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Abstract

Activated ALK and ROS1 tyrosine kinases, through gene fusions, has been found in lung

adenocarcinomas and are highly sensitive to selective kinase inhibitors. This study aimed at

identifying the presence of these rearrangements in human colorectal adenocarcinoma (CRC)

specimens using a 4-target, 4-color break-apart fluorescence in situ hybridization (FISH) assay to

simultaneously determine the genomic status of ALK and ROS1. Among the clinical CRC

specimens analyzed, rearrangement-positive cases for both ALK and ROS1 were observed. The

fusion partner for ALK was identified as EML4 and the fusion partner for one of the ROS1-

positive cases was SLC34A2, the partner for the other ROS1-positive case remains to be

identified. A small fraction of specimens presented duplicated or clustered copies of native ALK

and ROS1. In addition, rearrangements were detected in samples that also harbored KRAS and

BRAF mutations in two of the three cases. Interestingly, the ALK-positive specimen displayed

marked intra-tumoral heterogeneity and rearrangement was also identified in regions of high-grade

dysplasia. Despite the additional oncogenic events and tumor heterogeneity observed, elucidation

of the first cases of ROS1 rearrangements and confirmation of ALK rearrangements support further

evaluation of these genomic fusions as potential therapeutic targets in CRC.

Implications—ROS1 and ALK fusions occur in colorectal cancer and may have substantial

impact in therapy selection.

Introduction

Activation of proto-oncogenes by genomic rearrangements resulting in the fusion of two

unrelated genes was identified in leukemias and lymphomas decades ago and is an
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extensively explored mechanism of tumorigenesis as well as a basis for classification of

hematopoietic neoplasms (1, 2). More recently, similar phenomena have been identified in a

variety of solid tumors. Among these, rearrangement of the anaplastic lymphoma kinase

(ALK) gene, originally identified in association with anaplastic large cell lymphoma (3), has

been implicated in lung adenocarcinoma. Activation of ALK through gene fusions in lung

cancer has been reported in approximately 5% of unselected lung adenocarcinomas, with

increasing incidence when some clinicopathologic selection criteria are applied (4-17). The

importance of this molecular diagnosis is that it predicts benefit from targeted kinase

inhibitors. Patients with advanced ALK+ lung cancers, when treated with ALK inhibitors

(e.g., crizotinib), have shown dramatic clinical response (18). The v-ros avian UR2 sarcoma

virus oncogene homolog (ROS1) encodes a tyrosine kinase which shares significant

homology with ALK and is activated by fusion events in 1.2-2.6% of lung cancer. Crizotinib

is also clinically effective in lung cancer patients harboring these ROS1 rearrangements

(19-21). ROS1 gene fusions have also been found in many other tumor types beyond lung

cancer (22).

Colorectal cancer (CRC) is a major cause of cancer deaths worldwide. However, because

existing therapies can be toxic, more specific therapeutic regimens such as targeted agents

have been sought to improve the outcomes and quality of life of CRC patients. Efforts to

identify alterations that could predict benefit from a targeted therapy approach in CRC have

proven difficult. Whilst KRAS mutation analysis is an accepted molecular approach in CRC,

unlike the demonstration of EGFR mutation or ALK rearrangement in NSCLC which are

used to select patients for targeted therapies, KRAS mutational status is instead used to

exclude patients unlikely to benefit from monoclonal anti-EGFR therapy. Descriptions of

fusion events such as ALK fusions in CRC have been rare as summarized in Table 1. In

studies using reverse-transcriptase polymerase chain reaction (RT-PCR) for EML4-ALK

fusions, no ALK rearrangements were found among 48 cases (8) and 96 cases (23) of CRC

tested. ALK rearrangements were also not found by FISH in 12 colorectal neuroendocrine

carcinoma cases (24), but ALK gene copy gain or amplification were found in 26 of 756

colorectal carcinoma cases(25). On the other hand, , EML4-ALK gene fusions were detected

in 2 of 83 (2.4%) CRC specimens through exon array profiling (9), the PRKAR1A-ALK

