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OBJECTIVE

A genetic risk score (GRS) comprised of single nucleotide polymorphisms (SNPs)
andmetabolite biomarkers have each been shown, separately, to predict incident
type 2 diabetes. We tested whether genetic and metabolite markers provide
complementary information for type 2 diabetes prediction and, together, improve
the accuracy of prediction models containing clinical traits.

RESEARCH DESIGN AND METHODS

Diabetes risk wasmodeledwith a 62-SNPGRS, ninemetabolites, and clinical traits.
We fit age- and sex-adjusted logistic regression models to test the association of
these sources of information, separately and jointly, with incident type 2 diabetes
among 1,622 initially nondiabetic participants from the Framingham Offspring
Study. The predictive capacity of each model was assessed by area under the
curve (AUC).

RESULTS

Two hundred and six new diabetes cases were observed during 13.5 years of
follow-up. The AUC was greater for the model containing the GRS and metabolite
measurements together versus GRS or metabolites alone (0.820 vs. 0.641, P <

0.0001, or 0.820 vs. 0.803, P = 0.01, respectively). Odds ratios for association of
GRS or metabolites with type 2 diabetes were not attenuated in the combined
model. The AUC was greater for the model containing the GRS, metabolites, and
clinical traits versus clinical traits only (0.880 vs. 0.856, P = 0.002).

CONCLUSIONS

Metabolite and genetic traits provide complementary information to each other
for the prediction of future type 2 diabetes. These novel markers of diabetes risk
modestly improve the predictive accuracy of incident type 2 diabetes based only
on traditional clinical risk factors.

Type 2 diabetes is estimated to affect .550 million people worldwide by 2030 (1).
Given the personal and health care system costs associated with this growing ep-
idemic, it is critical to identify high-risk individuals as a first step in providing effec-
tive preventive interventions for diabetes (2). Although the medical history and
standard laboratory testing provide clues as to an individual’s future risk of diabetes
(3), many of these predictors emerge only after years of subclinical metabolic
dysfunction (4). Novel markers may help to elucidate aspects of metabolic
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dysfunction contributing to diabetes
risk and improve the early identification
of individuals who might benefit from
preventive therapies for diabetes.
Genetic information, specifically, sin-

gle nucleotide polymorphisms (SNPs)
grouped into a genetic risk score (GRS),
has been shown to predict type 2 diabe-
tes incidence alone and in the context of
clinical prediction models within the
Framingham Offspring Study (5,6) as
well as within multiple independent co-
horts (7–10). However, genetic informa-
tion alone generally has low predictive
performance for type 2 diabetes inci-
dence (11) and only modestly improves
accuracy of prediction by traditional
clinical risk factors for type 2 diabetes.
Circulating metabolite biomarkers, spe-
cifically, branched-chain and aromatic
amino acids (12), lipid species of partic-
ular acyl chain length composition and
saturation (13), the glutamine-to-gluta-
mate ratio (14), and 2-aminoadipic acid
(15), have also been shown to predict
diabetes risk independent of clinical fac-
tors such as sex, BMI, and fasting glucose.
These metabolite associations have been
demonstrated in the Framingham Off-
spring Study (12–15) and validated in in-
dependent cohorts (12,14–17).
While the majority of diabetes-

related SNPs with known physiological
associations have been linked to b-cell
function (18,19), amino acid and lipid
metabolites have been strongly associ-
ated with measures of insulin resistance
(12,13,16,20–24). We hypothesized that
genetic and metabolite biomarkers of
diabetes risk, by capturing different
pathogenic elements for type 2 diabetes
development, would provide comple-
mentary information to each other re-
garding future diabetes risk and possibly
improve clinical models of diabetes pre-
diction in aggregate. We therefore eval-
uated the ability of a type 2 diabetes
GRS, containing 62 diabetes-related
SNPs derived from the most recent as-
sociation findings (25), and circulating
metabolites involved in cardiometabolic
risk pathways, separately and together,
to predict diabetes and improve dis-
crimination of incident type 2 diabetes
compared with conventional clinical
predictors.

