or 35,0001'

10,400 (15)
12,000 (147)

50,000 (147)

denA

denB

denV

dexA

frd

fdsA

fdsB

gorl
gor2

agt

6get

hoc
[hm]
imm

ipI

ipII

ipIII

m
mb
[mms]

mod

mot

ndd

nrdA

nrdB

nrdC
p12,000

p50,000

plaCTr5X
pla262
pseF

pseT
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TABLE 1-Continued
Map Pro-

Gene b posi- Mutations iso- mtr Gene product, function, or defective pheno- Molecular weight of
tionc latedd moter, type' gene product0
(kb) cas
- psu [E or Q] Apparent general nonsense suppression

(162)
See gene 17

55 del, r [E or QI d: rapid lysis (59, 60)
2 del, pla, r E Membrane protein (66); d: rapid lysis, ina-

bility to multiply on X lysogens (59, 60);
suppression of gene 30 (ligase) muta-
tions (98)

o del, pla, r E, Q Membrane protein (204); d: rapid lysis, in-
ability to multiply on A lysogens (59, 60);
suppression of gene 30 (ligase) muta-
tions (98)

129 r [E or Q] d: rapid lysis (59, 60)"
20 r [E or Q] "Spackle"; d: rapid lysis, suppression of

gene e mutations (65, 150)
[160] r, ts [E or Q] d: temperature-dependent rapid lysis (118)

[7] ac [E or Q] rapid clock (156); acriflavin resistance
29 hus, ts [E or Q] Regulation of translation of several early

enzymes (99, 207)
61 del, far [E or Q] Regulation of translation of several early

enzymes (33)
[164] ac [E or Q] r suppression in host strain S/6/5 but not in

host strain B/5 (156); acriflavin resist-
ance

[160] - [E or Q] Suppression of rIl mutations (72)9
- - small outer capsid protein (96)

"Spackle"; see r1V
[63] r [E or Q] d: rapid lysis; isolated in T4B (117)

See essential gene t
[63] r [E or Q] Suppression of stIH (t) and e mutations in

T4B (117)
163 del, other [E or Q] Suppression ofpseT mutations (47, 48)

See das
[53] - [E or Q] Enhances rni suppression of ligase muta-

tions (115)
[9] del, his, [E or Q] Suppression of gene 32 (DNA unwinding

other protein) defects (92, 124)
[3] - [E or Q] Suppression of gene 30 (ligase) mutations

(35)
141 del, other [E or Q] Thymidylate synthetase (169, 176); nones-

sential baseplate component (112)
56 am, BrdU, Thymidine kinase (31-33)

del
70-72r del Q Arginine tRNA'
70-72r del, psu Q Glutamine tRNA (1, 82, 132, 209); mutates

topsu2+ (38)
70-72r del Q Glycine tRNA (1, 82, 132, 209)
70-72r del Q Isoleucine tRNA (1, 82, 132, 209)
70-72' del Q Leucine tRNA (1, 82, 132, 209)
70-72' del Q Proline tRNA (1, 82, 132, 209)
70-72r del, psu Q Serine tRNA (1, 82, 132, 209); mutates to

psu,+,psu.+ andpsub+ (133, 210, 211)
70-72r del Q Threonine tRNA'
[130] - [E or Q] d: impaired unfolding of host DNA (181)
[110] his, uvs [L] d: increased UV sensitivity, decreased re-

combination (86)
25 uvs [E or Q] d: increased UV sensitivity (55, 87)

See denV
58 am, del E Valyl-tRNA synthetase-modifying peptide

other (134, 143)
See uvsW

94 am, CBW [L] whisker antigen control (51, 70); whisker
subunit (40, 70); d: impaired tail fiber
attachment (18, 216), altered tail fiber
retraction in mature phage (39)

See frd
See uvsX
See part A, Essential genes

95,000 (147)

33,000 (147)

10,000 (96)

29,000 (28)

10,500 (127)

53,700 (196)