fusion was found in CRC by full exome sequencing(26), and the C2orf44-ALK fusion was

found in 1 out of 40 (2.5%) CRC specimens tested by next generation sequencing (27). In

this case, the in-frame fusion C2orf44-ALK resulted from a 5 megabase (MB) tandem

duplication. The authors reported a ∼90-fold increase in 3′ ALK expression, suggesting that

the C2orf44-ALK fusion transcript resulted in ALK kinase overexpression. Based on the

presence of ALK rearrangements in CRC, and due to the extensive homology between ALK

and ROS1, we hypothesized that ROS1 genes may also be activated by gene fusions in CRC.

Although there has been no report of ROS1 activation in CRC to date, Lee et al (2013)

recently reported 23 of 495 gastric adenocarcinoma cases (4.6%) with high level of ROS1

expression by immunohistochemistry (28). Of these 23 cases, 3 were positive for gene

rearrangement by FISH break-apart, two of which were found to present the SLC34A2-ROS1

(S4:R32) fusion by RT-PCR (28). Additionally, in 2011, Gu et al reported 2 of 23 cases of

cholangiocarcinoma that were positive for the GOPC (FIG)-ROS1 gene fusion using

phosphotyrosine signaling profiling (mass spectrometry) followed by 5′RACE (29).
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Overall, these findings suggest that an unrecognized subset of CRC may harbor genetic

alterations predicting response to crizotinib and other targeted therapies. We herein analyzed

the frequency of ALK and ROS1 rearrangements in specimens from patients with metastatic

CRC via FISH. In addition, we sought to identify the fusions partners in rearranged

specimens through RT-PCR. Moreover, patients who harbored atypical ALK FISH patterns

were further analyzed by RT-PCR to determine possible rearrangements not detectable by

FISH based on classically described definitions of FISH positivity (i.e. C2orf44-ALK).

Materials and Methods

Patients and Tissue Microarrays (TMA)

The tissue microarray was prepared using formalin fixed paraffin embedded (FFPE) CRC

tissue specimens from 268 patients enrolled in the Australian Gastrointestinal Trials Group

Randomized Phase III MAX Study(30), including all patients with adequate tissue available.

These patients are representative (clinical, pathological characteristics) of the MAX phase

III clinical trial population, as previously reported(31). All patients had histologically

confirmed colorectal adenocarcinoma. Three tumor tissue cores per patient were distributed

in 10 blocks, making up a 12×8 grid of cores on each slide. Thirty-nine of the patients were

duplicated, and three were triplicated in the TMA for quality control. Institutional review

board-approved informed consent was obtained by the MAX trial investigators for

biomarker evaluation. Additional slides from the original pathology blocks of the positive

samples were also made available for PCR and investigation of intra-tumoral heterogeneity.

FISH Assays and Analyses

The TMA slides were subjected to a FISH assay using a novel 4-color, 4-target ALK/ROS1

break-apart probe (Abbott Molecular) developed to determine genomic status of ALK and

ROS1 in the same cells. ALK gene sequences were labeled in SpectrumRed (3′ALK) and

SpectrumGreen (5′ALK); fused 5′/3′ ALK signals were classified as normal, whereas split

5′-3′ ALK by >2 diameters of the signal, and single 3′ALK were classified as abnormal (32).

3′ALK doublets-single green (RGR or RRG) was expected as the FISH pattern for the

C2orf44-ALK fusion (27), thus this pattern was considered positive atypical. ROS1 gene

sequences were labeled in SpectrumAqua (3′ROS1) and SpectrumGold (5′ROS1); fused

5′-3′ROS1 signals were classified as normal, whereas split 5′-3′ROS1 signals by >1 signal

diameter, and single 5′ROS1 or single 3′ROS1 signals were classified as abnormal. For each

patient, at least 50 tumor cells in two cores were scored. Variant patterns, such as the

appearance of doublets or pairs, were annotated. A signal doublet was defined as the

presence of two copies of the signal for a given target placed adjacently, that is, separated by