RESEARCH DESIGN AND METHODS

The Framingham Offspring Study was
initiated in 1971 (26), and participants

were examined approximately every 4
years. The fifth examination of the Fra-
mingham Offspring Study, which was
conducted between 1991 and 1995,
was considered the baseline assessment
for the current study. Genotyping and
metabolite profiling were performed
on archived plasma samples collected
from participants with at least one
exam cycle of follow-up from the base-
line examination (26). Individuals with
known diabetes (defined as fasting
plasma glucose $7.0 mmol/L, glucose
at 2 h after a standard 75-g oral glucose
load$11.1 mmol/L, or use of antidiabe-
tes therapy) at the baseline examination
or without a sample for genotyping or
metabolite profiling were excluded. Di-
abetes incidence was defined by plasma
glucose level $7.0 mmol/L or use of
antidiabetes therapy, and time to diabe-
tes incidence was derived from the time
of the baseline examination.

Measurement methods for amino
acid and intermediary metabolites
(12,14,15), as well as lipid metabolites
(13), have previously been reported. A
previous study has documented concor-
dance in amino acid metabolite mea-
sures between archived samples from
the Framingham Offspring Study and
freshly obtained samples (27). Peak
areas of internal standards were moni-
tored for quality control, and individual
samples with peak areas from individual
samples differing from the group mean
by more than two SDs were reanalyzed.
Metabolite peaks were manually re-
viewed for quality of integration and
compared against a known standard to
confirm identity. Replicates derived
from a single pooled plasma sample
were run after every 30 experimental
samples, enabling detection of temporal
drift in instrument performance.

In age- and sex-adjusted logistic regres-
sion models testing the association of
amino acid metabolites or lipid metabo-
lites with incident diabetes, backward
stepwise regression was used to remove
metabolite traits sequentially until each
remaining trait was associated with dia-
betes at P value,0.05. The initial models
containing all amino acid and lipidmetab-
olite traits and those following stepwise
regression are shown in Supplementary
Tables 1 and 2, respectively; the metabo-
lite traits retained following backward
stepwise regression were used in subse-
quent prediction models.

Sixty-two autosomal SNPs, each pre-
viously associated with type 2 diabetes
at genome-wide significance (25),
were genotyped or imputed, including
22 new SNPs from prior diabetes predic-
tion analyses (6). Genotypes were ob-
tained from Affymetrix array data in
the Framingham Offspring Study or
from de novo genotyping on the iPLEX
(Sequenom) platform. As in prior reports
(5,6), minimum call rates were 97% for
Affymetrix and 96.9% for iPLEX SNPs. All
SNPs were in Hardy-Weinberg equilib-
rium. To create the 62-SNP GRS, the
number of risk alleles at each SNP (0,
1, or 2) was multiplied by its published
b-coefficient for diabetes risk (28), and
then these weighted alleles were
summed across the 62 loci (19). This
62 SNP GRS has been associated with
type 2 diabetes in another study from
the Framingham Offspring Study (n =
3,869) and the Coronary Artery Risk De-
velopment in Young Adults (n = 2,470)
study (25). Statistical association of each
SNP, independently, with type 2 diabe-
tes in the cohort examined in the cur-
rent studywas not required for inclusion
into the GRS. The SNP components of
the GRS with published b-coefficient
are displayed in Supplementary Table 3.

Association tests were performed in
sex- and age-adjusted models contain-
ing the 62-SNP GRS, amino acid metab-
olites, lipid metabolites, and previously
validated clinical predictors of incident
diabetes: family history of diabetes,
BMI, systolic blood pressure, HDL cho-
lesterol, triglycerides, and fasting blood
glucose (3). Logistic regression models
tested the association of these variables
with diabetes onset in the overall cohort
and in subgroups stratified by age (,50
and$50 years) and BMI (,30 and$30
kg/m2). Within-studymodel validity was
assessed using a jackknife procedure
with 10 random samples of 90% of the
cohort, as has been done previously (3).
Linear regression was used to test the
association of the same variables with
the log-transformed homeostasis model
assessment of insulin resistance (log
HOMA-IR) (29) and b-cell function (log
HOMA-B) (29) at the baseline assess-
ment in age-, sex-adjusted models.
Model discrimination and reclassifica-
tion were evaluated using areas under
the receiver operating characteristic
curve (AUC) and continuous net reclas-
sification improvement indices (NRI),
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respectively (30,31). An NRI of 0.2 was
interpreted as weak improvement, NRI
of 0.4 as intermediate moderate im-
provement, and NRI of 0.8 as strong
improvement (31). Analyses were con-
ducted using SAS software (version
9.2; SAS Institute, Cary, NC). A two-
tailed P value,0.05 indicated statisti-
cal significance.
The institutional review boards at

Boston University and the Partners Hu-
man Research Committee approved the
study. All participants gave written in-
formed consent.

