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Abstract

Scientists who study cognition infer underlying processes either by observing behavior (e.g.,

response times, percentage correct) or by observing neural activity (e.g., the BOLD response).

These two types of observations have traditionally supported two separate lines of study. The first

is led by cognitive modelers, who rely on behavior alone to support their computational theories.

The second is led by cognitive neuroimagers, who rely on statistical models to link patterns of

neural activity to experimental manipulations, often without any attempt to make a direct

connection to an explicit computational theory. Here we present a flexible Bayesian framework

for combining neural and cognitive models. Joining neuroimaging and computational modeling in

a single hierarchical framework allows the neural data to influence the parameters of the cognitive

model and allows behavioral data, even in the absence of neural data, to constrain the neural

model. Critically, our Bayesian approach can reveal interactions between behavioral and neural

parameters, and hence between neural activity and cognitive mechanisms. We demonstrate the

utility of our approach with applications to simulated fMRI data with a recognition model and to

diffusion-weighted imaging data with a response time model of perceptual choice.
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Introduction

Currently, there are two main methods to study cognition. The first and oldest method is

known as cognitive modeling. Given a set of experimental data, one assumes that observers

use a particular process, known as a cognitive model, to produce the observed data. The

processes used by the cognitive model are controlled by a set of unknown parameters. The

✩This work was funded by NIH award number F32GM103288. The authors would like to thank John Anderson and Michael
Breakspear for insightful comments that improved an earlier version of this manuscript.

© 2013 Elsevier Inc. All rights reserved
*Corresponding author. turner.826@gmail.com (B.M. Turner)..

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2014 August 21.

Published in final edited form as:
Neuroimage. 2013 May 15; 72: 193–206. doi:10.1016/j.neuroimage.2013.01.048.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



parameters of the cognitive model are then estimated and psychologically meaningful

interpretations are based on these parameter estimates. While cognitive models have been

effective tools for identifying how cognition changes as a function of task demands, they

suffer from being highly abstract representations of what is essentially a system of biological

processes. The second method to study cognition is to make contact with the biological

substrate more directly and measure brain activity using methods such as positron emission

tomography (PET), functional-magnetic resonance imaging (fMRI), electroencephalography

(EEG), or diffusion-weighted imaging (DWI), and we will refer to this broad class of data as

“neural data”. While neural data provide valuable information about the biological and

physical aspects of cognition, traditional neural imaging analyses (e.g., general linear

models) are limited because they do not attempt to describe cognitive processes. Because

both methods for studying cognition have clear advantages and disadvantages (Wilkinson

and Halligan, 2004), there has been a recent surge of interest in combining both sources of

information to provide a single explanation of the underlying process (e.g., Anderson et al.,

2008; Borst et al., 2011; Dolan, 2008; Forstmann et al., 2008, 2010, 2011; Gläscher and

O'Doherty, 2010; O'Doherty et al., 2007).

In this article, we propose a general framework for describing neural and behavioral data

with a single model. Our approach is to treat the two sources of information as separate

measurements of the same cognitive construct. To fit the model, we make use of a

hierarchical Bayesian approach, which has become an important method for inference in

both the neural (e.g., Friston et al., 2002; Gershman et al., 2011; Guo et al., 2008; Wu et al.,

2011), and cognitive modeling (e.g., Lee, 2011; Shiffrin et al., 2008) literatures.

Using the hierarchical Bayesian approach provides a number of benefits. First, the Bayesian

framework provides meaningful, interpretable information at both the subject and group

levels. Second, the Bayesian framework lends itself naturally to principled inclusion of

missing data. We will show how our framework allows us to make predictions for missing

data, based solely on parameter relationships learned from fitting the model. In particular,

we show that we can make informed predictions of behavioral data given only neural data,

and vice versa. Third, our framework allows us to infer relationships between parameters,

relationships that need not be hypothesized a priori. This feature affords us explorative

opportunities in the form of the Bayesian posterior distribution. Fourth, the framework we

propose does not require a commitment to any particular model, as in other joint modeling

approaches (e.g., Anderson et al., 2008; Borst et al., 2011; Mazurek et al., 2003). By using a

hierarchical Bayesian approach, we can choose any particular cognitive model to explain the

behavioral data, and any neural model to explain the neural data. Subsequently, our

framework links the two models together and simultaneously infers meaningful relationships

between the two models while also providing a unifying account of brain and behavioral

data.