≤1 diameter of the average signal diameter; paired signals were defined as two fusion

signals placed adjacently but separated by 1-2 diameters of the average signal. Doublet and

paired signals were observed in hybridizations with both ALK and ROS1 probes and, when

present in >10% of cells, the specimen was classified as atypical. Some specimens displayed

both fusion signal doublets and pairs, in which case they were included in the doublet

category.
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Using the same ALK/ROS1 probe described above, additional FFPE slides of the resection

blocks for the ALK+ patient were investigated for intra-tumoral heterogeneity. The FISH

assays were performed using the Zymed Spot-Light Tissue Pretreatment kit (Invitrogen) in

the TMAs and the Vysis Paraffin Pretreatment IV and Post-Hybridization Wash Buffer Kit

(Abbott Molecular) in the sections, per manufacturers' instructions. Analysis was performed

using interference filters sets for blue (DAPI), green (FITC), red (Texas Red), turquoise

(Aqua) and yellow (Gold). Monochromatic images were acquired for each interference filter

and merged using the CytoVision application (Leica Microsystems).

Reverse Transcriptase PCR

To identify the fusion partner for ALK and ROS1, reverse transcriptase (RT)-PCR was

carried out as described using the SuperScript III First-Strand Synthesis System (Invitrogen)

with previously published ALK and ROS1 primers; the ALK primer was located in exon 20

(ALK Rev20; (13)), whereas the ROS1 primer was located in exon 34 (ROS1 E34R; (33)).

First-strand synthesis was carried out as above followed by a 20-minute RNaseH digestion

at 37°C. Individual PCR reactions were carried out to amplify either EML4-ALK or

C2orf44-ALK, using previously published primers for exon 6, exon 13 and exon 18 of EML4

and exon 20 of ALK (ALK Sanders R20 (13) and an in-house primer for C2orf44

(C2orf44fwd1)). Likewise, individual PCR reactions were carried out to amplify either

SLC34A2-ROS1, CD74-ROS1, or SDC4-ROS1 using the previously published primers

(SLC34A2:E4F, CD74:E5F, ROS1:E34F (20)) along with a primer to SDC4 of our design

(SDC4-E2F; (33)). PCR conditions for detecting the ALK and ROS1 fusion partners included

an initial denaturation at 95°C for 5 min followed by 10 cycles of touchdown PCR and 30

cycles of PCR. PCR products were resolved on a 2% agarose gel. Positive PCR products

were excised from agarose gel, purified (Wizard SV Gel and PCR Clean Up Kit; Promega),

and sequenced. All primer sequences are listed in Supplementary Table 1.

Microdissection and Mutation Analysis

KRAS and BRAF mutational analysis was performed initially on CRC specimens used in the

TMA using high-resolution melting point (HRM) PCR as previously reported (34).

Subsequently for specimens where ALK or ROS1 rearrangements were identified with KRAS

or BRAF mutations, tumor areas were identified and areas for differential microdissection

were mapped based on parallel Hematoxylin and Eosin stained slide. 4μm sections were

deparaffinized, hematoxylin counterstained and microdissected by scalpel point under

microdissecting microscope. Microdissected material was washed with 70% ethanol, air

dried, and resuspended in lysis buffer and DNA extracted (Qiagen QIAamp DSP DNA

FFPE Tissue Kit (#60404) using manual extraction with elution into 30 microliters of

elution buffer.

For first round mutational analysis, DNA samples from selectively microdissected areas

were PCR amplified with primers flanking KRAS exon 2 as previously described (35),

followed by Sanger DNA sequencing. Positive samples for mutation by Sanger sequencing

were not further evaluated, negative samples were evaluated by HRM curve to achieve

higher analytical sensitivity. Briefly, DNA samples from selectively microdissected areas

were PCR amplified with primers flanking KRAS exon 2 on the Roche LightCycler 480
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using the Roche LC480 High Resolution Melting Master Kit (#04909631001). Resulting

real-time PCR curves were evaluated for perturbations in the melting curve profiles with

appropriate controls. The HRM assay was estimated to have an analytical sensitivity of

∼5% based on dilution studies.

