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Abstract

We live in a world imbued with a rich mixture of complex sounds. Successful acoustic

communication requires the ability to extract meaning from those sounds, even when degraded.

One strategy used by the auditory system is to harness high-level contextual cues to modulate the

perception of incoming sounds. An ideal substrate for this process is the massive set of top-down

projections emanating from virtually every level of the auditory system. In this review, we provide

a molecular and circuit-level description of one of the largest of these pathways: the auditory

corticocollicular pathway. While its functional role remains to be fully elucidated, activation of

this projection system can rapidly and profoundly change the tuning of neurons in the inferior

colliculus. Several specific issues are reviewed. First, we describe the complex heterogeneous

anatomical organization of the corticocollicular pathway, with particular emphasis on the

topography of the pathway. We also review the laminar origin of the corticocollicular projection

and discuss known physiological and morphological differences between subsets of

corticocollicular cells. Finally, we discuss recent findings about the molecular micro-organization

of the inferior colliculus and how it interfaces with corticocollicular termination patterns. Given

the assortment of molecular tools now available to the investigator, it is hoped that his review will

help guide future research on the role of this pathway in normal hearing.
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1. Introduction

Sounds rarely exist in isolation. The temporal features used to extract meaning from sounds

evolve over multiple and overlapping time scales. For example, in speech, phonemic cues
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evolve over milliseconds, syntactic cues over hundreds of milliseconds, and semantic cues

over seconds. It is currently not known how are these temporally-discordant streams are

integrated. A potential substrate for such processing is the hierarchically-organized, massive

set of descending projections found in the auditory system. A specific subset of these

projections, the corticocollicular (CC) system, has received substantial attention given its

large size and complexity. In addition, a large number of studies have demonstrated that

stimulation of the auditory cortex (AC) significantly alters inferior colliculus (IC) response

properties across multiple species, including bats (Zhang, Suga and Yan 1997; Yan and

Suga 1998), mice (Yan and Ehret 2001; Yan and Ehret 2002; Yan, Zhang and Ehret 2005),

ferrets (Bajo et al. 2010), rats (Sun et al. 2007; Anderson and Malmierca 2013) and cats

(Mitani, Shimokouchi and Nomura 1983). Despite the wealth of data obtained from these

physiological studies, our understanding of the neural circuits underlying these changes

remains poor. In other descending pathways, such as the corticothalamic pathway, detailed

analyses of heterogeneities in synaptic morphology and physiology have led to insights

about the functional roles of this pathway (Reichova and Sherman 2004; Groh et al. 2008;

Ojima and Murakami 2011). Similarly, it is likely that molecular and circuit level analyses

of the CC pathway will uncover the mechanisms by which the AC influences the IC.

This review addresses unanswered questions emerging from physiological studies involving

recordings in the IC after cortical stimulation or silencing. For example, one of the dominant

theories of CC function (the “egocentric selection” theory) suggests that the AC can shift the

peaks of tuning functions of IC neurons towards the peak of the tuning functions from the

cortical source (Suga 2012). In the frequency domain, this theory implies that IC neurons

receive excitatory AC input across more than one frequency channel, such that conditioned

frequencies away from an IC neuron's characteristic frequency can influence its tuning

function. The difference in characteristic frequency between the AC stimulation site and the

IC neuron being modulated is quite variable, and can be as much as 10 kHz in the mouse,

which corresponds to at least 0.5-1.0 octaves (Yan and Ehret 2002). This difference in

characteristic frequencies suggests that individual IC neurons may receive input across a

broad range of frequencies, pointing to a substantial degree of convergence in this pathway.

In addition, shifts in a frequency tuning curve that involve decreases in responses to sound at

the characteristic frequency imply that the CC pathway must involve frequency-specific

inhibition of responses to ascending acoustically-driven input. Finally, the overwhelming

majority of physiological studies have been done in the central nucleus of the IC (CNIC),

while most of the CC pathway has terminations in the non-primary regions of the IC,

suggesting a potential role for local-circuit interactions in the expression of corticofugal

modulations of IC tuning functions. Other theories besides egocentric selection have been

postulated about the role of feedback in sensory systems, such as an involvement in attention

(Baluch and Itti 2011) or predictive coding (Bastos et al. 2012). The latter, which may be

manifested as stimulus-specific adaptation, has been examined in the CC pathway of rats,

and has been shown to be highly heterogeneous. That is, silencing of the AC led to no

change (approximately 50% of IC neurons), or to an increase or a decrease in the degree of

stimulus-specific adaptation in IC neurons (Anderson and Malmierca 2013), suggesting that

the impact of the AC on acoustic responses IC is non-uniform and may depend on which

specific subcircuits within the CC system are stimulated or suppressed.