Using such a framework also provides a method for answering much more general

questions, which we do not attempt to answer here. For example, linking brain and

behavioral data allows us to directly perform model selection on multiple theories of

cognition. One could fit several different cognitive models combined with a single neural

model to data, and the joint model that fit the full data set best would be the preferred model.
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In this way, the neural data provides deeper constraints on cognitive models, and in so

doing, can be used to better test cognitive theories.

We first provide a brief introduction to the two different types of measurements, and then

describe our joint modeling approach. We then demonstrate the utility of our approach in a

simulation study. Finally, we apply our model to data from an experiment containing both

neural data and behavioral data that can be fit with a computational model. We show that

meaningful relationships between model parameters and neural data can be inferred directly

from fitting the model, and these relationships can be further exploited to make predictions

about the distribution of missing or unobserved data.

Prior research

Although both behavioral and neural data are central to the study of cognition, few attempts

have been made to merge them. Perhaps one of the most successful approaches toward this

goal is model-based fMRI analysis (Gläscher and O'Doherty, 2010; O'Doherty et al., 2007).

In this procedure, a cognitive model is first used to simulate neural data. To do this, often

cognitive models are convolved with particular functions that resemble neural effects, such

as the hemodynamic response function that resembles the blood oxygen level dependent

(BOLD) response (e.g., Anderson et al., 2008). The simulated neural data are then compared

with the observed neural data by means of a correlation analysis. Because the approach is

not limited exclusively to fMRI data, we will refer to the approach as “model-based neural

analysis.” The method has been successful in identifying areas of the brain involved in

reinforcement learning (e.g., O'Doherty et al., 2003, 2007), abstract learning (Hampton et

al., 2006), and symbolic processing (Borst and Anderson, 2012; Borst et al., 2011). Despite

the method's success, model-based neural analyses uncover meaningful relationships only

after individual analyses of both the neural and behavioral data have been performed. As a

result, the information contained in the neural data does not constrain the parameters of the

cognitive model — it only serves to either support or refute the assumptions made by the

cognitive model.

Other approaches aim to incorporate mechanisms that describe the production of neural data

into the cognitive model (e.g., Anderson et al., 2007, 2008, 2010, 2012; Fincham et al.,

2010; Mazurek et al., 2003). As an example, Anderson et al. (2008) developed a model of

the process of equation solving within the ACT-R architecture (Anderson, 2007). The ACT-

R model assumed that observers manage a set of modules that activate and deactivate to

perform certain operations. For example, the visual module is active initially to encode the

stimulus and may also be active when a response is elicited (e.g., a saccade), but it is

inactive at certain times within the trial. The various modules are all mapped to different

regions of the brain (see Anderson et al., 2007), and each region of the brain becomes active

in tandem with the corresponding module. To produce the BOLD response, Anderson et al.

(2008) convolved a binary module activation function (i.e., either inactive or active) with a

hemodynamic response function. The model was shown to provide a reasonable fit to both

the neural and behavioral data.
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The problem with designing an architecture that connects specific brain regions to the

mechanisms used by a cognitive model is two-fold. First, identifying which region(s) of the

brain should be connected to which mechanism(s) of the cognitive model (e.g., modules in

ACT-R) is a difficult task. Not only would it require a substantial amount of prior research,

but the mechanisms assumed by the model may not be neurologically plausible, and so they

will not map directly to any particular brain region or brain regions. Second, while the

model can inform specific hypotheses of interest, it is unable to provide information that

does not conform to a specific a priori hypothesis (O'Doherty et al., 2007).

The linear ballistic accumulator (LBA; Brown and Heathcote, 2008) model is an example of

a model whose mechanisms do not yet have clear mappings to brain regions. While we will

delay a detailed discussion until later, the LBA is a model of choice response time (RT) that

has recently been used to further our understanding of how biological properties of the brain

affect behavioral data (Forstmann et al., 2008, 2010, 2011). For example, Forstmann et al.

