
Physicians, Clinics, and Neighborhoods: Multiple Levels of
Influence on Colorectal Cancer Screening

Sandi L. Pruitt1,2,*, Tammy Leonard3, Song Zhang1, Mario Schootman4, Ethan A. Halm1,5,
and Samir Gupta6,7

1Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX
U.S.A

2Harold C. Simmons Comprehensive Cancer Center, Dallas, TX U.S.A

3School of Economic, Political, and Policy Sciences, University of Texas-Dallas; Dallas, TX U.S.A

4Department of Epidemiology, College for Public Health and Social Justice, Saint Louis
University; St. Louis, Missouri, U.S.A

5Departments of General Internal Medicine, University of Texas Southwestern Medical Center;
Dallas, TX U.S.A

6Division of Gastroenterology, Department of Internal Medicine, Moores Cancer Center,
University of California San Diego, San Diego, California, U.S.A

7Department of Veterans Affairs, San Diego Healthcare System, San Diego, California, U.S.A

Abstract

Background—We 1) Described variability in colorectal cancer (CRC) test use across multiple

levels, including physician, clinic, and neighborhood; and 2) Compared the performance of novel

cross-classified vs. traditional hierarchical models.

Methods—We examined multilevel variation in CRC test use among patients not up-to-date with

screening in a large, urban safety net health system (2011–2012). Outcomes included: 1) fecal

occult blood test (FOBT) or 2) colonoscopy and were ascertained using claims data during a 1-

year follow-up. We compared Bayesian 1) Cross-classified 4-level logistic models nesting patients

within separate, non-overlapping “levels” (physicians, clinics, and census tracts) vs. 2) Three

hierarchical 2-level models using deviance information criterion. Models adjusted for covariates

(patient sociodemographic factors, driving time to clinic, and census tract poverty rate).

Results—Of 3,195 patients, 157 (4.9%) completed FOBT and 292 (9.1%) completed

colonoscopy during the study year. Patients attended 19 clinics, saw 177 physicians, and resided in

332 census tracts. Significant variability was observed across all levels in both hierarchical and
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cross-classified models that was unexplained by measured covariates. For colonoscopy, variance

was similar across all levels. For FOBT, physicians, followed by clinics, demonstrated the largest

variability. Model fit using cross-classified models was superior or similar to 2-level hierarchical

models.

Conclusions—Significant and substantial variability was observed across neighborhood,

physician, and clinic levels in CRC test use, suggesting the importance of factors at each of these

levels on CRC testing.

Impact—Future multilevel research and intervention should consider the simultaneous influences

of multiple levels, including clinic, physician, and neighborhood.

INTRODUCTION

While U.S. guidelines recommended screening for healthy asymptomatic adults beginning at

age 50, screening uptake is suboptimal. In 2010, about two-thirds (65.4%) of eligible adults

in the U.S. met screening guidelines.(1) Colorectal cancer (CRC) screening behavior

requires interaction with the health care system (physicians, clinics) and the larger

environment in which that system exists (health systems, families, neighborhoods, state and

national health policy).(2) Acknowledging these interactions, cancer prevention researchers

are increasingly adopting multilevel frameworks to better understand and improve screening

behavior and outcomes. Multilevel frameworks explicitly conceptualize health and health

behaviors as a product of the dynamic inter-relation of multiple levels of influence,

including the individual, social, structural, and spatial.(3) Multilevel models are a tool used

to analyze hierarchically structured data(4)—that is, data organized across the levels in

which humans are aggregated, (i.e. nested within) such as nations, neighborhoods,

organizations, teams, families, and so forth.(3) Multilevel models contain variables

measured at different levels of these hierarchies and statistically account for this hierarchical

nesting.(4) Multilevel models should be distinguished from multivariable models which

entail the inclusion of multiple independent or dependent variables without accounting for

hierarchical nesting.

This growing body of literature has identified variation in CRC screening across multiple

geographic and institutional levels of influence. For example, geographic variations in

screening have been observed across different census tracts, zip codes, counties, and states.

(5–8) Screening rates also differ widely by physicians.(9) Evidence also suggests

organizational-level variations in screening, such as those occurring across primary care

practices and clinics.(10, 11) The National Cancer Institute (NCI) has called for multilevel

interventions(12) designed to improve cancer care and outcomes. However, it is not well

understood how these different levels—both geographic and institutional—are related. For

example, the presence of clinic-level variation may result in spurious neighborhood

variation; or the two may arise from independent causal processes.