[psu+SB]

q

rI
rIlA

rnlB

HII
rV

rV
rc
regA

regB

rs

sip
soc

sp
stl
stIl
stIII

stp
sua
su3O

sud

sum

td

tk

tRNA"a'
tRNAgin

tRNAgOy
tRNAuHe
tRNA leu
tRNA"P"
tRNAser

tRNAthr
unf
uvsW

uvsX
v

Vs

w

wac

wh
x

y

VOL. 40, 1976



TABLE 1 -Continued
a The following general articles, not referred to in the table, are useful sources of additional information and references

as follows: for the original assignment of essential gene functions (67); for early functions ofphage-coded enzymes (128, 129);
for the original classification of gene functions in assembly of phage particles using in vitro complementation (63, 219); for
recent work on phage assembly (29, 64, 76, 171, 212, 221); for gene functions in general (26, 34, 58, 136, 140, 155a, 178).

D Genes are listed in numerical order for essential genes and in alphabetical order for lettered essential genes and
nonessential genes. Bracketed symbols indicate that the gene designation and the corresponding defective phenotype refer
to only a single mutation or to a region that cannot yet be identified as a gene.

c Numbers indicate approximate positions of the promoter-proximal end of the gene to the nearest whole number of
kilobase pairs on the scale in Fig. 1. Bracketed numbers indicate uncertain map position; unmapped genes or mutations are
indicated by (-).

d See Table 2 for explanations of symbols and additional references. -, Mutations are of unknown type.
e Assignments of early (E) and quasilate (Q) promoters are based primarily on references 145 and 146 or references given

in column 5. Assignments of late (L) promoters are from several studies that have identified products ofassembly genes; see
references in column 5. Brackets indicate presumed promoter classes based on map position and/or defective phenotype
only. E, Q indicates that gene has both an early and a quasilate promoter.

' Name or function ofgene product is given if known. If not, apparent gene product function based on defective phenotype
is listed. For unidentified gene products whose function is unclear, the defective phenotype resulting from mutations in the
gene is indicated as "d:".

° All figures given represent polypeptide molecular weights estimated from calibrated polyacrylamide gel electrophero-
grams. Values differing by up to 20% have been published for some of these polypeptides; where available, we have listed
values obtained in the laboratories of L. Gold and C. Yegian at the University of Colorado, Boulder, since these molecular
weights represent the largest sets determined under identical conditions and therefore seem most likely to be internally
consistent.

C. Castillo, C-L. Hsiao, P. Coon, and L. W. Black, to be published.
S. Brown, unpublished experiments with am mutants.
R. Herrmann, unpublished data, cited in reference 160.

k L. Snyder, to be published.
I F. R. Frankel, personal communication.
m A. Rodriguez, unpublished data, cited in reference 92.
" It is not known which molecular weight corresponds to nrdA and which to nrdB (13, 14).
* A. R. Depew and N. R. Cozzarelli, unpublished observations cited in reference 92.
P Several recent observations suggest that rHI may be located slightly clockwise from gene 31, rather than counter-

clockwise as shown in Fig. 1 (77, 176a; L. Black, personal communicationh; H. R. Revel, unpublished observations).
* T. Homyk, Jr., A. Rodriguez, and J. Weil, unpublished observations cited in reference 92.
See Fig. 2.
J. Abelson, unpublished data, cited in reference 155a and personal communication.

Current knowledge of gene locations and
sizes is summarized in the linkage map of Fig.
1. The map has been modified and updated from
a previous version (214), and was constructed as
follows. The map length of 166 kb was assumed,
and a zero point was arbitrarily placed at the
divide between the rilA and rIIB cistrons, a
point which has been well defined genetically
(5, 11) and physically by deletion heteroduplex
mapping (106). Loci whose physical distances
from the zero point have been determined by
heteroduplex mapping of deletion mutations
then were positioned. These points are indi-
cated by heavy radial lines on the inside of the
map circle. As many additional genes as possi-
ble were placed relative to these points based on
the positions of markers estimated by the Mo-
sig method (140). Where necessary these posi-
tions have been changed to accommodate mini-
mum gene sizes derived from estimated molec-
ular weights of identified polypeptide gene
products. Positions ofthe remaining genes rela-
tive to the physically mapped loci were esti-
mated from recombination frequencies using
the mapping function (185).
Genes of unknown size are represented by