(2008) performed a speed–accuracy experiment with two conditions of task demands. In the

first condition, subjects were told to respond accurately, and in the second condition,

subjects were asked to respond quickly. In addition to obtaining choice and RT data,

Forstmann et al. examined fMRI data during each condition. In a contrast analysis on the

neural data, Forstmann et al. determined that preparation for fast responses (i.e., the speed

emphasis condition) involved the anterior striatum and the pre-SMA. Forstmann et al.

(2008) then fit the LBA model to the behavioral data. The LBA model generally accounts

for faster, more error-prone decisions made by subjects in the speed emphasis condition by

decreasing the model parameter that represents the amount of evidence required to make a

decision. The idea behind this assertion is that an observer lowers a “threshold” parameter so

that they can make decisions faster, but in so doing, they compromise their accuracy by

limiting the amount of evidence on which decisions are based.

Once both the neural and behavioral data had been analyzed, Forstmann et al. (2008)

examined the correlations between the instruction-induced differences in response caution

with instruction-induced differences in the activation of the anterior striatum and the pre-

SMA. The relation between the two variables was negative, indicating that subjects who had

a relatively large increase in activation in the right anterior striatum and the right pre-SMA

also adjusted their response caution parameter more as the instruction-induced pressure to

respond quickly increased. Thus, the degree of activation in these two brain areas was linked

to the adjustment of the response caution parameter. Other features of the brain have been

connected with parameters of the LBA model. For example, Forstmann et al. (2010, 2011)

have found evidence suggesting that the flexible adjustment of the response caution

parameter under different time pressures is related to the strength of certain corticostriatal

white matter connections. Taken together, these results suggest that process models, in this

case the LBA model, along with behavioral data can be used to draw conclusions about

biological properties of the brain.

While the work of Forstmann et al. (2008, 2010, 2011) has been instrumental in furthering

our understanding of how related the LBA model is to actual brain processing and brain

structure, these model-based neural analyses can be improved upon. Because the neural and

behavioral data are both measuring the same construct (i.e., cognition), it would be ideal if
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one model could be used to explain both sources of data simultaneously. In this article, we

argue that process models should be considerate of biological constraints and physical

systems in addition to the cognitive mechanisms they assume.

The framework

We wish to provide a joint explanation for the jth subject's neural Nj and behavioral Bj data.

If it is difficult or undesirable to specify the joint distribution of (Nj, Bj) under a single

model, we can begin by describing how each individual source should be modeled. We will

denote the cognitive model as Behav with unknown parameters θ, and the neural model as

Neural with unknown parameters δ. A key benefit of our framework is that we are not

limited to a particular cognitive or neural model. For example, we can choose a number of

different cognitive models, such as the LBA model (Brown and Heathcote, 2008), the

classic model of signal detection theory (Green and Swets, 1966), or the generalized context

model (Nosofsky, 1986). Similarly, the neural model may also take a variety of forms, such

as the generalized linear model (Frank et al., 1998; Guo et al., 2008; Kershaw et al., 1999),

the topographic latent source analysis model (Gershman et al., 2011), a wavelet process

(Flandin and Penny, 2007), a dynamic causal model (Friston et al., 2003), or a hemodynamic

response function (Friston, 2002). While not essential, neural models can help to reduce the

dimensionality of the neural data Nj by summarizing the data with a set of sources of

interest. Once the neural data from an experiment have been fit with the neural model, one

can make meaningful comparisons between the neural sources across experimental

conditions. Regardless of the chosen model pair, we assume that the neural data come from

the neural model, so that

and the behavioral data come from the cognitive model, so that

With an appropriate explanation of both sources of data in hand, we now combine the

parameters of the two models into a single joint model  of neural and behavioral data.

Specifically, we can write this joint model as

where Ω denotes the collection of hyperparameters. For example, Ω might consist of a set of

hyper mean parameters ϕ and hyper dispersion parameters Σ so that Ω={Φ, Σ}.