Stebbings et al. Page 2

Hear Res. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Thus empirical observations of modulation in the CC pathway have generated a series of

questions that require answers at the molecular and circuit-level of analysis. However, we

have only now begun to understand how the circuits that underlie this pathway are

organized. Given recent interest in the role of top-down modulation across cognitive and

sensory systems (Boly et al. 2011; Gazzaley and Nobre 2012; Gilbert and Li 2013), and the

expansion of optical and molecular tools now available, this review will provide

investigators with an integrated view of these projections which may be useful in furthering

our understanding of this system at a detailed circuit level. Given recent comprehensive

reviews of the physiology of the CC pathway (Mei and Chen 2010; Bajo and King 2011;

Suga 2012), this review focuses on molecular and circuit-level analyses.

2. Anatomical considerations

Depending on the species, there are at least 5 distinct AC areas and at least 3 distinct IC

areas (many would argue that there are more for both regions), with some of these areas

showing tonotopy and others not. Therefore, two core organizational questions should be

answered to better understand the function of the CC system. First, which regions of the AC

project to which regions of the IC? Second, to what degree is the tonotopic organization of

the AC retained in the CC pathway? These questions have been addressed across a range of

species and will be summarized below.

Anatomical studies have shown that virtually all regions of the AC, including those with

non-tonotopic organization and/or complex response properties, project heavily to the non-

primary portions of the ipsilateral IC, primarily to the dorsal cortex (DC) and external cortex

or lateral nucleus (in cat), with a minor contralateral projection (See Figure 1 for a summary

diagram across species), though this pattern may differ in primates ((Fitzpatrick and Imig

1978), see Figure 1F and discussed further below). For the purposes of this review, we will

refer to the external cortex and lateral nucleus of the IC, which are likely homologous

structures (Loftus et al. 2008), as the lateral cortex or LC, as proposed by Loftus et al. In

addition, we will refer to the dorsal cortex and the pericentral nucleus of the IC (FitzPatrick

1975) as the dorsal cortex (DC). It is important to note, however, that the three-dimensional

subnuclear architecture of the IC contains considerably more complexity than this tripartite

system would suggest (Morest and Oliver 1984), and whenever possible we include

descriptions of projections to additional subdivisions in this review. Evidence of a

significant projection to the CNIC has been mixed, as described previously (Malmierca and

Ryugo 2011), and will be discussed below.

Corticocollicular termination patterns in the IC show high regional and sub-regional

specificity. For example, in most species, injections into the primary auditory cortex (A1) or

the anterior auditory field (AAF) produce two strips of labeling, generally coplanar with

known isofrequency laminae of the IC; one located in the LC and the other in the DC, often

encroaching into neighboring regions, such as the CNIC or the caudal cortex (CCx, see

Figure 1). There is additional heterogeneity of the CC projection to individual nuclei that has

not yet been explored. For example, the projection to the LC appears to contain layer

specificity (seen in Figures 1A, B and E), and in rat and cat, appears to show distinct

clustering (evident in Figure 1B and E, inset). In addition, in the DC of the cat, the tonotopic
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areas of A1 and AAF project weakly to layer 1, strongly to layers 2-3 and moderately to

layer 4 (Winer et al. 1998). Nonprimary parts of the AC also project prominently to the IC,

and show some similarities and differences compared to the projections from A1 and AAF.

The nonprimary areas tend to project to the most superficial parts of the LC and DC as well

as the intercollicular zone in rat and the rostral pole and intercollicular tegmentum in cat

(Andersen, Snyder and Merzenich 1980; Herbert, Aschoff and Ostwald 1991; Winer et al.

1998). This projection to the superficial portions of the IC is an interesting point of

divergence from cortical projections to the superior colliculus, where projections from

cortical regions sitting higher in the processing hierarchy tend to project to deeper regions of

the colliculus (Harting, Updyke and van Lieshout 1992). In addition, as pointed out by

Winer et al. (1998), another somewhat surprising finding is that the classically

nontonotopically-organized areas such as the insula or temporal cortex have projections to

the IC that were as highly focused as those from the primary auditory cortical regions.