radial lines. Genes whose polypeptide products
have been identified are represented by stip-
pled bars indicating minimum gene length

based on polypeptide molecular weights esti-
mated from sodium dodecyl sulfate-gel electro-
phoresis. The mean value ofknown polypeptide
gene product sizes in T4 is 43,000 daltons, corre-
sponding to a gene size of about 1.2 kb. An
expansion of the transfer ribonucleic acid
(tRNA) region is shown in Fig. 2.
Regions of the genome in which nonlethal

deletions have been demonstrated are indicated
by dashed circular segments inside the map
circle. Such deletions now have been obtained
in five regions of the genome previously desig-
nated as largely "silent": the regions flanked by
essential genes 39 and 56 (92), 49 and e (33, 211),
e and 57 (211), 63 and 32 (92), and 52 and 60 (48).
The dashed segments represent maximum
lengths of nonessential sequences as defined by
overlapping deletions. Study of these deletion
mutations has led to more precise physical
mapping of the genome, as well as definition of
many new nonessential genes.
Regions of homology and nonhomology be-

tween T4 and the closely related phage T2, as
determined by electron microscopy of hybrid
duplex DNA molecules, are shown on the in-
nermost circle in Fig. 1 (106). Deletion loops are
indicated as sectors, and substitution loops are
represented by truncated sectors whose inner
and outer arc lengths indicate the lengths ofthe
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TABLE 2. Phenotypic classes of T4 mutants

Symbol Phenotype/selection method Genes or loci of occurrence Referencesa
ac Acridine resistant
am Amber; UAG nonsense mutation, condition-

ally defective: mutant gene functions in
UAG su+ host strains; does not function in
su- host strains

BrdU Bromo-deoxyuridine resistant
c Cofactor requirement
CBW Carbowax resistant
cs cold sensitive, conditionally lethal: grows at

370C but not at 170C
del deletion

del(rII): nonreverting rII mutant
del(39-56): tandem rHI duplication with com-

pensating deletion in gene 39-56 region
del(tk): tk mutant selected for bromodeoxy-

uridine resistance and r plaque morphology
del(far): selected for folate analogue resist-

ance and r plaque morphology
del(e): nonreverting lysozyme mutant
del(psubi): found amongPsub- derivatives se-

lected from PSUb+
del(63-32): tandem rIl duplication with com-

pensating deletion in gene 63-32 region
del(sa): selected for acridine resistance and

suppression ofpseT
eph Electrophoretic variant; mutation causes

change in electrophoretic mobility of ma-
ture phage particles

ex Mutant shows decreased exclusion of phage
T2 in mixed infections

far Folate analogue resistant
gor Grows on rip' bacteria restrictive for T4 wild

type
h Altered host range
hus Hydroxyurea sensitive

mi Minute plaques
oc Ochre; UAA nonsense mutation, condition-

ally defective: mutant gene functions in
UAA su+ host strains; does not function in
su- host strains

op Opal; UGA nonsense mutation, conditionally
defective: mutant gene functions in UGA
su+ host strains; does not function in su-
host strains

os Osmotic shock resistant
pla Fails to grow (make plaques) on specific E.

coli host strains:
pla(X): fails to grow on (X) lysogens
pla, 96: fails to grow on CT196
pha62: fails to grow on CT262
pla439: fails to grow on CT439
pla447: fails to grow on CT447
pla596: fails to grow on CT596
plaCTr5X: fails to grow on CTr5Xb
plaAR-8: fails to grow on AR-8

psu Phage-coded suppressor of nonsense muta-
tions

r Rapid lysis, characteristic large, clear
plaques

ts Temperature sensitive; conditionally defec-
tive: mutant gene product functions at 250C;
does not function at 420C