To fit the joint model to data, we will use a hierarchical Bayesian approach, which has

recently aided many neural analyses (e.g., Gershman et al., 2011; Guo et al., 2008; Kershaw

et al., 1999; Quirós et al., 2010; Van Gerven et al., 2010; Wu et al., 2011). Given the above

model specification, we can write the joint posterior distribution of the model parameters as
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(1)

where p(·) denotes a probability distribution, Behav(a|b) and Neural(a|b) denote the density

functions of the data a given the parameters b under the behavioral and neural model,

respectively. Similarly,  denotes the joint density function of the parameters

(a,b) given the parameters c under the joint model.

Fig. 1 shows a graphical diagram for the joint modeling framework. On the left side of the

diagram, we have the neural data Nj and the neural model parameters δj, whereas on the

right side of the diagram we have the behavioral data Bj and the cognitive model parameters

θj. In the middle of the diagram, we see the hyperparameters ϕ and Σ, which may reflect the

central tendency or dispersion parameters of the hyperparameter set Ω={ϕ, Σ}, that connect

the two model parameter sets to one another. The subject-specific parameters θj and δj are

conditionally independent given the hyperparameters, but importantly, they are not

marginally independent. As we will see later in this article, the dependency between these

parameters can be used to mutually constrain the parameter estimates.

The hyperparameters Ω provide an advantage over other modeling approaches. For example,

suppose for the jth subject, we were able to obtain only behavioral data, and not neural data.

The proposed model would learn about the typical patterns of individual differences from

one subject to the next and store this information in the hyperparameters ϕ and Σ. Because

we have only subject-specific information in the form of the data Bj, the only subject-

specific parameter estimates that can be directly inferred from the data are θj. However, the

pattern of between-subject variation learned through the hyperparameters is used to form an

estimate of a particular subject's neural model parameters δj, even when no neural data for

Subject j are present. Perhaps more interesting is that we can then use the neural model

parameter estimates to make predictions about what the neural data for that subject might

have looked like, conditional only on the behavioral data. We will demonstrate this

technique in the next section.

A particular instantiation of the joint model

Because both the neural model parameters δj and the cognitive model parameters θj are

intrinsic to the jth subject, our principled approach connects these parameters to one another

in a meaningful way. However, to accomplish this, we must make an assumption about the

form of the joint distribution of (δj,θj). In this article, we use a multivariate normal

distribution. Thus, we assume that the joint distribution of (δj,θj) is given by

where  denotes the multivariate normal distribution of dimension p with mean

vector a and variance-covariance matrix b. The parameter mean vector ϕ contains all of the
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group-level mean parameters, so that ϕ={δμ,θμ} and Σ is the variance–covariance matrix for

the group-level variance parameters, namely

where ρ is a matrix containing all of the model parameter correlations that are of interest.

The variance–covariance matrix Σ is partitioned to reflect that it is a mixture of diagonal and

full matrices when there are multiple parameters in the neural or behavioral vectors. For

example, suppose our neural and cognitive models contain three parameters per subject (i.e.,

δj and θj each have three elements). We can then write the partition as

where δσ,1 denotes the hyper standard deviation for the first model parameter set. We can

constrain off-diagonal elements to be zero if we are not interested in quantifying the

correlations between a set of model parameters. The relationships between the model

parameters will still be inferred by the model because the dependencies exist in the

likelihood function. Thus, we can still detect trade-offs that exist between model parameters

by examining their joint posterior distribution once the model has been fit to the data. On the

other hand, we write the partition that combines the neural and cognitive model parameters

as

Specifying the model in this way allows us to infer directly the degree to which cognitive

model parameters are related to which neural model parameters. However, one can also

choose to reduce the number of model parameters by constraining some elements of this

variance–covariance matrix to be equal to zero (e.g., ρ33=0).