While multilevel conceptual frameworks acknowledge numerous levels of influence,(3)

traditional multilevel analyses of CRC screening typically include two, or at most, three,

strictly-hierarchical levels—an oversimplification of the true complexity present in the CRC

screening continuum. For example, Figures 1A–1C depict hierarchical data structures
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assumed in traditional multilevel models: patients are assumed to be nested in non-

overlapping census tracts (Figure 1A), or assigned to single physicians (Figure 1B) or clinics

(Figure 1C). Traditional multilevel models do not reflect the inherent complexity of the

CRC screening continuum(2, 13) nor the complex health systems and environments

experienced by patients, which are not necessarily hierarchical. A more realistic scenario is

depicted in Figure 1D, wherein patients are simultaneously cross-classified across multiple

over-lapping, non-hierarchical levels. For example, patients from the same neighborhood

may attend different clinics and physicians in some healthcare systems practice in more than

one clinic.

Neglecting data cross-classification can result in mis-specified statistical models and

potentially spurious conclusions.(14, 15) For example, model mis-specification can bias

estimates of fixed effects, standard errors, and variance components. Thus, observed

variations across different levels may be an artifact of other, unmeasured levels of influence

or may be reduced because underlying similarities (e.g. common physicians) are not

included in the analysis. For example, ignoring neighborhood variation may result in

artificially inflated differences across physicians, clinics, or health systems. Importantly,

identifying the key factor(s) responsible for outcome variation within a multilevel context

may allow for the development of more effective screening interventions.

Multilevel intervention research is in its infancy and there is a clear gap in the literature

between multilevel descriptive studies and intervention research.(16) To date, while

multilevel factors associated with CRC screening have been identified in descriptive

research, these results haven’t yet been leveraged during the development, implementation,

or evaluation of multilevel interventions. Thus, to inform future multilevel interventions, our

goals were to provide insight into the relative impact of multiple levels of influence on CRC

test use and to compare two methods for assessing this variation. We examine descriptive

data of a real-world scenario to identify the key leverage points contributing to screening

variation at multiple relevant levels. Specifically, we examined the extent of variation in

uptake of fecal occult blood tests (FOBT) and colonoscopy among patients in a usual care

setting by cross-classifying patients within separate “levels” of physicians, clinics, and

neighborhoods using two multilevel modeling techniques. To our knowledge, we are the

first study to simultaneously examine CRC test use uptake across multiple, over-lapping,

non-hierarchical levels.

MATERIALS AND METHODS

Sample

We conducted a secondary data analyses of patients (n=3,898) randomized to the “usual

care” control arm of a randomized, pragmatic, comparative effectiveness trial conducted in

John Peter Smith Health System (JPS). There was no intervention in the usual care study

arm. Patients received only opportunistic, visit-based offers to complete home- or office-

based guaiac fecal occult blood test (FOBT), or facility-based tests including colonoscopy,

barium enema, or sigmoidoscopy at the discretion of physicians. Physicians could prescribe

any test modality and all patients had equal insurance coverage of either modality. Because

the parent study was a pragmatic trial, usual care participants did not know they were
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participating in a research study and thus were not influenced by selection/volunteer bias.

(17) Further, usual care patients were not required to have any doctor visits during the

follow up period. Thus, our study represents a real-world analysis of the role of physicians,

clinics, and neighborhoods on CRC test use.

JPS is an urban publicly-funded safety-net healthcare system consisting of community- and

hospital-based primary-care clinics and a tertiary-care hospital providing services to

residents of Fort Worth and Tarrant County, Texas. The sample and parent study are

described in detail elsewhere.(17) Briefly, the trial included patients ages 54–64 years, with

a recent health system visit (any visit within 8 months before randomization), no CRC

history, and who were uninsured but enrolled in a county-wide medical assistance program

for the uninsured. Patients were excluded if they were up-to-date with CRC screening

(defined as having a FOBT within 1 year, sigmoidoscopy or barium enema within 5 years,

or colonoscopy within 8 years [8 not 10 years was used given availability of health system

data.])