The degree to which the CC system retains the tonotopic relationship present in the AC

carries significant importance because of the frequency-specific effects of AC stimulation on

the IC, as described above. With few exceptions (Andersen, Snyder and Merzenich 1980;

Budinger et al. 2013), most anatomical tracing studies of the CC pathway studies did not

involve tonotopic mapping of the AC prior to tracer injection, and therefore tonotopic

relationships were inferred based on known maps and the examination of whether changes

in injection site produce a systematic change in the location of the tracer in the IC,

specifically in the CNIC with its known isofrequency laminae. This point of weakness in the

literature will likely improve as optical mapping techniques become more commonly used in

conjunction with anatomical tracing (Takemoto et al. 2013; Budinger et al. 2013). In an

early study by Anderson et al. in the cat (1980), the investigators systematically injected

tracer along the electrophysiologically-characterized tonotopic axis of the AC and found a

systematic change in the location of label in the IC. Other investigators have seen similar

results (Herbert, Aschoff and Ostwald 1991; Saldaña, Feliciano and Mugnaini 1996), though

the latter work did not involve electrophysiological verification. There were also some

differences in the AC to IC topographic relationship across different subnuclei of the IC. For

example, in the rat, injection of retrograde tracer into presumed high- and low-frequency

parts of the DC (ventral vs. dorsal, respectively), produced somatic label in the presumed

high- and low-frequency parts of Te1 (temporal area 1, a presumed homolog of A1),

respectively. However, the retention of point-to-point topography was less evident in LC,

which appears to receive a substantial input from area Te2 (temporal area 2, a nonprimary

AC region (Herbert, Aschoff and Ostwald 1991)). In addition, Winer et al. (1998) observed

substantial divergence and convergence in the CC pathway. They commented that very

small injection sites in the AC often produced label across multiple areas of the IC and that

each IC area received input from multiple regions of the AC. These data suggest that while

there may be a core set of projections that contain point-to-point topography between the

AC and IC, there are additional projections that are more diffuse.

Two recent studies highlight heterogeneities in the topographic relationship between

neighboring regions of the AC and their projection targets in the IC. Budinger et al. placed

dual anterograde tracers into frequency-restricted sites in the gerbil AC and found that the

degree of retained local organization varied along the central auditory system. In the
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corticoreticular and corticothalamic systems, strong point-to-point topography was evident

such that high- and low-frequency regions of the AC projected to different regions of the

thalamic reticular nucleus and the medial geniculate body. In contrast, high- and low

frequency descending projections were observed to strongly overlap in the superior olive. In

the IC, the high-frequency CC fibers remain segregated from the low-frequency fibers only

in portions of the DC (high-frequency fibers project anterior to low-frequency fibers), but

intermixed in other parts of the DC, as well as in the LC and CNIC (Budinger et al. 2013).

In the guinea pig, Markovitz et al. placed electrode arrays into the IC and AC to investigate

the mapping of CC inputs. They found strong point-to-point topography between AC and

IC, though they found the breadth of tuning to be more variable. Certain sites had very sharp

tuning, while other sites in the IC received AC inputs across a range of frequencies at least

an octave in width (Markovitz, Tang and Lim 2013).

These studies indicate that a tonotopically-organized set of descending projections exists

that could support frequency-specific effects of CC stimulation, such as the frequency-

specific inhibition required to alter the characteristic frequency of an IC neuron. However,

inputs that are necessarily off-CF, which would be needed to produce egocentric selection in

the frequency domain, or modulations of responses to sensory features not known to be

systematically mapped in the cortex, such as duration tuning (Ma and Suga 2001), may also

have a substrate in the convergent non-tonotopic projections from the AC to the IC.

One point of contention in the CC anatomy literature is whether there are descending

projections to the central nucleus of the IC, and, if so, are they species-specific? Most

studies acknowledge the possibility of projections to the central nucleus, but only in

primates. In an early primate study, Fitzpatrick and Imig used injections of tritiated proline

to anterogradely label projections from the AC of the owl monkey (Fitzpatrick and Imig

1978). Following injections into A1, labeling in the CNIC appeared as a band of silver

grains oriented parallel to known isofrequency contours in the IC (see Figure 1F).

Interpretation of these findings depends on the definition of the CNIC. In this case, the

medial area labeled as CNIC appears to occupy what is generally considered DC in most

anatomical divisions in other species (Andersen, Snyder and Merzenich 1980; Herbert,

Aschoff and Ostwald 1991; Saldaña, Feliciano and Mugnaini 1996; Winer et al. 1998).

However, modern studies in the same species appear to roughly confirm Fitzpatrick and

Imig's subdivisions (Hackett, Takahata and Balaram 2011; Engle et al. 2014). Irrespective of

differences in definitions of subdivisions, granting the CNIC space medially it is still clear

that most of the projections are to the CNIC and not to the DC and LC, curiously, which are

most prevalent in other species (Andersen, Snyder and Merzenich 1980; Herbert, Aschoff

and Ostwald 1991; Saldaña, Feliciano and Mugnaini 1996; Winer et al. 1998). This finding

may indicate that CC projections differ between primates and other species, such as cats and

rats. An important proviso to this interpretation is that it is difficult to distinguish between

terminals and fibers using this technique, raising the possibility that the anterograde signals

seen in the central nucleus were passing fibers. Since then, multiple studies using modern

tracers and electron microscopy have found clear evidence for CC terminals in the CNIC in

rats, cats, gerbils, guinea pig and ferrets (Saldaña, Feliciano and Mugnaini 1996; Winer et al.