Note that we are not restricted to a multivariate normal distribution in our specification of

. We chose the multivariate normal because it provides a convenient distribution with

infinite support with clear parameter interpretations. For example, the correlation parameters

ρ provide a quantification of magnitude and direction of the relationship between pairs of

model parameters. Despite this, the use of multivariate normality may not be appropriate in

some situations. For example, when the support of a parameter is bounded, it may not be

appropriate to assume an infinite support via the normal distribution. However, the

multivariate normal distribution can easily be truncated to accommodate various parameter

space supports and provides a convenient way to assess the relationship between the neural
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model parameters and the cognitive model parameters. As an alternative, transformations

such as the log or logit produce infinite parameter supports.

Fitting the joint model to recognition and fMRI data

Simulation study

In order to highlight the advantages of our approach we conducted a simulation study in

which we generated data from the joint model so that the neural side (i.e., the left side of

Fig. 1) consisted of fMRI scans and the behavioral side (i.e., the right side of Fig. 1)

consisted of data from a recognition memory task. The simulation was designed to mimic a

typical recognition memory experiment in which, during a study phase, a subject is provided

with a single set of items (e.g., words or pictures) and is asked to commit the items to

memory. Then, during a test phase, subjects are presented with items that either were (a

target) or were not (a distractor) on the previously studied list. The subjects are then asked to

respond either “old”, indicating that the presented item was on the previously studied list, or

“new”, indicating that the presented item was not on the previously studied list. Given the

two types of words (i.e., targets or distractors) and the two types of responses (i.e., “old” or

“new”), there are only four possible outcomes for each trial. However, it is sufficient to

focus on only two of these possibilities. Specifically, we record the number of hits, which

occur when an “old” response is given to targets, and the number of false alarms, which

occur when a “old” response is given to a distractor.

To obtain the neural data, we assume that single-trial regression coefficients (often called

betas) have already been extracted from a sequence of fMRI scans for each subject on each

trial (Mumford et al., 2012). For simplicity and visualization purposes, we assume that the

betas form a two dimensional map (i.e., a single slice), but one could easily extend the

model to account for slices covering the whole brain. Subjects performed this recognition

memory task for 100 trials. The test list consisted of 50 targets and 50 distractors. Thus, for

each subject, we obtain 100 parametric maps (i.e., sets of single-trial beta estimates) and 100

responses (i.e., one response and one scan for each presented stimulus).

To explain the full model, we first describe how one might account for both the behavioral

and neural data and then explain how the full model generates data for each subject.

The cognitive model

To generate data from the cognitive model, we used the classic equal-variance model of

signal detection theory (SDT; Egan, 1958; Green and Swets, 1966; Macmillan and

Creelman, 2005) to generate a response on each trial. Fig. 2 shows the SDT model, which

assumes that observers use two equal-variance Gaussian distributions as representations for

signals (i.e., target items) and noise (i.e., distractor items). The degree of separation of these

two representations is used as a measure for discriminability, and is represented as the

parameter d. The presentation of an item produces a degree of familiarity with the item so

that items that are more familiar are located further up along the axis of sensory effect. SDT

assumes that observers also use a criterion to make a decision, such that if an item's

familiarity value is greater than the criterion, an “old” response is given, and if it is lower

than the criterion, a “new” response is given. The criterion is shown in Fig. 2 as the solid
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vertical line. The optimal criterion placement is at d/2 and any deviation from this placement

is referred to as bias, and is measured by the parameter b. Thus, the probability of a hit is the

area under the signal representation to the right of the criterion (shown as the light gray

region), whereas the probability of a false alarm is the area to the right of the criterion under

the noise representation.

The neural model

To generate the neural data, we assumed that the activations come from a finite mixture

model (FMM). We assumed that the retrieval process activated only three brain regions, and

each region differed by three characteristics: location, spread, and the degree of activation.

To represent this activation process, we used a mixture of normal distributions such that

where , 0≤πk≤1, μk and ξk represent the bivariate mean and variance-covariance

matrix of the kth source, respectively. The parameters μk and ξk carry valuable information

about the pattern of brain activity, and are typical targets for investigation. In particular, the

parameter μk represents the location in the bivariate space and ξk represents the dispersion of

the activity. Finally, the weight parameter πk corresponds to the level of activation (i.e., the

magnitudes of the beta estimates) at the kth source. Higher degrees of activity will result in

higher values for πk at that particular location. For this model, the neural data Nj represent

the extracted single trial β estimates obtained from fitting a generalized linear model to the

fMRI scans. We assume that the pattern of activation on each trial arises from this FMM.