RESULTS

Baseline characteristics of the 1,622 par-
ticipants with clinical, genotype, and
metabolite profiling measurements
and at least 4 years of follow-up infor-
mation from the Framingham Offspring
Study are displayed in Table 1. In total,
there were 206 new diabetes cases over
an average follow-up of 13.5 years. The
mean (SD) time to diabetes incidence
was 9.2 (4.3) years. When examined in
aggregate, three amino acids (isoleu-
cine, tyrosine, and phenylalanine) and
six lipid metabolites (C18:2 lysophos-
phatidylcholine [LPC], C38:6 phosphati-
dylcholine [PC], C44:1 triacylglycerol
[TAG], C48:0 TAG, C52:1 TAG, and
C56:9 TAG) remained associatedwith in-
cident diabetes and were included in
subsequent prediction models.
The AUC for each of the prediction

models is shown in Fig. 1. The AUC was
greater for age- and sex-adjusted models
containing amino acid or lipid measure-
ments than for the model containing the
GRS (P , 0.0001 for both comparisons).
The AUC for the model containing both
the GRS and metabolite measurements

was greater than the AUC for models
with either set of predictors alone (P ,
0.0001 for GRS alone vs. GRS and metab-
olites; P=0.01 for metabolites alone vs.
GRS andmetabolites). The reclassification
capacity of the metabolite prediction
model was improved by the addition of
the GRS (NRI = 0.421, P , 0.0001), and
the reclassification capacity of the GRS
prediction model was improved by the
addition of the metabolites (NRI =
0.796, P , 0.0001).

Addition of metabolomic information
alone but not the GRS alone increased
the AUC of the model containing clinical
risk factors (P = 0.002 for addition of all
metabolites and P = 0.08 for addition of
GRS). Addition of metabolomic informa-
tion increased the AUC of the model con-
taining the GRS and clinical risk factors
(P = 0.007). Within-study validity testing
demonstrated a narrow range of AUCs
for each model (#0.22); in each case,
the AUC from the model in the entire
cohort was at or near the center of this
range (Supplementary Table 4).

The ability of the standard clinical
model in reclassifying the risk for type
2 diabetes was improved by the addition
of the GRS alone (NRI = 0.247, P =
0.0009), by metabolites alone (NRI =
0.442, P, 0.0001), and by GRS and me-
tabolites together (NRI = 0.576, P ,
0.0001). The AUC of each prediction
model, including that incorporating clin-
ical factors, metabolites, and GRS, was
greater for participants ,50 vs. $50
years old (Supplementary Fig. 1) and
for participants with BMI ,30 vs. $30
kg/m2 (Supplementary Fig. 2). Within
the model containing clinical, GRS, and
metabolite information, participants in
the lowest and highest deciles of

predicted diabetes risk had actual diabe-
tes rates of 1.2 and 56.0%, respectively
(Supplementary Fig. 3).

Odds ratios (ORs) for the GRS andme-
tabolite traits within prediction models,
separately and jointly, are shown in Ta-
ble 2. The OR for the association of the
GRS with incident type 2 diabetes was
not attenuated by the addition of me-
tabolite data and remained significant
when considered alone or in the com-
bined GRS and metabolites model. Sim-
ilarly, the OR for the association of
metabolite traits was not attenuated
by the addition of the GRS, and phenyl-
alanine, C18:2 LPC, C38:6 PC, C44:1 TAG,
and C52:1 TAG were significant when
considered in the metabolites-only
model or the combined GRS and metab-
olites model. The ORs for the GRS and
metabolite traits with incident type 2
diabetes remained consistent when
considered with clinical factors (Supple-
mentary Table 5).

When considered individually, the GRS
(P = 0.0005) and all metabolites, individ-
ually, were associated with log HOMA-B
(P , 0.0001 for all metabolites except
C38:6 PC, P = 0.03). When both sources
of information were examined in the
same age- and sex-adjusted model, the
GRS remained associated with log
HOMA-B (P, 0.0001), though fewer me-
tabolites (P. 0.05 for phenylalanine and
C44:1 TAG) remained associated with log
HOMA-B (Table 3). When considered in-
dividually, all metabolites were associ-
ated with log HOMA-IR (P , 0.0001 for
all metabolites except C38:6 PC, P =
0.008). In contrast, the GRS was not asso-
ciatedwith log HOMA-IR (P = 0.43).When
both sources of information were exam-
ined together in age- and sex- adjusted