For the current study, we excluded 74 patients with addresses that could not be geocoded

(e.g. P.O. Box) or who resided outside Tarrant County. We also excluded patients without

an assigned primary care clinic (n=120) or physician (n=509). Institutional Review Boards

at JPS and UT Southwestern Medical Center approved the study.

Clustering

Patients were clustered within 3 separate levels by: primary care physicians, clinics, and

residential census tracts. Physicians, clinics, and patient addresses at baseline were

ascertained using administrative and claims data. Addresses were geocoded to residential

census tracts using ArcMap (ArcGIS, Version 9.3.1, ESRI Inc., Redlands, CA).

Measures

We measured two outcomes because we hypothesized that the influence of different “levels”

(e.g. clinic, physician) varied by test modality. Outcomes included completion of either a 1)

simple non-invasive stool blood test (FOBT) or 2) more complicated, facility-based tests

(colonoscopy, barium enema, or sigmoidoscopy) within one year of randomization. Patients

were considered to have FOBT if FOBT was their first test, regardless of whether FOBT

was followed by colonoscopy. Because the predominant facility-based test (98%) was

colonoscopy, we hereafter refer to facility-based tests as colonoscopy. Outcomes and

covariates were ascertained using claims data. Because indication for testing could not be

discerned from claims data, we refer to completion of tests as “CRC test use” following

standard practice.(18, 19)

We measured covariates related to CRC test use in previous research:(20, 21) age, sex, race/

ethnicity (non-Hispanic white, non-Hispanic black, Hispanic, and other), and primary

language spoken at home (English, Spanish). We measured minutes of driving time from

patient home to 1) primary-care clinic and 2) the central hospital, where the endoscopy

facility is located because increased travel time may be associated with lower CRC test use.

(22) Driving time was calculated with MapQuest’s Open Document API Web Service which
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uses OpenStreetMap (OSM) data. OSM is a collaborative open-source participatory GIS

map updated weekly with data provided by various, registered contributors, including

international government agencies.(23, 24) Data requests for driving time calculations did

not control for traffic or time of day because that functionality was not available at the time

of our study. We included both measures in the models, as they represent access to different

aspects of medical care, including CRC screening, primary and tertiary care; measures were

moderately correlated (r=.39). Census tract poverty rate was measured using a 5-year

estimate (2006–2010) drawn from the American Community Survey.

Analysis

We fitted 3 different Bayesian hierarchical 2-level random effects logistic models, with

patients nested within 1) primary care physicians (Figure 1A); 2) primary care clinics

(Figure 1B); or 3) census tracts (Figure 1C). Next, we fitted one Bayesian, cross-classified

random effects logistic model(25) allowing patients to be cross-classified within multiple

separate, non-hierarchical grouping “levels” (Figure 1D). All levels (physicians, clinics, and

census tracts) were included in the cross-classified model.

For each outcome, we fit “empty” and multivariable models. Empty models include no

predictor variables, but included a clustered structure, and are fit for the purpose of

quantifying variation at various levels. We included a clustered structure and all covariates

in multivariable models in order to identify remaining variation independent of potential

confounders that may cluster spatially or across levels.

The full cross-classified model includes regression on the covariates as well as all random

effects:

(1)

Where Yi generically denotes the binary outcome of the ith (i = 1, ···, I) subject (1 for Yes, 0

for No). We use xi = xi1, ···, xip)′, a vector of length p, to denote the vector of covariates from

subject i. The vector of regression coefficients is defined as β = (β1, ···, βp)′. Note that we set

xi1 = 1 for i = 1, ···, I, which implies that β1 is the intercept. Suppose that subject i is nested

in the jth (j = 1, ···, J) physician; the kth (k = 1, ···, K) clinic, and the lth (l = 1, ···, L) census

tract. We define ej, θk, and δl to be the random effect for physician j, clinic k, and census

tract l, respectively. All analyses are based on logistic regression models. We define pi =

P(Yi = 1). Here subscript j(i), k(i), and l(i) index the physician, the clinic, and the census

tract that subject i is nested in, respectively. For more detailed information for each model,

including our specification of priors, see Supplementary Material and Methods.