While the choice of a FMM is clearly a simplification, if enough components are selected,

the FMM can become very flexible and mimic a number of complex patterns of brain

activity. For this example, we limited our FMM to only three components for illustrative

purposes, but the extension to much more sophisticated mixture models is straightforward.

Fig. 3 illustrates how the FMM summarizes the detailed fMRI data using the much smaller

set of three activation sources. The left panel of Fig. 3 shows what a typical fMRI scan

might produce: a set of voxels each of which contains a value that corresponds to a

biological activity in that particular region. Rather than connect the data from each voxel to

the cognitive model parameters, we use the FMM to estimate the location, spread, and

degree of activation of each of the sources. The right panel of Fig. 3 shows how the FMM

identifies the location of the important sources in the voxel data and estimates the degree of

activation through the parameter πk. The approximate locations of each the three sources are

represented by the corresponding number in the right panel.

The joint model

To generate the data from this experiment, we first obtained parameter values for the

cognitive model θ and the neural model δ by sampling from known values of the

hyperparameters ϕ and Σ. To generate the parameter values, we assumed a direct connection
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between the level of discriminability d and the degree of relative activation of the first brain

source π1. To enforce this relationship, we generated a value for the parameter d and the

parameter π1 for each subject by sampling from a bivariate normal distribution. We enforced

a strong positive relationship between these two variables such that ρ=0.7. The rationale is

that the first source might correspond to memory retrieval ability, and that as the degree of

relative source activation increases, the ability of the subject to remember whether or not an

item was on the previously studied list will increase, resulting in higher discriminability or d

in the SDT model.

Once all of the parameter values had been generated for the behavioral (i.e., θ={d,b}) and

the neural (i.e., δ={π,μ,ξ}) models, we used each parameter set to generate a corresponding

data set, as described above. We generated data for 100 subjects experiencing 100 trials.

Results

To fit the joint model to the (simulated) data, we used a blocked version of differential

evolution with Markov chain Monte Carlo (DE-MCMC; see ter Braak, 2006; Turner et al.,

in press) and made standard choices for the tuning parameters.1 Standard assessments of

convergence were applied, and we found that each of the parameter values was suitably

recovered. Because the data were simulated, we were able to initialize the chains to values

with high posterior density. We ran the algorithm with 36 chains operating in parallel for

2000 iterations, and treated the first 1000 iterations as a burn in period. Thus, we obtained

36,000 samples from the joint posterior distribution.

Once the joint model had been fit to the data, we were able to use the parameter estimates to

examine the relationships between the behavioral and neural data. For example, we found

that the estimate for the correlation between discriminability and the degree of activation at

Source 1 was approximately r=.65, reflecting a strong positive relationship between these

two model parameters. Had the model been fit to real data, we could then apply

interpretations to this estimate and make substantive conclusions about how the particular

location in the brain (i.e., Source 1) was related to recognition ability.

We can also use the joint model to highlight an advantage of our approach. Specifically,

given only partial information about a particular subject, we can make predictions from the

model about the missing data. For example, suppose we were able to obtain behavioral data

for a particular subject, but were unable to obtain fMRI data. Fitting the joint model to the

data would allow us to generate a predictive distribution for the pattern of source activation

based on the relationships between the behavioral and neural models inferred from the group

data. We can then take the predicted pattern of source activation from the neural model to

produce a predicted pattern of activation at the voxel level. This process can even be

reversed so that if we were able to obtain only neural data for a particular subject, we could

make predictions about what the hit and false alarm rates could have been, conditional on

the pattern of brain activity observed in the fMRI scan.