Table 1—Baseline characteristics of participants

All With incident type 2 diabetes Without incident type 2 diabetes

N 1,622 206 1,416

Age (years) 54.7 6 9.63 56.67 6 8.94 54.41 6 9.7

Female 841 (51.9) 86 (41.8) 755 (53.3)

BMI (kg/m2) 27.32 6 4.7 30.33 6 5.03 26.88 6 4.49

Systolic blood pressure (mmHg) 125.32 6 18.33 134.33 6 17.83 124.01 6 18.03

HDL cholesterol (mmol/L) 1.30 6 0.39 1.09 6 0.29 1.33 6 0.39

Fasting triglycerides (mmol/L) 1.63 6 1.21 2.27 6 1.44 1.54 6 1.14

Fasting plasma glucose (mmol/L) 5.29 6 0.55 5.83 6 0.52 5.21 6 0.51

Log HOMA-IR (mmol z pmol/L2) 1.89 6 0.4 2.18 6 0.4 1.8 6 0.3

Log HOMA-B (pmol/mmol) 1.81 6 0.3 1.91 6 0.3 1.8 6 0.3

Data are means 6 SD or n (%).
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models, all metabolites remained associ-
ated with log HOMA-IR (P, 0.05 for all),
and the GRS was not associated with log
HOMA-IR (P = 0.29) (Table 3).

CONCLUSIONS

This study integrates novel assessment
of the combined effects of genetic and

circulating metabolite measurements
on predictive models for incident type
2 diabetes. While the association be-
tween genetic traits or metabolite levels
and future type 2 diabetes has been dem-
onstrated separately in the Framingham
Offspring Study (5,6,12–15,25) and vali-
dated in several independent cohorts

(7–9,12,14–17,25), we show that metabo-
lite and genetic traits together contribute
information both distinct and comple-
mentary to each other for the prediction
of future type 2 diabetes among adults
in the Framingham Offspring Study.
Within-study replication was used to
demonstrate high reliability of accuracy

Figure 1—AUC for prediction models for incident type 2 diabetes. All models are adjusted for age and sex, and the line indicates the AUC for the
model containing only age and sex as predictors. Error bars indicate 95% CI. The models include 1,622 participants with clinical, metabolite, and
genetic information.

Table 2—OR for incident type 2 diabetes associated with a GRS and serum metabolites in separate and combined models

Parameter

GRS Metabolites GRS + metabolites

OR (95% CI) P OR (95% CI) P OR (95% CI) P

Age 1.02 (1.01, 1.04) 0.002 1.02 (1.00, 1.04) 0.04 1.02 (1.00, 1.04) 0.023

Sex (female vs. male) 0.62 (0.46, 0.83) 0.002 0.94 (0.65, 1.35) 0.72 0.88 (0.61, 1.28) 0.52

62-SNP GRS 1.07 (1.04, 1.11) <0.0001 1.08 (1.05, 1.12) <0.0001

Amino acid metabolites
Isoleucine 0.91 (0.41, 2.00) 0.81 0.85 (0.38, 1.88) 0.68
Tyrosine 1.63 (0.83, 3.17) 0.15 1.64 (0.83, 3.24) 0.15
Phenylalanine 3.35 (1.54, 7.28) 0.002 3.48 (1.58, 7.66) 0.002

Lipid metabolites
C18:2 LPC 0.15 (0.07, 0.3) <0.0001 0.14 (0.07, 0.28) <0.0001
C38:6 PC 0.11 (0.04, 0.31) <0.0001 0.12 (0.04, 0.33) <0.0001
C44:1 TAG 0.78 (0.66, 0.93) 0.005 0.79 (0.66, 0.93) 0.006
C48:0 TAG 1.10 (0.86, 1.42) 0.44 1.15 (0.89, 1.48) 0.28
C52:1 TAG 3.01 (2.16, 4.2) <0.0001 2.96 (2.11, 4.14) <0.0001
C56:9 TAG 1.62 (0.94, 2.79) 0.08 1.61 (0.93, 2.78) 0.09