uvs Sensitive to UV light

ac, ama, rc, rs, 17
All known essential genes and
some nonessential genes

tk
34
18, 36, wac
Some essential genes

163-3kb
6-16 kb

50-61 kb

48-64 kb

60-73 kb
67-73 kb

136-144 kb

162-165 kb

5 sites adjacent to genes 32, 42,
56, 60, agt

frd, mot, 48-64 kb
f8gt (gor-1), gor-2

6, 7, 8, 10, 37
dar, denA, dexA, sud, 45, 49,

5-10 kb, 157-160 kb
23, 63, other genes
Several essential genes

Several essential genes

24

rIIA, rnB
pseT
164 kb
Some tRNA
ndd
ipI
6 kb, pseT
cef
tRNA'n0, tRNAser, psu+SB

rI, rIl, rIH, rIV, rV, stI, stIII

Many essential genes

denV, uvsW, uvsX, y

67

59, 111
70
166a

10, 152
92

33

33

190, 211
211

92

48

36

153

33
183

6, 44
78

23b

23b

100

81, 208

21

67

a Additional references may be found in Table 1 under the appropriate gene entries.
I Strain CTr5X is a derivative of CT196 (47).

855



856 WOOD AND REVEL

TABLE 3. T4-indzuced enzymes

Enzyme Genea Referencea
DNA adenine methylase
DNA-dependent adenosine tri-
phosphatase

DNA endonuclease lb
DNA endonuclease II
DNA endonuclease III
DNA endonuclease IV
DNA endonuclease V
DNA endonuclease VI
DNA exonuclease A
DNA exonuclease B
DNA ligase
DNA polymerase-exonuclease
Deoxycytidylate deaminase
Deoxycytidylate hydroxymeth-

ylase
Deoxycytidine-deoxyuridine di-
and triphosphatase

Deoxyribonucleotide kinase
Deoxyribonucleotide-3'-phos-
phatase

Deoxyribonucleotide-5'-phos-
phatase

Dihydrofolate reductase
Endolysin (see lysozyme)
a-Glucosyl transferase
,3-Glucosyl transferase
Ligase (see DNA and RNA li-

gases)
Lysozyme (endolysin)
Phospholipase
Protease, specific for capsid

protein cleavage in assembly
Ribonucleotide reductase sub-

unit
Ribonucleotide reductase sub-

unit
RNA ligase
Thioredoxin
Thymidine kinase
Thymidylate synthetase

a The symbol (-) in the Gen
that a gene for the enzyme has 1

tionally identified. References i

these enzymes. References for
identified genes may be found in

b Designated simply as DNA e
discoverers (2).

e Enzyme activity is missing
with mutants defective in the i
the enzyme has not been shown
gene product.

nonhomologous sequences in
Genetic studies have shown ti
almost completely homologou
the locations of essential gei
fore, to the extent that T4 gE
placed on the genetic map cih
homology map can be interF

dam
dda

denA

denB
denV

decxA

Rn

102

73, 148

the genes or regions in which divergence has
taken place between T2 and T4. In theory it
should be possible to use this information for
physical mapping of additional genetic
markers, by matching regions of reduced re-
combination frequency in T2-T4 crosses with
substitution loops on the homology map. This
approach was exploited by Beckendorf to posi-
tion the large substitution loop at 155 kb rela-
tive to markers in genes 37 and 38 (7).

GENE FUNCTIONS AND GENOME ORGA-
NIZATION

43 The promoters of T4 genes fall into three
cdc categories. These categories are recognized at
42 different times during the infectious cycle, and

have been designated early (E), quasilate (Q)
56 and late (L) (145, 146). Directions of transcrip-

tion, now known for 38 genes from genetic evi-
1seTc dence, are indicated in Fig. 1 by arrows inside
pse~c the map circle. Transcription directions for the
pseFc single genes 43, 23, 32, rIIA, and rIB have been

determined from the relative sizes of polypep-
frd tide fragments corresponding to am mutations

of known map order. Arrows that extend over
agt more than one gene indicate cotranscription;
Agt their directions and extents have been inferred

from polar effects of nonsense mutations and
e UV irradiation on expression of neighboring
tc genes (90, 184, 198). Evidence from messenger
21 RNA hybridzation experiments using sepa-