1We set the variance of the proposal to 0.001, chose the optimal setting for the scaling parameter, and did not employ a migration
step.
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To illustrate this feature of the model, we also fit the joint model to the data of four subjects

having only partial observations. Specifically, two of the subjects were simulated so that

only neural data were obtained in the form of a fMRI scan and the other two subjects were

simulated to have only behavioral data (i.e., the number of hit and false alarms). The goal

was then to make predictions for the data that were not obtained for each of these subjects.

Predicting behavioral data from neural data

For the first two partially observed subjects, we obtained only neural data. The neural data

were assumed to have been gathered in the same way as all of the other subjects (as

described above). The model was fit to the full data set including the partially observed

subjects and we used this information to obtain predictions about the distribution of

behavioral data that we would have obtained, had we collected the behavioral data.

Because we use a Bayesian approach to fitting our joint model to the data, we can easily

make predictions about unobserved data. The model first obtains information from the

neural data by estimating the parameters of the neural model. Then, the model sends the

information contained in the parameter estimates up to the hyperparameters ϕ and Σ. The

hyperparameters have information about the structural relationships between the neural

model parameters and the cognitive model parameters, and this information is driven by the

subjects who were fully observed. Using the information contained in ϕ and Σ, we can then

make predictions about the parameter estimates for the cognitive model, in this case the SDT

model parameters θ={d,b}. Finally, using the parameter estimates for the cognitive model,

we can make predictions about the hit and false alarm rates that would have been obtained,

given the neural data.

Fig. 4 shows an example of how this process works for two subjects, one subject having a

small Source 1 activation (top row) and the second having a larger Source 1 activation

(bottom row). The left panels show the neural data for these two subjects at the voxel level.

Estimates for the neural model parameter δ are obtained from these data and then passed

upward to the joint model's hyperparameters ϕ and Σ. The middle panels show a

representation (i.e., the posterior predictive distribution) of the relationship between the

activation of Source 1 (the x-axis) and the level of discriminability (the y-axis). The

relationship between these model parameters is inferred from the full data, driven by the

subjects for whom both neural and behavioral data have been obtained. The dashed vertical

red lines show the level of Source 1 activation for each subject (π1=0.3 in the top middle

panel and π1=0.46 in the bottom panel). Using the hyperparameters, the model then makes a

prediction for what the parameter estimates for discriminability would have been (not

shown) and converts this prediction into a distribution over hit and false alarm rates. The

predicted behavioral data are shown as the gray clouds in the right panels of Fig. 4. As a

guide, reference lines corresponding to d=0 (the diagonal line), d=1 (the middle curved line),

and d=2 (the line with the sharpest curve) are shown and the means of the predicted hit and

false alarm rates are shown as the black “x” symbols. The figure shows that for the subject

with a smaller Source 1 activation, the model predicts that that subject will tend to have

lower discriminability than the subject with a larger Source 1 activation.
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Predicting neural data from behavioral data

We also examined the model predictions for neural data, given only behavioral data. The

ability of the joint model to make these predictions is important from a cost and ethical point

of view, because neural data can often be expensive and time consuming to obtain (e.g.,

fMRI). The ability to predict neural activity from behavioral data alone could be particularly

useful in the clinical setting, where the exact structure of affected brain regions in unhealthy

subjects can be difficult to pinpoint. Furthermore, the joint modeling framework could be

used on preliminary data to aid in designing new experiments that better identify these

affected regions or better test psychological theory (Myung and Pitt, 2009).

To examine the model predictions, we fit the joint model to the full data set, but included

two subjects for whom only behavioral data were obtained. As in the above example, the

model can easily make predictions for neural data given only the behavioral data after

uncovering the relationships between the neural and cognitive model parameters. When only

behavioral data have been observed, the information is passed in the opposite direction as

described in the previous example.

Fig. 5 shows an example of this process for two subjects, one of which had low

discriminability (top row; d=0.8) and one of which had high discriminability (bottom row;

d=1.5). The left panels show the obtained hit and false alarm rates, along with reference

lines for different levels of discriminability. From these data, the model obtains estimates for

the cognitive model parameters θ, which are then passed upward to the hyperparameters.