Results

Demonstration of ALK and ROS1 Fusions in CRC

Of the 268 patient specimens originally included in the tissue microarray, 236 had evaluable

FISH results defined as at least 50 tumor cells in two cores. The cutoff threshold for

positivity was identified as ≥15% of cells displaying patterns compatible with

rearrangement, based on the distribution of relevant patterns in the cohort with application

of evaluation of mean + 3× standard deviation of signal and beta inverse function (data not

shown). Two cases (0.8%) demonstrated FISH patterns consistent with ROS1

rearrangement, predominantly single 3′ROS1 signals (Figures 1A, B). One case (0.4%)

demonstrated a pattern consistent with ALK rearrangement, and it also had predominantly

single 3′ALK signals (Figure 1C). The atypical pattern 3′ ALK doublets (3′/5′/3′ALK)

associated with the C2orf44-ALK fusion were identified in 7 cases (3%), subjected later to

RT-PCR testing. Other signal variants were identified for both ALK and ROS1, including 25

cases with 3′/5′ fusion ALK doublets (10.6%), and 12 cases each (5.1%) with 3′ROS1

doublets (3′/5′/3′ROS1) and 3′/5′ fusion doublets for ROS1.

In patient #406 (ALK positive), the primary tumor site was the rectum with metastases of

lymph nodes and lung. In patient #38 (ROS1 positive), the primary tumor site was the

ascending colon with metastases in lymph nodes and liver. In patient #100 (ROS1 positive)

the primary tumor site was the rectum and the sigmoid colon with metastasis in the lung.

These patients were, respectively, 84 (female), 78 (male) and 69 (female) years old at the

time at which their metastatic disease was diagnosed..

Original pathology blocks from the identified cases were evaluated by RT-PCR to further

verify the presence of fusion events. RT-PCR spanning previously published ROS1

breakpoints paired with specific primers for known fusion partners of ROS1 was employed.

Of the two cases demonstrating FISH patterns consistent with ROS1 fusion events, one was

confirmed by RT-PCR to harbor a SLC34A2-ROS1 fusion (exons 4 and 34, respectively;

Figure 1D) while the second case was negative for all known fusion partners of ROS1.

Similarly, RT-PCR assays spanning previously published ALK breakpoints paired with

specific primers for known fusion partners of ALK were employed. The case identified as

consistent with ALK rearrangement demonstrated the presence of an EML4-ALK

rearrangement (exons 6 and 20, respectively; Figure 1E). The seven cases identified as

atypical with 3′ALK doublets (3′/5′/3′ ALK fusion) were all negative for known fusion

partners of ALK, including C2orf44. Specimens with other variants were also tested, when

available, by RT-PCR and no fusion was detected.

Of note, the specimen with SLC34A2-ROS1 fusion and the ALK+ case were previously

classified as positive for BRAF [c.1799T>A (p.V600E)] and KRAS [c.35G>C (p.G12A)]

mutations, respectively, during routine clinical testing.
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Identification of Intra-Tumoral Heterogeneity

In the case identified with ALK rearrangement, three tissue cores containing tumor were

subjected to analysis, however only two of the three cores demonstrated the finding of ALK

rearrangement by FISH. Pathologic evaluation confirmed the presence of tumor in the core

negative for ALK rearrangement, and confirmed morphology of the tumor compatible with

the other two tissue cores. This finding was suggestive of intratumoral heterogeneity, which

was further explored by evaluation of two tissue blocks from the source material. Multiple

tissue areas from each of two tumor blocks were selected for additional FISH evaluation.