1998; Bajo and Moore 2005; Bajo et al. 2007; Nakamoto et al. 2013), though generally in

lower numbers than in other regions of the IC. In cats, the strongest projections to the central
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nucleus, come intriguingly from nontonotopic areas of dorsal and intermediate, part of the

posterior ectosylvian gyrus. Thus, it appears that an AC to CNIC projection exists in all

species studied, though it is generally considerably smaller in size than the projections to the

DC or LC. As pointed out previously (Malmierca and Ryugo 2011), the preponderance of

CNIC projections compared to DC or LC seen in the primate may be related to species-

specific differences, differences in the parcellation of the IC, or tracer-related

methodological issues.

3. Laminar sources of corticocollicular input

The specific layers from which corticocollicular projections derive may have functional

implications. In other descending systems, such as the corticothalamic system, descending

input comes from layer 5 and layer 6, and these neurons are embedded in different cortical

subnetworks, have different intrinsic properties, different patterns of projections to the

thalamus, and possibly, different roles in shaping thalamic function (Ojima 1994; Reichova

and Sherman 2004; Llano and Sherman 2008; Llano and Sherman 2009; Theyel, Llano and

Sherman 2010). Corticocollicular neurons arise from layers 5 and 6 of the cortex (Games

and Winer 1988; Künzle 1995; Doucet, Molavi and Ryugo 2003; Bajo and Moore 2005;

Coomes, Schofield and Schofield 2005; Bajo et al. 2007; Schofield 2009; Slater, Willis and

Llano 2013). Probably due to the relative insensitivity of WGA-HRP compared to more

modern tracing techniques, there is some discrepancy in the literature with regard to the

degree of contribution from layer 6. However, recent investigations using more sensitive

tracers have shown that, in addition to the larger subset of layer 5 CC neurons found in older

studies, there is a smaller subset, about10%, that arise from layer 6 (Schofield 2009).

Several investigators have examined the details of distribution of retrogradely-labeled CC

cells in the AC. For example, Doucet et al. (2003) retrogradely labeled cortical projections

to the IC, the superior olivary complex, and the cochlear nucleus using sequential double

retrograde labeling. Corticocollicular projections outnumbered cortical projections to the

superior olive and cochlear nucleus by at least a factor of 10, confirming that the IC is one of

the most strongly cortically-innervated areas of the auditory system. Further, there was a

distinct laminar distribution of the IC, superior olive, and cochlear nucleus-projecting

neurons within layer 5, suggesting that these three pathways may derive from different

populations of cortical neurons. CC neurons were found to occupy all of layer 5, while those

neurons projecting to the SOC and CN tend to hug the area between layer 5 and 6.

Approximately10-20% of the cells were double labeled, though this may be an

underestimate since no attempt to place tracers in tonotopically-aligned regions in the

subcortical nuclei. In addition, layer 6 CC neurons were also found to project to the IC and

these were located in the most ventral portion of layer 6, abutting the white matter. Only

layer 5 CC neurons were found on the contralateral side.

Schofield (2009) confirmed and extended many of these results. Using spatially restricted

injections of retrograde tracer to the guinea pig IC, and multiple tracers, two bands of cells

were found in the ipsilateral AC, a dense band of cells in layer 5 and a second in deep in

layer 6. In general, layer 5 cells were concentrated in the center of the layer, while layer 6

cells were almost exclusively found in the most ventral part of layer 6, bordering the white
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matter. Layer 6 cells constituted about 10% of the total. Cell morphology in both layers was

both pyramidal and nonpyramidal. Only a very small fraction of layer 6 corticollicular

projections were found contralaterally, and those that were had morphology typical of layer

5 cells.

More recently, physiological and morphological differences were observed between layer 5

and layer 6 CC cells. Slater et al. (2013) retrogradely prelabeled CC cells in the adult mouse

by injecting fluorescent microspheres into the IC. They found that layer 5 CC cells, similar

to layer 5 corticothalamic cells, tended to be pyramidal in shape, with a large, tufted apical

dendrite, produce either regular spiking patterns or rhythmic bursting when depolarized, and

had Ih-mediated rebounds after hyperpolarization. Layer 6 CC cells had expansive and

profuse dendritic branching. These dendrites were quite long - some of them reaching 1000

μm in length, making them some of the longest dendrites in the cortex. They did not fire in

bursts or have Ih-mediated currents. These data suggest that layer 5 and layer 6 CC neurons

receive different sets of inputs from the cortex, and respond to those inputs in different ways

(Fig. 2). The specific roles, physiological properties and specific projection patterns of

layers 5 and 6 neurons are not yet known, though there are some data suggesting that larger

layer 5 cells with tufts extending to layer 1 tend to project to the LC and DC, while smaller

pyramidal cells in A1 project to the CNIC (Bajo and Moore 2005). Clearly more work needs

to be done to clarify the differences, if any, among the different classes of CC cells relating

to their roles in modulation of the IC.