We quantified variation at each level in all models to provide insight into the relative impact

of multiple levels of influence on CRC test use. We reported median odds ratios (MOR) to

facilitate interpretation of the variance across levels on a scale similar to odds ratios

associated with other model variables.(26) The MOR is based on the model median random

effects variance component (V): . It is interpreted as the median value
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of the ratio of predicted odds of the outcome for two patients randomly selected from

different “levels” with equivalent covariates. The MOR ranges from 1 to infinity; if the

MOR equals 1, it indicates no variation in outcome across levels. We obtained standard

errors of variances to compute 95% credible interval (equivalent to “confidence intervals”

per frequentist statistics) for MORs using Markov Chain Monte Carlo methods.

To evaluate methods for assessing variation, we compared traditional 2-level and novel

cross-classified models using Deviance Information Criterion (DIC), a Bayesian measure of

model fit (analogous to AIC in frequentist statistics). DIC assesses how well the model fits

the data with a penalty on model complexity. Lower values indicate better fit. A rule of

thumb states that a difference of 3 to 7 in DIC indicates material difference between models.

(27) We used WinBUGS (version 1.4.3) to analyze the data. After 10,000 burn-in iterations,

10,000 additional iterations were kept for parameter estimates.

RESULTS

Our sample included 3,195 patients not up-to-date with screening at baseline. Patient

characteristics by test use are provided in Table 1. Overall test use was low in the one-year

follow-up period; only 8.1% (n= 299), received colonoscopy or other facility-based tests and

only 4.3% (n=158) received FOBT.

The cross-classified data structure and the number of unique patients across the data

structure are depicted in Figure 2. Patients attended 19 different clinics, saw 177 unique

physicians, and resided in 332 different census tracts. The median number of patients per

level was as follows: 8 per tract (range: 1–52), 6 per physician (range: 1–112), and 133 per

clinic (range: 1–509). Overall, 3,195 patients were distributed across 2,288 unique

combinations of physicians, clinics, and census tracts.

Multilevel Variation in FOBT

Empty 2-level hierarchical and cross-classified models demonstrated statistically significant

variability across all levels in FOBT testing (Table 2). Variability remained in adjusted

models, suggesting that none of the covariates explained variability in either test modality.

Across all 2-level models, physicians demonstrated the largest variability followed by

clinics, and lastly, neighborhoods. In 2-level hierarchical models, the adjusted model MORs

were 2.31 (95% CI: 1.83–3.03) for physicians, 1.77 (1.46–2.46) for clinics, and 1.56 (1.37–

1.85) for neighborhoods. In other words, if a patient switched from a physician with a low

FOBT rate to a high FOBT rate, her odds of receiving FOBT would be 2.31 times higher (in

median). MOR point estimates were similar in cross-classified models as in separate 2-level

models (Table 2, Figure 3).

Multilevel Variation in Colonoscopy

Both empty and adjusted models demonstrated statistically significant variability across all

levels in colonoscopy testing (Table 2). Variances were similar across all levels: adjusted

model MORs from traditional hierarchical 2-level models were 1.60 (1.39–2.06) for clinics,

1.57 (1.38–1.83) for physicians, and 1.53 (1.36–1.76) for neighborhoods. Variation was

similar in 2-level hierarchical and cross-classified models in both empty (data not shown)
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and adjusted models (Figure 3). In other words, if a patient switched from a clinic,

physician, or neighborhood with a low colonoscopy rate to a high colonoscopy rate, her

odds of receiving colonoscopy would be 1.60, 1.57, and 1.53 times higher, respectively, in

median.

Comparison of Cross-Classified Models to Traditional 2-level Models

We compared DIC of novel cross-classified models to traditional 2-level models separately

for empty and adjusted models (Table 3). Of all FOBT models, cross-classified models and

2-level physician models demonstrated equivalent fit (DIC difference within 7) and were the

best fitting models, compared to 2-level clinic and neighborhood models. This suggests that

within our multilevel context, physicians had the most influence on variation in FOBT test

use. For colonoscopy, cross-classified, 2-level physician and 2-level clinic models

demonstrated equivalent fit (DIC difference within 7) and were the best fitting models,

compared to the 2-level neighborhood models. This suggests that within our multilevel

context, physicians and clinics introduced roughly equivalent variation in colonoscopy use,

and their impact on variation was greater than that introduced by neighborhood factors.