Areas were marked on a parallel H&E stained section, and each region was separately

evaluated for the presence of ALK rearrangement by FISH. Analysis of one block

demonstrated a marked separation between areas of tumor that were positive and negative

for ALK rearrangement by FISH (Figure 2A). Analysis of the second block demonstrated

multiple areas of tumor with positive and negative patterns for ALK rearrangement in a more

interposed distribution (Figure 2B). Histologic evaluation demonstrated that some of the

tissue areas identified as positive for ALK rearrangement were pathologically best classified

as high-grade dysplasia (Figures 2C, D).

Given that the specimen with heterogeneity for ALK rearrangement was classified as KRAS

positive during routine clinical analysis, we sought to determine whether the ALK status

overlapped with KRAS status within sub-regions of the tumor. Areas of tumor which were

parallel to those evaluated by FISH were separately microdissected and KRAS mutation

status ascertained by Sanger sequencing and, when negative, also by high-resolution melting

curve analysis. These analyses demonstrated that some areas of the tumor retained positivity

for KRAS mutation (Figure 3A) while other regions showed all four possible combinations

of ALK/KRAS status (Figure 3B).

The finding of intratumoral heterogeneity with respect to both ALK and KRAS alterations

also led to the question of whether such heterogeneity was observed in either case with

ROS1 rearrangement. However, no evidence of intratumoral heterogeneity with respect to

ROS1 rearrangement was identified, therefore further analysis of intratumoral heterogeneity

BRAF mutation in the ROS1+ case was not pursued.

Discussion

Previous reports of gene fusions involving ALK in CRC indicate that these events are rare,

and our findings are consistent with reported studies demonstrating a low but detectable rate

of ALK rearrangement in CRC. In addition, this study is the first to demonstrate a similarly

low but detectable rate of ROS1 rearrangement in CRC. The demonstration of a fusion

product by RT-PCR in two of the three rearrangement-positive cases confirms the FISH

findings and serves to underscore the importance of further characterization of these fusion

events in CRC. The absence of a detectable fusion product in the third case (ROS1 positive)

is likely attributable to an unknown fusion partner. These findings have potentially

significant therapeutic implications, as identification of these rearrangements may open the

possibility for targeted therapy.
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Of particular note, 2 of the 3 cases positive for fusion events were found in concert with

oncogene point mutation events (KRAS and BRAF). This is in contrast to the predominant

findings in NSCLC, which show that concurrent ‘driver’ mutations such as EGFR mutation

and ALK rearrangements may occur but are uncommon (36-39). This result is of particular

clinical relevance as attempts to identify CRC cases harboring these fusion events cannot

benefit from an enrichment strategy where patients with KRAS or BRAF mutations are

excluded from further testing.

A surprising result in this study was the demonstration of marked intratumoral heterogeneity

for both KRAS mutation and ALK rearrangement status. Moreover, the identification of all

four combinations of KRAS and ALK status throughout the specimen was particularly

unexpected, as was the identification of a region of high-grade dysplasia harboring both

molecular alterations. Multiple studies have indicated that not only is KRAS mutation an

early event in colorectal carcinoma tumorigenesis, but it shows a very low discordance rate

between primary tumor and corresponding metastasis (40, 41). These findings often support

the notion that KRAS mutation is both homogeneously distributed and required for tumor

perpetuation. However, recent studies have demonstrated that marked intratumoral

heterogeneity does exist (42). Importantly, the current study was performed retrospectively,

and none of the three patients identified with fusion events were treated with targeted

therapy agents specific to those fusion products prior to death.

High-grade dysplasia is the precursor lesion to invasive carcinoma in the lower

gastrointestinal tract, and the identification of a region of high-grade dysplasia harboring

both KRAS mutation and ALK rearrangement is intriguing and creates the basis for several

hypotheses explaining mechanisms by which all four combinations of KRAS and ALK status

might exist through clonal evolution (Figure 3). In each of these hypotheses, the originating

cell is negative for both alterations, and a gain of one alteration is the first step. One

possibility is that the gain of alteration is step-wise (Figures 4A, B), in which either KRAS or

ALK is sequentially gained in the neoplastic population. In order for this ‘sequential gain’

hypothesis to then yield a fourth species, the population must, by definition, undergo a ‘loss

event’. Alternatively, the gains of alterations could first be in parallel, in which separate

populations of cells independently gain either KRAS mutation or ALK rearrangement (Figure