Lipid metabolites notation is CXX:YY, where CXX is the number of carbons in the acyl chain and YY is the number of double bonds. Significant traits
within amodel are in boldface. AUC (95% CI) for GRS: 0.641 (0.603, 0.679). AUC (95% CI) for metabolites: 0.803 (0.773, 0.832). AUC (95% CI) for GRS +
metabolites: 0.820 (0.792, 0.848).
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for incident type 2 diabetes for each of
the models presented, and two different
methods of assessing model perfor-
mance, AUC and NRI, showed consistent
results. All metabolites and clinical risk
factors were measured at a common
baseline examination, and the time to di-
abetes incidence or diabetes-free follow-
up was derived from that assessment.
Thus, strengths of this study’s design are
the measurement of genetic informa-
tion and baseline metabolite concen-
trations in the same well-phenotyped
cohort with longitudinal information
(avoiding confounding from extant dis-
ease), use of the most current GRS for
diabetes prediction, and use of metabo-
lites currently validated against future
risk of type 2 diabetes.
Our results extend prior studies dem-

onstrating the capacity of the GRS
(5,6,9) and metabolite measurements
(12–14), separately, to predict type 2 di-
abetes risk. Consistent with prior stud-
ies (5,7,10) and a recent meta-analysis
(11), we show that the addition of ge-
netic information only slightly improves
accuracy of type 2 diabetes prediction
over traditional clinical risk factors. The
increase in predictive accuracy from in-
corporating metabolomic data with or
without genetic information to clinical
risk factors is greater.
These findings suggest that both

metabolomic and genetic information
may have utility for type 2 diabetes pre-
diction in specific subpopulations. In
agreement with prior reports from de
Miguel-Yanes et al. (6) and Vassy et al.

(8,9) demonstrating that the GRS adds
more information toa diabetesprediction
model in younger versus older individ-
uals, we show that both genetic and
metabolomic measurements yield im-
proved accuracy for type 2 diabetes pre-
diction in individuals younger than 50
years versus older than 50 years and in
nonobese versus obese individuals. Fur-
ther work is needed to test whether
genetic and metabolite markers, sepa-
rately and together, aremore informative
with respect to type 2 diabetes risk in in-
dividuals whohavenot yet developed tra-
ditional clinical risk factors for thedisease,
such as older age and obesity, than those
who have. The large difference in diabe-
tes incidence between individuals in the
lowest predicted and highest predicted
risk decile suggests a model using all
sources of information may have clinical
applicability in the identification of indi-
viduals who are at high risk of developing
type 2 diabetes.

Importantly, by comparing the effect
of the GRS and metabolite measures on
diabetes prediction in the same individ-
uals, we were able to show that the dis-
crimination and reclassification for
models containing metabolites, with or
without clinical predictors, were greater
than for similar models containing the
GRS among adults in the Framingham
Offspring Study. Furthermore, we
show that, of the metabolites previously
associated with incident type 2 diabe-
tes, separately, nine remain significant
predictors when considered in aggre-
gate. This subset of metabolites, along

with any newly discovered metabolite
biomarkers, may be sufficient to capture
the currently known metabolomic infor-
mation on diabetes risk in future stud-
ies. Indeed, the AUC for each predictive
model is similar whether all metabolites
previously associated with type 2 diabe-
tes or only the subset of nine metabo-
lites is used (Supplementary Fig. 4).
Notably, the association between the
GRS and incident diabetes was not
attenuated by the addition of metabo-
lomic information and retained signifi-
cance in all prediction models tested.
This may indicate that the GRS and me-
tabolites represent different aspects of
type 2 diabetes risk.

Themajority of diabetes-related SNPs
with known physiological associations
have been linked to b-cell function
(18,19). By contrast, amino acids and
lipids have been associated principally
with measures of insulin resistance but
also with measures of insulin secretion
(12,13,16,20–24). Thus, the ability of
metabolites and GRS to provide infor-
mation on diabetes prediction comple-
mentary to each other may be related to
their capturing different aspects of type
2 diabetes development. Supporting
this hypothesis, our results show that
the GRS is consistently associated with
an estimate of b-cell function, while all
the metabolite traits are consistently
associated with an estimate of insulin
resistance.

In contrast to a prior report that dem-
onstrated similar correlations between
individual amino acid metabolites and

Table 3—Estimates for HOMA-IR or HOMA-B associated with a GRS and serum metabolites in combination