DISCUSSION

We demonstrated significant variability across multiple “levels” in CRC testing in our large

urban safety net health system. Variability across physicians, clinics, and neighborhoods

was substantial and was not explained by the inclusion of measured correlates. Notably,

even after accounting for physician and clinic variance in cross-classified models,

neighborhood variance remained significant. These findings confirm the extensive literature

documenting neighborhood disparities in cancer screening(5, 6, 8, 28) and add to the smaller

but growing literature on physician- and practice-based differences.(9–11)

The first goal of our study was to provide insight into the relative impact of multiple levels

of influence on CRC testing to inform future multilevel intervention research. Using two

multilevel model specifications, we determined that of all levels, variability in FOBT was

greatest across physicians. For colonoscopy, variability was significant and similar across all

levels. Future multilevel research and intervention should consider leveraging all levels,

with particular attention to physician variability in FOBT testing. For example, interventions

conducted at the physician-level or at higher-levels that do not require physician action (e.g.

system-level mailed FOBT kits) may reduce physician variability.

Our second goal was to compare two methods to assess multilevel variation. The question of

when to consider a cross-classified model is complex and somewhat uncertain. In the current

study, our conclusions were similar when comparing cross-classified vs. multiple traditional

2-level hierarchical models. Model fit using novel cross-classified models was superior or

similar to that of several of the traditional 2-level hierarchical models. Further, MORs did

not vary much between the different multilevel data structures. It is possible that the bias

resulting from model mis-specification would be larger given a higher degree of data cross-

classification. For example, in our data, similarly to many systems, cross-classification

between physicians and clinics was relatively minor. Different health systems may have

different degrees of cross-classification. It is likely that cross-classification across some
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levels is more common; for example, clinics serving patients from multiple neighborhoods is

a likely scenario that could lead to more significant mis-specification. To our knowledge, we

are the first to apply cross-classified models in the cancer screening literature and to

compare them to hierarchical models and there is currently little evidence regarding the

empirical consequences of mis-specifying cross-classified random effects models.(14, 29)

For these reasons, we follow earlier recommendations(14) that suggest if data are

theoretically cross-classified, researchers should consider cross-classified models in order to

avoid theoretical model mis-specification even in scenarios in which data have low levels of

cross-classification. More empirical and simulation research is needed to better understand

the appropriate role of cross-classified models in cancer prevention research.

We observed larger variability in FOBT as compared to colonoscopy across all levels.

Similarly, a Missouri study demonstrated larger area-level variation in FOBT testing as

compared to endoscopy.(6) Confounding by indication may partially explain this finding.

We would expect similar symptom prevalence across levels and that more colonoscopies in

usual care were done for diagnostic reasons (i.e. symptoms). Thus, if more FOBTs were

ordered strictly for screening (e.g. not ordered for symptoms), the more “discretionary”

nature of screening could explain the greater multilevel variation in FOBT.

Mechanisms

The mechanisms underlying multilevel variation are incompletely understood. It is not

known why CRC test use varies across physicians, clinics, and neighborhoods and exactly

how physicians, clinics, and neighborhoods influence individual test use behaviors.

Identifying modifiable mechanisms contributing to multilevel variation will be a crucial next

step in the design and delivery of multilevel interventions.

Factors such as organizational structure and strategies may be important mechanisms.(2, 30)

A number of studies have identified the implementation of organizational changes as among

the most effective strategies to increase cancer screening uptake. These include, for

example, practice-level reminder systems and the promotion of continuous patient care

designed to make cancer screening services a part of routine patient care.(30–33) However,

despite strong evidence supporting their effectiveness, such strategies are not adopted

universally.(11) For example, 30% of physicians reported that their practices employed

provider reminders and only 15% employed patient reminders in 2006–2007.(9) A more

recent survey documented wide variation in the performance of many of the discrete CRC

screening steps (e.g. reminders, rescheduling no-shows,) across 15 primary care practices.

(10)

It is possible that physician “champions” or “detractors” that are strongly for or against

FOBT are among the mechanisms driving the high observed physician-level variation. That

is, some may be stronger proponents of FOBT than others. Provider recommendation has

consistently been shown to be one of most influential factors predicting cancer screening.

(34, 35) In a 2006–2007 national survey of primary care providers, 17% reported that they

only recommend a single test modality, with colonoscopy the most recommended test. Just

1% recommended FOBT only.(9) This is worrisome, given growing evidence identifying

large differences in screening participation depending on which test is offered.(17, 36) The
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potential for physician preferences and/or practice styles to disproportionately influence

FOBT (vs. colonoscopy) uptake should be examined in future research.