rated single strands of T4 DNA indicates that
nrdA probably all early and quasilate genes are tran-

scribed in a counter clockwise direction on the
nrdB map as represented in Fig. 1, whereas late

genes are transcribed in a clockwise direction
-C 43 172 (80). In general, early and quasilate genes are
k r segregated from late genes in the genome.
td "Switch" regions, where transcription changes

from one direction to another, are presumed to
e column indicates occur at only four points on the map, at approx-
not yet been muta- imately 75 kb (between genes 1 and 2), 121 kb
are given only for (between genes 54 and 30), 147 kb (between
enzymes coded by genes 33 and 34), and 159 kb (between genes t
i Table 1. and 52). Thus, the genome is divided into at
,ndonuclease by the least two regions of early and quasilate tran-
from cells infected scription, including a total of about 88 identi-
ndicated gene, but fied genes, and two regions of late transcrip-
idirectly to be the tion, including a total of about 46 identified

genes. The promoter classes of individual
genes, where known, are indicated in Table 1.

the two phages. T4 transcriptional controls and their signifi-
hat T2 and T4 are cance have been reviewed recently by Rabussay
is with regard to and Geiduschek (155a).
!nes (164). There- Broad classes of gene functions are indicated
anes are correctly in Fig. 1 outside the map circle. More detailed
rcle in Fig. 1, the descriptions of functions and defective pheno-
,reted to indicate types are listed in Tables 1 to 3. A breakdown
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LEOTIDE
METAOL SM

FIG. 1. Map ofthe bacteriophage T4 genome. Construction ofthe map is described in the text. The circular
numerical scale indicates physical distances in kilobase pairs (kb) from an arbitrary zero point. The
innermost circle is a heteroduplex map showing regions ofnonhomology betwee T4 and the related phage T2
(106). Labeled arcs inside this circle show the positions of the deletions used as reference points. The map
circle outside of the numerical scale indicates the locations of T4 genes, positioned as described in the text.
Heavy radial lines inside the map circle indicate positions determined by heteroduplex mapping of deletion
mutations in the electron microscope. Arrows indicate transcription direction; those that extend over more
than one gene indicate cotranscription. Dashed circular segments indicate maximum lengths of nonessential
sequences as defined by overlapping nonlethal deletion mutations. (The left end of the region between 48 and
73 kb has been positioned by genetic mapping only [33]; all other end points have been located physically by
heteroduplex mapping.) Stippled bars on the map circle represent the minimum lengths of genes whose
polypeptide products have been identified and sized by sodium dodecyl sulfate-polyacrylamide gel electropho-
resis. The size ofgene 60 (cross-hatched bars) has been estimated from extensive intracistronic mapping (141).
Radial lines on the map circle indicate positions ofgenes whose polypeptide products have not been identified.
Gene names are given on the outside of the map circle. Gene names in brackets represent loci whose positions
and/or map order are known only approximately. The outermost circle indicates the clustering offunctionally
related genes into broad classes. Smaller radial labels adjacent to gene names indicate functions that differ
from those ofthe surrounding genes in a cluster. Additional features ofthe map are described in the text.

of gene functions into specific classes is shown sembly. Metabolic functions, almost all of
in Fig. 3. These functions can be divided con- which are controlled by genes with early or
veniently into two major categories (58), desig- quasilate promoters, include DNA metabolism,
nated cell metabolism and phage particle as- programming (transcription and translation),
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psu+
67 70 psu+ 73

e I , psu+ psu+ ipIe II2 5

/

tRNA 5g 6

I '