4. Molecular and circuit-level considerations

The IC is a complex and heterogeneous structure. It comprises at least 3 subdivisions,

contains multiple different cell types which are distinguishable based on morphological and

electrophysiological grounds (Morest and Oliver 1984; Faye-Lund and Osen 1985; Peruzzi,

Sivaramakrishnan and Oliver 2000; Ahuja and Wu 2007; Malmierca, Blackstad and Osen

2011), and receives a range of ascending acoustically-driven inputs from several different

brainstem regions involving glutamatergic, GABAergic and glycinergic synapses (Zhang et

al. 1998; Loftus et al. 2004), as well as inputs from neuromodulators such as acetylcholine

(Motts and Schofield 2009). Within the CNIC, there are functional zones that receive

distinct sets of inputs from brainstem nuclei and which respond in differing ways to synaptic

input (Loftus, Bishop and Oliver 2010; Chandrasekaran, Xiao and Sivaramakrishnan 2013),

suggesting a level of functional modularity within the IC beyond that suggested by the

distribution of cell types. In addition, histochemical approaches have revealed a more

complicated compartmental organization within individual regions (Chernock, Larue and

Winer 2004). Finally, intra-collicular connectivity within and across subnuclei, which have

not been well characterized yet, adds an additional level of complexity to this picture

(Saldaña and Merchań 1992; Malmierca et al. 1998; Bajo et al. 1999; Ahuja and Wu 2007).

Precisely how the CC system interfaces with this intrinsic organizational heterogeneity of

the IC is not yet known. We are only now beginning to answer certain basic questions, such

as: What cell types receive CC input? Is CC input excitatory or inhibitory? How does CC

input influence intra-collicular processing? Below, we summarize what is known about the

interface between the CC system and local cellular and molecular architectures of the IC.
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Early investigators had speculated that the CC pathway may be inhibitory (Andersen,

Snyder and Merzenich 1980). This was based on physiological findings that CC inputs

inhibited sound-induced IC responses (Massopust Jr and Ordy 1962; Amato, La Grutta and

Enia 1970). However, electron microscopy of labeled CC synapses in the DC, LC and CNIC

all showed asymmetric terminals, and the presence of small round vesicles in CC synaptic

boutons that are indicative of excitatory synapses (Saldaña, Feliciano and Mugnaini 1996;

Nakamoto et al. 2013). In addition, lesioning of the CC system depressed synaptic release of

labeled aspartate, further suggesting that these projections are glutamatergic (Feliciano and

Potashner 1995). These data demonstrating that the CC pathway is excitatory coexist with

contrary data demonstrating that activation of CC projections can depress responses to

sounds and depress spontaneous activity (Massopust Jr and Ordy 1962; Amato, La Grutta

and Enia 1970; Syka and Popelář 1984; Bledsoe, Shore and Guitton 2003), can generate

IPSPs in IC neurons (Mitani, Shimokouchi and Nomura 1983) and can shift tuning away

from previously responded-to sound features (Suga and Ma 2003). These physiological data

suggest that the CC pathway must in fact activate inhibitory circuitry as well as excitatory

circuitry. One possibility is that the cellular targets of the CC system are inhibitory.

However, only approximately 4% of the neurons targeted by the CC pathway are

GABAergic (Nakamoto et al. 2013). As discussed by Malmierca and Ryugo (2011), this

implies that alternative inhibitory pathways may be involved, such as longer polysynaptic

pathways in the IC, non-GABAergic (e.g. glycinergic) pathways, longer-range pathways

(e.g. corticobulbar, or cascading projections to the olivocochlear system), or, alternatively

that the GABAergic cells by the CC pathway are very highly branched, producing

substantial inhibition out of proportion to their cellular numbers (Nakamoto et al. 2013).

To sort through these possibilities, it will be important to identify and classify the cell types

in the IC that receive CC input. There are multiple IC cell types that have been defined on

morphological, connectional and physiological grounds (Peruzzi, Sivaramakrishnan and

Oliver 2000; Ahuja and Wu 2007; Malmierca, Blackstad and Osen 2011). There are data

suggesting that both commissural and tectothalamic cells receive axosomatic input from the

AC (Coomes Peterson and Schofield 2007; Nakamoto, Sowick and Schofield 2013).