There may be multiple potential neighborhood-level mechanisms. For example, access to

health care, local area socioeconomic deprivation, transportation availability, or

neighborhood social norms about screening could lead to neighborhood-level variation.

Furthermore, neighborhood and physician/clinic level factors may interact to drive

variability; such variability can only be examined with appropriate cross-classified methods.

Strengths and Limitations

Our study faces several limitations. Our sample is drawn from a single, urban safety-net

health system where all patients had equal access to very low cost health care. Further, other

systems may experience different degrees of cross-classification (e.g. physicians may not

practice in multiple clinics). Thus, results may not be generalizable to other health systems.

We face a “missing cells” problem where not all possible combinations of levels are

represented in the data, thus some statistical inferences are “off-support”(37) or not based on

actual observations. We were unable to measure physician- or clinic- level covariates such

as attitudes, knowledge, provider type, procedure volume, organizational culture, or

institutional systems such as reminders or best practice alerts that may have accounted for

observed variation. Lastly, following common practice, we defined neighborhoods using

census tracts, a relatively arbitrary choice. It is possible more precise and/or granular

definitions of neighborhoods could have better captured neighborhood-level variation.

Despite these limitations, our study has several strengths. To our knowledge, no prior

studies have simultaneously examined variation in CRC test use across multiple, over-

lapping, non-hierarchical levels. In doing so, we provide early empirical evidence

supporting the simultaneous consideration of variation across multiple, non-hierarchical

levels in cancer prevention and control interventions. We also provide several conceptual

and analytic implications for cancer prevention and control research. It is already widely

acknowledged that failure to account for the hierarchical nature of data using multilevel

analyses can bias standard errors and alter statistical inference.(38) Traditional 2-level

models limit analyses to strictly hierarchical relationships. By neglecting to consider other

more complex cross-classifications, they may provide biased or misleading conclusions.(14,

29) For example, neighborhood differences identified in 2-level models may be partly a

result of clustering of patients across different physicians, clinics, or health systems.

Ultimately, failure to examine cross-classification prevents identification of important

sources of variation and relevant factors at multiple, overlapping, and not necessarily

hierarchical levels.

Failure to identify the key leverage points contributing to screening variation at all relevant

levels in future interventions will compromise the public health goal of increased and

equitable cancer screening uptake. Multilevel analyses, including cross-classified analyses,

will be a useful tool for identifying multilevel variation, monitoring intervention

effectiveness, and identifying which factors at which levels to target in interventions. A

robust multilevel research agenda designed to fill this gap will require continued investment

in large-scale, high-quality multilevel data. Health system data, such as claims or electronic
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medical record data, will facilitate a clearer understanding of multiple nesting structures,

including physician, clinic, and residential neighborhood.

Summary

We demonstrated the importance of assessing cross-classification and multilevel variation in

CRC screening. Using two different multilevel modeling techniques, we found that multiple

levels of influence exert influence on CRC testing. Our conclusions were similar when using

cross-classified vs. multiple traditional 2-level hierarchical models. We suggest

consideration of cross-classified models in situations where multiple levels of influence are

of primary interest to researchers and data are theoretically cross-classified, even if data

have low levels of cross-classification. Our paper is timely because it adds to the evidence

base needed to support the nascent field of multilevel interventions in cancer prevention and

control and addresses the stated need for additional measurement research in this field.(12)

In particular, our results add additional evidence suggesting the importance of multilevel

factors across the cancer continuum, the continued need for multilevel intervention research,

and the complexity of “real world” multilevel data structures. Future multilevel research and

intervention should consider leveraging variations between, within, and across all levels,

with particular attention to physician variation in FOBT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Figure 1A–D. Hypothetical multilevel data structures.
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Figure 2.
Cross-classified structure of the data by physicians, clinics, and residential census tracts.

Numbers in overlapping circles indicate the number of patients in the unique combinations

of each data structure.

IQR=interquartile range
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Figure 3.
Variation across neighborhoods, clinics, and physicians in hierarchical 2-level and cross-

classified adjusted models for FOBT and colonoscopy test use.

Note: Circles represent point estimates and whiskers represent 95% credible intervals of

MOR (median odds ratios), data shown in Table 2.
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