4C). This ‘separate gain’ hypothesis would then require that a second event occur in order to

generate a fourth species. Lastly, the possibility that the technology used to interrogate

KRAS mutation status and ALK rearrangement is not sufficiently sensitive to determine

whether the alterations actually occur in the same cells is a consideration, and gives rise to a

‘separate clones’ hypothesis (Figure 4D). Among these possibilities, we regard the separate

gain hypothesis and the sequential gain hypothesis with ALK rearrangement occurring prior

to KRAS mutation to be the least likely of these events, largely because of the substantial

volume of data demonstrating KRAS mutation commonly occurring in adenomatous lesions.

These potential hypotheses regarding the genesis of the observed spectrum of sub-species in

this heterogeneous lesion have several putative functional considerations. One possibility is

that KRAS mutation is a ‘driver’ and ALK rearrangement observed functionally acts as a

‘passenger’. This explanation does not sufficiently explain the finding of ALK+/KRAS-

regions. Similarly, the ALK rearrangement may be a modulator of tumor growth, which is
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also difficult to reconcile with the finding of ALK+/KRAS- regions. Another possibility, best

hypothesized in the ‘separate clones’ explanation is that KRAS and ALK represent dual

drivers with subclonal evolution. This hypothesis is best considered in the context of

underlying genomic instability, which could fuel random events expressed as subclonal

heterogeneity.

The findings of this study have several specific implications with regard to future analysis of

colorectal carcinoma. These data strongly support further evaluation of colorectal carcinoma

for fusion events in ALK and ROS1, and further suggest the possibility that these events may

serve as targets for therapy in CRC. As mentioned, the overlap of these fusions with both

KRAS and BRAF mutations is a potential confounding factor, as not only does it impact

approaches to screening, but these alterations may also modulate responsiveness to targeted

therapy agents. Based on our findings, it may be challenging to identify a substantial number

of patients with a uniform molecular profile with regard to fusion events and mutation

status. The screening process itself may be impacted by these findings, which suggest that

multiple regions of tumor may need to be evaluated. Furthermore, these findings highlight

the technological hurdles involved in evaluation of tumor heterogeneity, and underscore the

importance of methodologies to evaluate mutation status on a single-cell in situ basis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A, B) FISH images showing ROS1 rearrangement in two specimens as demonstrated by

single 3′ ROS1 (aqua) signals; C) FISH image demonstrating ALK rearrangement based on

single 3′ALK (red) signals; D) Sequencing of RT-PCR product from the sample depicted in

panel A confirming ROS1 fusion with SLC34A2; E) Sequencing of RT-PCR product from

the sample depicted in panel C confirming EML4-ALK fusion.
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Figure 2.
A, B) Two blocks from the original specimen utilized for TMA demonstrated areas with

varying patterns of ALK rearrangement and KRAS mutation status. Red circled areas indicate

ALK rearranged and mutated KRAS (ALK+/KRAS+). Blue circled areas indicate ALK wild-

type and KRAS mutated (ALK-/KRAS+). Green circled areas indicated ALK rearranged and

KRAS wild-type (ALK+/KRAS-). Black areas indicate wild-type for both alterations (ALK-/

KRAS-). C, D) Higher magnification of the regions indicated in panel E by yellow arrows

demonstrates that some regions are best classified as high-grade dysplasia. FISH analysis in

region F was positive for ALK rearrangement and FISH analysis in region G was negative

for ALK rearrangement (FISH images not shown).
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Figure 3.
A) Representative sequencing findings of KRAS mutated area. B) Representative high-

resolution melting analysis of regions negative for KRAS mutation by sequencing. Blue

curves show overlap of tested regions with wild-type control, red and green show positive

controls (2 distinct mutations)
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Figure 4.
Possible mechanisms to explain findings of different combinations of ALK rearrangement

and KRAS mutation status.
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