However, most of the inputs from the CC system terminate in the neuropil, primarily on

distal dendrites and spines (Nakamoto et al. 2013), suggesting that the majority of the cell

types receiving CC input and their projection targets have not yet been characterized.

Further, the cells that have been shown to receive AC input have not had any physiological

characterization. Early data suggests that pause-regular cells in the IC receive CC input

(Llano et al. 2014), but more work needs to be done to clarify the cellular targeting of the

CC system. One point that appears to be clear is that the CC system uses VGLUT1

transporters (Ito and Oliver 2010). Expression of VGLUT1 is strong in the cerebral cortex,

while VGLUT2 is expressed in most every region of the ascending auditory pathway

(Hackett, Takahata and Balaram 2011). Although the two are not usually expressed together,

coexpression has been reported, but despite the occasional colocalization, there remains a

separation of the two at the circuit level (Ito, Bishop and Oliver 2011). In addition, back-

labeled CC cells also express VGLUT1, and not VGLUT2 (Ito and Oliver 2010). Together,

these results imply that CC cells are glutamatergic and use the VGLUT1 transporter. This

distinction is important, since it has been speculated that neurons expressing VGLUT1 may
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have a higher capacity for plasticity than those expressing VGLUT2, and may recycle faster

and support higher firing rates (Fremeau et al. 2004; Fremeau Jr et al. 2004). These data are

suggestive of differences in the temporal properties and the potential for plasticity between

‘bottom up’ and ‘top down’ influences on any given IC cell.

4.1. Modularity and layer-specificity of the nonlemniscal IC

An intriguing set of findings by Chernock et al. (2004), revealed regional heterogeneities in

the non-primary (and presumably cortico-recipient) portions of the IC. They applied

histological approaches to the rat IC and found clearly identifiable modules, identifiable as

positive for some combination of several biochemical markers, in layer 2 of the LC as well

as in upper layers of the DC. Modules were found with glutamic acid decarboxylase (GAD),

parvalbumin and acetylcholinesterase (AChE) staining (see Figs 3A and B). The modules

colocalized with nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), and

cytochrome oxidase indicating that these modules are sites of high metabolic activity. No

modularity was reported in immunostaining for glycine, serotonin or calbindin. The border

between intra and extramodular neuropil was sharp. Modules in DC, layer 2 of the LC and

in the rostral pole were distinguished by a population of GAD-positive somatic staining and

a much higher local concentration of terminals than in non-modular parts of these nuclei

(Chernock, Larue and Winer 2004). Other studies have shown the presence of such

modularity and/or patchiness in the monkey, rat and mouse, though not always commented

upon in the text (Paxinos, Watson and Emson 1980; Herbert, Aschoff and Ostwald 1991;

Ono, Yanagawa and Koyano 2005; Ito, Bishop and Oliver 2009; Engle et al. 2014), and

some unresolved questions remain. For example, Herbert et al. (1991) appear to show

NADPH-d staining in the LC that is nonmodular and avoids layer 2, while other studies in

rat (e.g. Chernock et al. 2004) and our own unpublished work in mouse (Fig 3C) suggest

that NADPH-d shows strong modularity and is present in layer 2.

The other major source of heterogeneity has to do with layering in the LC. GABAergic and

glycinergic neurotransmission play important roles in IC physiology (Palombi and Caspary

1996; Wenstrup and Leroy 2001), and molecular markers for these differ in different regions

of the IC. Distinctly higher expression of the vesicular inhibitory amino acid transporter is

found in layer 2 of the LC, a result which is consistent with studies showing GAD staining

in layer 2 of the LC (Ito, Bishop and Oliver 2011). In addition, for the vesicular glutamate

transporters, the labeling of VGLUT1 is densest in the DC and although less dense in the

CNIC and LC (Altschuler et al. 2008), the lack of labeling in layer 2 of the LC is

remarkable. Given that CC cells likely employ VGLUT1(Ito and Oliver 2010), it is

conceivable that the lack of VGLUT1 labeling is due to a paucity CC terminals in this

region. In contrast, circumferential axo-somatic VGLUT2 labeling, thought to be only on

giant GABAergic tectothalamic neurons (Ito, Bishop and Oliver 2009), was seen in layer 2,

not layers 1 and 3 (Altschuler et al. 2008) and appears to be seen preferentially in the

extramodular parts of layer 2.