/,' \ transcription
/~~~~~~~~~~

3 5f 58 5a 4
seripro ilethr leu gin

C D 3e 4 33838 3a 2 3Y
FIG. 2. Expansion of the T4 tRNA gene region, 69.5 to 72.5 kb. Modified from Abelson et al. (1 and

personal communication) and from Rabussey and Geiduschek (155a). Genes are identified by tRNA function,
where known, as well as by the numbering systems employed by Abelson et al. (1; upper designations) and by
Guthrie et al. (82; lower designations) for the corresponding tRNA bands on polyacrylamide gel electrophero-
grams. The order of the tRNA genes in the right hand cluster has been derived from an analysis of deletion
mutants. Recent restriction enzyme sequence studies suggest that part ofthis order may be permuted and that
the true linear arrangement ofthe tRNA genes is (in the order oftranscription) gln leu glypro ser, thr ile. This
new sequence is compatible with the deletion mutant analysis (J. Abelson, personal communication). The
stable low-molecular-weight RNA transcripts corresponding to bands 1(C) and 2(D) are ofunknown function.
psu,+ and psua+ are mutations that convert tRNAser to a suppressor of amber mutations. psub+ converts
tRNAser to a suppressor of ochre mutations. psu2+ converts tRNA8'n to a suppressor of ochre mutations. For
references see appropriate entries in Table 1.

and cell maintenance. Most of the assembly
functions are controlled by genes with late pro-
moters.
Ofthe metabolic gene functions, 22 are essen-

tial, as defined earlier. Six of these genes code
for known proteins required for phage DNA
synthesis (67), either as enzymes of nucleotide
metabolism or components of the actual DNA
replication and recombination machinery (4,
128, 129). A list of the known T4-induced en-
zymes is given in Table 3. The products of two
genes, 33 and 55, are required for the control of
transcription, and the products of two more, e
and t, bring about cell lysis at the end of the in-
fectious cycle (for references, see Table 1). How-
ever, there remain 12 essential metabolic genes
whose functions are unknown. The protein
products of 7 of these are assumed to play roles
in DNA replication, since mutational defects in
them lead to absence of early arrest of DNA
synthesis (shown in parentheses in Fig. 3). De-
fects in genes 39, 52, 58 to 61, and 60 delay the
onset of DNA synthesis at 370C, but prevent
DNA synthesis entirely at 250C (141). The
functions of these genes remain intriguingly
obscure.
Most the known nonessential genes fall into

the metabolic category. The general function of
many nonessential genes apparently is to aug-
ment the phage burst size, for example, by
providing more abundant substrates for DNA
replication (see references 128 and 129, and ref-
erences in Table 1). Others ofthese genes equip
T4 to deal with differing host intracellular
environments, for example, by providing sup-
plementary tRNA species, and also perhaps by

modifying the host cell membrane. Again, how-
ever, the functions of38 out ofthe total ofabout
63 metabolic nonessential genes are not known
(shown in parentheses or listed at the extreme
right in Fig. 3). The large number ofapparently
nonessential genes involved in DNA synthesis
suggests the possibility of gene redundancy for
recombination and repair in T4 as has been
found in E. coli (37). Conceivably the products
of some of these T4 genes perform essential
functions that can be carried out by alternative
pathways under separate gene control (57).
There are 55 identified assembly gene func-

tions, all but 10 of which are essential (29, 58,
63, 67, 171, 212, 219, 221, and references in
Table 1). Of the corresponding gene products,
36 are known to be structural proteins of the
phage, whereas 7, indicated by asterisks in Fig.
3, appear to be nonstructural accessory proteins
that somehow promote or direct assembly (212,
213). The remaining 12 assembly gene products
are known to be required at a certain stage in
the assembly process (219), but it is not known
whether their roles are structural or accessory.
The genes that code for these proteins are
shown in parentheses in Fig. 3. It can be seen
that the gene functions listed under "capsid
completion" and "DNA packaging" represent
intriguing classes whose roles are almost com-
pletely obscure. Recent evidence on gene 2 func-
tion suggests the possibility that some of the
genes in the "capsid completion" group are not
true assembly genes, in that they code for inter-
nal proteins that are injected with the phage
DNA and serve their principal functions very
early in infection (174, 175).
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GENES WITH30 denV )mb) UNKNOWN
32 (dort) (regA) METABOLIC
(39) (dos) (regB) FUNCTIONS
(411(sud)RN :
43 (uvsW') t RNAs:

(45) )uvsq pseF ogn ddo
(451 ) (46) 42 pseT 33 g y
(47) (47) 56 (stp) (ac) (rm) 55 Ie p12,000
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DNA CELL MAINTENANCE
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FIG. 3. Functional classification ofT4 genes. Genes whose functions are at least generally known are listed
in boxes representing different functional categories. In the upper half of the chart, genes listed without
parentheses are those whose protein products have been identified with specific enzymatic functions. Genes
listed in parentheses are those whose functions are known generally but not specifically. Genes defined by
suppressors only (eg., dar, das, sud, etc.) generally are assumed to belong to the same functional category as
the genes on which these suppressors act. Exceptions are some ligase (gene 30) defect suppressors, which
appear to act by altering cell membrane properties (98). The genes listed at the far right are not known to fall
into any ofthe functional categories shown. In the lower halfofthe chart, genes listed without parentheses are
those whose protein products have been identified and shown to be either structural components of the phage
or nonstructural accessory proteins in assembly (indicated by *). Genes listed in parentheses are those whose
protein products have not been identified, so that the structural or nonstructural nature of their roles is
unclear. A total of 138 genes is shown in the figure. Some genes with dual functions are listed under two
functional categories. Not included are bracketed gene designations from Table 1, as well as five genes, not yet
mutationally identified, that code for known T4-induced enzymes of uncertain function (see Table 3).
Symbols: §, expressed early, but gene product functions later in assembly; t, probably expressed late, based on
map position, but gene product apparently functions in cell metabolism; * gene product performs a nonstruc-
tural accessory function in assembly; (*), gene product is probably nonstructural.

Comparison of Fig. 3 with Fig. 1 indicates major cluster, often in association with another
that, in general, T4 genes exhibit considerable cluster of different but related functions. Stahl
clustering according to function. However, it is and Murray (186) have discussed the possibility
noteworthy that at least one of the genes in that clustering is selected for because it mini-
every functional class is located outside of the mizes recombination between genes for pro-

VOL. 40, 1976



860 WOOD AND REVEL

teins that must interact structurally, and
thereby decreases the frequency of nonviable
hybrids in interstrain matings. King and La-
emmli (109) have postulated that the observed
departures from clustering may be important
in regulating production of assembly compo-
nents, by allowing key proteins oftwo different
components to be translated from the same
messenger RNA, thereby ensuring synthesis in
fixed relative amounts. Alternatively, the ob-
served gene organization may be primarily a
reflection of evolutionary history. For example,
baseplate genes are segregated exclusively into
two clusters, whereas genes for the tail sheath,
tube, and connector proteins are interspersed
among head genes. Conceivably, an ancestor of
T4 may have had only a baseplate attached
directly to the head as in present-day simpler
phages such as T3 and T7, and genes for the
sheath, tube, and connector may have arisen
from head genes by duplication and evolution.
This notion could be tested by determining and
comparing the amino acid sequences of appro-
priate proteins for residual homology.
The homology map suggests that, in general,

regions of essential genes are less evolutionar-
ily divergent than regions ofnonessential genes
and that, in particular, the genes coding for
structural proteins of the phage head and tail
are highly conserved.
The mean polypeptide molecular weight of

the 31 identified metabolic gene products,
which are primarily cytoplasmic enzymes, is
40,000, corresponding to a gene size of about 1.1
kb (Table 4). The mean molecular weight ofthe
41 identified assembly gene products, which are
primarily phage structural proteins, is 45,000,
corresponding to a gene size of 1.2 kb. If we
assume that these known gene sizes are repre-
sentative for their respective classes (Table 4)
we can estimate that about 15% of the phage
genome is used to code for essential metabolic
functions, 39% for nonessential metabolic func-
tions, and 36% for assembly of the phage parti-
cle. How much of the total coding capacity of
the phage DNA can be accounted for by muta-
tionally identified genes? An accurate answer
cannot be given without additional information
on gene sizes. However, the assumptions just
stated lead to an estimate that known genes
can account for a combined sequence length of
about 150 kb, or about 90% of the coding capac-
ity of the genome. Genetic saturation of the T4
map is nearly accomplished.
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