HOMA-B HOMA-IR

Estimate (95% CI) P Estimate (95% CI) P

Age 20.01 (20.02, 0.003) 0.16 0.01 (20.001, 0.03) 0.06

Sex 0.22 (20.01, 0.45) 0.06 20.27 (20.56, 0.01) 0.06

62-SNP GRS 20.04 (20.06, 20.02) <0.0001 20.01 (20.04, 0.01) 0.29

Isoleucine 1.25 (0.73, 1.77) <0.0001 0.82 (0.18, 1.46) 0.01

Tyrosine 0.60 (0.16, 1.04) 0.007 1.40 (0.87, 1.94) <0.0001

Phenylalanine 0.27 (20.30, 0.84) 0.35 0.72 (0.02, 1.42) 0.045

C18:2 LPC 21.43 (21.82, 21.05) <0.0001 22.28 (22.75, 21.81) <0.0001

C38:6 PC 21.01 (21.59, 20.43) 0.001 21.71 (22.43, 20.99) <0.0001

C44:1 TAG 20.02 (20.11, 0.07) 0.61 20.13 (20.24, 20.02) 0.02

C48:0 TAG 0.20 (0.02, 0.38) 0.03 0.23 (0.01, 0.45) 0.045

C52:1 TAG 0.52 (0.30, 0.74) <0.0001 1.05 (0.78, 1.33) <0.0001

C56:9 TAG 0.57 (0.21, 0.93) 0.002 0.90 (0.45, 1.35) <0.0001

b-Coefficient estimates provided from age- and sex-adjusted regression models. Lipid metabolites notation is CXX:YY, where CXX is the number of
carbons in the acyl chain and YY is the number of double bonds. Significant traits within a model are in boldface.
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either HOMA-IR or HOMA-B in a case-
control experiment (12), we find that,
for the subset of amino acid and lipid
metabolites that were associated with
both traits, the relationship of all but
one metabolite (C48:0 TAG) was stron-
ger with HOMA-IR than with HOMA-B.
This difference may be explained by our
examining the relationship of all metab-
olites with each trait in aggregate mod-
els, as opposed to separately, or by our
having performed the analyses in a
longitudinal cohort design as opposed to
in a case-control design. Although the
relationship between individual metabo-
lites and HOMA-B could be attenuated
by the additional metabolite or clinical
variables, the relationship between the
GRS and HOMA-B was not affected by
these other sources of information. In
exploratory analyses, we found that in-
corporating HOMA-IR into models with
clinical factors and metabolites did not
alter the AUC or the ORs of metabolites
with type 2 diabetes risk (not shown).
This finding is consistent with the prior
observation that adjustment for HOMA-IR
does not reduce the association of amino
acid metabolites with type 2 diabetes
risk (12). Together, these findings sug-
gest that the GRS is a robust indicator
of b-cell function and that circulating
metabolites may be marking several
aspects of diabetes risk, including the
fasting insulin resistance as estimated
by HOMA-IR. Still, further studies are
warranted to investigate whether the
genetic and metabolomic data are sig-
naling different biological etiologies for
diabetes development. Detailed physio-
logical tools, such as insulin clamps, were
not available to discern the relative con-
tribution of the metabolite signature
and GRS to either insulin resistance or
b-cell function in this study, which used
archived samples from an established
cohort.
Other limitations of our study deserve

comment. First, participants were all of
European ancestry and of average risk
for type 2 diabetes development. While
amino acids and SNP components of the
GRS have been associated with insulin
resistance or diabetes incidence, re-
spectively, in nonwhite populations
(23,32–36), the relative contribution of
these sources of information to type 2
diabetes prediction is not known out-
side of this study. Therefore, these find-
ings should be tested in nonwhites and

populations at high risk of diabetes. Sec-
ond, we used within-study statistical
techniques to demonstrate reliability
of the prediction models and the range
of AUCs that might be expected in other
data sets. While the GRS and metabolite
predictors have each been validated in-
dependently, formal replication in a dif-
ferent cohort, ideally using data collected
in a prospective manner, would further
support the reproducibility of these find-
ings. Third, the SNPs and metabolites
used in these analyses do not fully repre-
sent the genetic or metabolomic contri-
bution to diabetes risk. It is anticipated
that new genetic variants and circulating
metabolites associated with diabetes risk
will be validated, at which time they can
be incorporated into the existing type 2
diabetes prediction models established
here.

In summary, specific measurements
from genomic and metabolomic plat-
forms, distilled here into the most
predictive determinants, provide com-
plementary information for prediction
of type 2 diabetes, and, together, mod-
estly improve the accuracy of standard
clinical models of diabetes prediction.
Future studies should test the effect
of a combined type 2 diabetes predic-
tion model in high-risk and multi-ethnic
populations and seek to understand
how this information may be used to
target clinical interventions for the pre-
vention of type 2 diabetes in subpopu-
lations with the highest metabolic risk.
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