The modularity of the IC takes on potential importance when considered in the context of

modularity and target layer specificity of the descending CC system. Several investigators

have found that the CC system ends in distinct clusters of terminals in rat and cat (Saldaña,
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Feliciano and Mugnaini 1996; Winer et al. 1998), as shown in Fig. 1a and b. These data

suggest that the CC projections to the LC have a clustered and layer-specific termination

pattern that superficially matches layering and clustering seen across a number of molecular

markers in the LC. In other neural systems previously thought to be homogenous, such as

the patch-matrix organization of the basal ganglia, great progress was made once molecular

heterogeneities were mapped onto connectional heterogeneities (Alexander and Crutcher

1990; Parent and Hazrati 1995). Therefore, it will be important to determine whether the

descending CC and intrinsic mosaic organization of the LC are aligned, interdigitating, or

have some other spatial relationship, and then ultimately to determine the physiological

significance of these relationships.

4.2. Potential lemniscal-nonlemniscal IC relationships

In any survey of the CC system that includes both physiology and anatomy, a fundamental

problem of synthesis across the two levels of investigation arises. Physiological studies have

focused, almost without exception, on the effects of corticofugal modulation in the CNIC,

while anatomical studies show that the vast majority of projections are to the DC and LC.

Exactly how projections from the AC influence neurons in the DC and LC is not known, and

the circuit through which such influences are transferred to the CNIC to cause all the

specific changes shown in physiological experiments is not at all known.

Jen et al. tested the hypothesis that inhibitory LC to CNIC projections mediate changes in

the CNIC after cortical stimulation (Jen, Sun and Chen 2001). In this study, pairing LC

recordings with AC stimulation showed that neurons in the LC increased their

responsiveness in terms of auditory spatial response area, frequency response area and rate

level functions after AC stimulation. In contrast, stimulation of the AC tended to diminish

acoustic responsiveness of CNIC neurons. To examine the potential indirect effects from the

AC to the CNIC, neurons in the CNIC were recorded while the LC was stimulated.

Stimulation in the LC showed a clear inhibitory effect in 42 out of 42 CNIC neurons studied.

Rate intensity functions were drastically reduced, azimuth responsiveness was reduced in all

directions, and frequency tuning curves were narrowed. Application of bicuculine to the

CNIC elevated rate intensity functions, azimuth responsiveness, and broadened frequency

tuning curves but this effect was specific to the low frequency end of the frequency tuning

curves. This finding is intriguing, particularly because experiments in the mouse show that

there can be very different effects on the high or low-frequency side of tuning curves if the

characteristic frequency of stimulated neurons in the AC is higher or lower than the IC

neuron (Yan and Ehret 2002). Other possible explanations exist. For example, given the

demonstration that local collaterals from CNIC neurons branch to innervate large

GABAergic neurons throughout the IC (Ito and Oliver 2014), stimulation of the LC may

cause antidromic activation of CNIC neurons that project to the LC. This may have activated

local GABAergic neurons, producing the above-described inhibition in the Jen et al. study.

Therefore, important questions remain unanswered about the relationship between the CC

pathway and local LC-CNIC circuitry.

Stebbings et al. Page 10

Hear Res. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



5. Summary and conclusions

The projections from the AC to the IC are massive and complex. Anatomically, they are

derived from all regions of the AC and are highly organized, with components that are

tonotopic and other components that are not. In addition, the patterns of CC terminals in the

IC appear to either match or complement the intrinsic expression patterns of several

molecular markers, such as GAD, NADPH-d, AChE, cytochrome oxidase and parvalbumin,

as well as the intrinsic and ascending circuitry to the IC. The descending input to the IC is

derived primarily from cortical layer 5 intrinsically bursting and regular spiking pyramidal

cells, with a smaller component from deep layer 6, though the distributions of terminals

from these two layers and their physiological significance is not yet clear. Finally, although

the physiological data suggest that the CC pathway provides both excitation and inhibition

onto the IC, most of the anatomical data suggest that the pathway itself is excitatory and

synapses primarily on non-GABAergic cells in the IC, at least some of which are

tectothalamic projection neurons or commissural neurons that project to the contralateral IC.

Finally, the discrepancy between the anatomical data, which show most of the CC

terminations in the non-lemniscal regions of the IC, and the physiological data, which show

significant effects in the CNIC, remains relatively unexplored, though at least one study is

suggestive of an inhibitory LC to CNIC pathway (See Fig. 4 for a summary diagram).

These findings shape an emerging picture of how the AC modifies sensory processing in the

IC. Early work on this pathway involved relatively gross measures, such as bulk injection of

tracers, electrical stimulation or silencing of the cortex and extracellular recordings in the

IC, and revealed an intriguing set of modulatory phenomena. Subsequent work has shown

that at virtually every level of this pathway, there is important cell-type or regional

heterogeneity that is likely responsible for the wide array of effects seen in the IC after AC

manipulation. We also now understand many of the potential indirect ways that the AC may

affect the IC, either via the thalamus (Kuwabara and Zook 2000; Winer et al. 2002;

Senatorov and Hu 2002; Kuwabara 2012; Llano et al. 2014), cholinergic afferents (Schofield

and Motts 2009) or via cascading modulation of lower auditory centers, including at the

level of the hair cells (Mulders and Robertson 2000; Xiao and Suga 2002; Liu et al. 2010).

Given the emergence of optical and molecular tools now available to the investigator,

questions at the micro- and meso-circuit level can now be answered about these pathways.

In addition, because of the ubiquitous nature of descending pathways from sensory regions

of the cortex, lessons learned about the CC pathway will likely lead to broader insights

about top down modulatory pathways in general.
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Abbreviations

A1 Primary auditory cortex

AAF Anterior auditory field

AC Auditory cortex

AChE Acetylcholinesterase

APV (2R)-amino-5-phosphonovaleric acid; (2R)-amino-5-phosphonopentanoate

CC Corticocollicular

CCx Caudal cortex

CF Characteristic frequency

CN Central nucleus of the inferior colliculus

CNIC Central nucleus of the inferior colliculus

D Dorsal

DC Dorsal cortex of the inferior colliculus

ECIC External cortex of the inferior colliculus

GABA Gamma-amino butyric acid

GAD Glutamic acid decarboxylase

IC Inferior colliculus

Ih Hyperpolarization-activated cation current

LC Lateral cortex of IC

NADPH-d Nicotinamide adenine dinucleotide phosphate-diaphorase

PTN Paracentral tectal nuclei
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SOC Superior olivary complex

Te1 Temporal area 1

VGLUT1 Vesicular Glutamate transporter 1

VGLUT2 Vesicular Glutamate transporter 2
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Highlights

• We review recent data describing complexities in the auditory corticocollicular

pathway.

• Within the auditory cortex, several classes of neurons project to the inferior

colliculus.

• Corticocollicular axons contain tonotopic and non-tonotopic projections with

nonuniform termination patterns.

• Molecular heterogeneity exists within the cortical recipient zones of the inferior

colliculus.

• We provide a framework for advancing our understanding of the

corticocollicular sytem.
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Figure 1.
Illustration of the pattern of CC input to the IC after an injection of an anterograde tracer

into the primary auditory cortex of six different species. All sections are coronal except D)

which is sagittal. Sections redrawn from the following publications: A) Mouse (Torii et al.

2012), B) Rat (Saldaña, Feliciano and Mugnaini 1996), C) Ferret (Bajo et al. 2007), D)

Gerbil (Budinger et al. 2013), E) Cat (Winer et al. 1998) and F) Owl Monkey (Fitzpatrick

and Imig 1978). Inset in E is a caudal section chosen to illustrate the patchiness of the CC

system taken at a point 21% rostral to the caudal pole (100%=anterior-most portion of IC).

CCx = caudal cortex of the IC. PTN = paracentral tectal nuclei.
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Figure 2.
Differences between layer 5 and layer 6 corticocollicular cells. A) Retrogradely labeled

layer 5 and layer 6 mouse corticocollicular cells filled with fluoro-gold after IC injection. B)

Layer-specific morphological differences between a layer 5 and C) layer 6 corticocollicular

cell. D) Layer 5 CC cells show both regular spiking and intrinsic bursting profiles as well as

H-current mediated sag and rebound currents not seen in layer 6 (modified from Slater et al.

2013).
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Figure 3.
Modular organization of LC, shown in transverse sections of the IC. A) Immunostaining for

GAD. B) Immunostaining for parvalbumin. (reproduced from Chernock et al. 2004). C)

Staining for NADPH-d in mouse IC (unpublished data, Llano laboratory). Arrows

correspond to modules.
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Figure 4.
Diagram summarizing known and unknown circuit and molecular components of the CC

pathway. Only the LC is shown in detail for clarity. Left: Layer 5 pyramidal cells (triangles)

and layer 6 nonpyramidal cells (ovals) from AI and AII project to the LC. The specific

contributions of layers 5 and 6 are not known and denoted with question marks. AII

projections are more superficial than AI projections (Herbert, Aschoff and Ostwald 1991;

Winer et al. 1998). Intrinsic excitatory cells of the IC are shown in blue. The black cell is a

GABAergic neuron. Unknown connections to the CNIC and to GABAergic neurons are

denoted with question marks. Right: Mosaic molecular organization of the LC. Layers 1 and

3 stain for VGLUT1. Layer 2 modules are positive for GAD67, AChE and NADPH-d. Layer

2 extramodular regions are positive for circumferential axo-somatic VGLUT2 profiles (A-S

VGLUT2), thought to be seen on giant GABAergic tectothalamic neurons (Ito, Bishop and

Oliver 2009). The question mark denotes the uncertainty about how the CC projections map

onto the molecular heterogeneities across and within layers.
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