The middle panels again show a representation of the relationship between the Source 1

activation and the level of discriminability, which is inferred from the group of subjects for

whom both neural and behavioral data were obtained. The red horizontal dashed lines show

an estimate of the level of discriminability inferred from the behavioral data. The estimate

for discriminability is then used in combination with the hyperparameters to make

predictions for the neural model parameters (not shown), which are then used to make

predictions for the pattern of activity that might have been observed at the voxel level. These

patterns of activity are shown in the right panels of Fig. 5. The model shows that as the hit

rate increases and the false alarm rate decreases (resulting in greater accuracy), the degree of

Source 1 activation becomes stronger. In addition, because the degree of activation

parameters π are constrained to sum to one and the degree of activation of Source 2 was held

constant, the activation of Source 3 decreases to account for the increase in Source 1

activation.

This section has illustrated a few of the benefits of our joint modeling approach. Namely,

one can combine behavioral and neural models together to form one unified model to

account for both sources of data. Using such a framework, we can infer the relationships

among the model parameters in a principled and automatic way. Finally, as a direct result of

our Bayesian approach, we can easily make predictions about data that were not observed.

Fitting the joint model to response time and tract strength data

In this section, we will demonstrate the joint model's ability to generalize and predict future

data for new subjects while having only neural data or some combination of neural data and
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(sparse) behavioral data. We demonstrate this feature of the model on experimental data

reported in Forstmann et al. (2011). The study was designed to provide further evidence for

the striatal hypothesis of the speed accuracy tradeoff (Bogacz et al., 2010; Forstmann et al.,

2008, 2010), which asserts that under time pressure, the striatum decreases the activation of

the output nuclei of the basal ganglia, thereby releasing the brain from inhibition and

facilitating decisions that are fast but error-prone (Mink, 1996; Smith et al., 1998). The data

were collected to further investigate whether age-related slowing might be related to the

degeneration of corticostriatal connections, often measured by structural diffusion-weighted

imaging (DWI).

Experiment

The data were presented in Forstmann et al. (2011) and were produced by 20 young subjects

and 14 elderly subjects. The experiment used a moving dots task where subjects were asked

to decide whether a cloud of semi-randomly moving dots appeared to move to the left or to

the right. Subjects indicated their response by pressing one of two spatially compatible

buttons with either their left or right index finger. Before each decision trial, subjects were

instructed whether to respond quickly (the speed condition), accurately (the accuracy

condition), or at their own pace (the neutral condition). Following the trial, subjects were

provided feedback about their performance. In the speed and neutral conditions, subjects

were told that their responses were too slow whenever they exceeded a RT of 400 and 750

ms, respectively, for the young subjects and 470 and 820 ms for the elderly subjects,

respectively. In the accuracy condition, subjects were told when their responses were

incorrect. Each subject completed 840 trials, equally distributed over the three conditions.

The cognitive model

To model the behavioral data, we chose the mathematically simple LBA model (Brown and

Heathcote, 2008), consistent with Forstmann et al. (2008, 2010, 2011). The LBA model

reduces the evidence accumulation process assumed by previous models of choice RT, such

as competition between alternatives (e.g., Brown and Heathcote, 2005; Usher and

McClelland, 2001), passive decay of evidence (“leakage”, e.g., Usher and McClelland,

2001), and even within trial variability (e.g., Ratcliff, 1978; Stone, 1960). The model's

simplicity allows closed-form expressions for the first passage time distributions for each

accumulator. With these equations, one can specify the likelihood function for the model

parameters, which has been instrumental in the LBA model's success (e.g., Donkin et al.,

2009a, 2009c, 2011; Forstmann et al., 2008, 2010, 2011; Ludwig et al., 2009).

Fig. 6 shows a graphical representation of the LBA model for two-choice data. Each

response option c={1,…,C} is represented as a single accumulator (i.e., the left and right

panels). Following the presentation of a stimulus, evidence ballistically accumulates for each

alternative until one of the alternatives reaches the threshold b. The model assumes some

initial amount of evidence is present for each response option. Specifically, each

accumulator begins with an independent amount of starting evidence kc, which is sampled

independently for each accumulator from a (continuous) uniform distribution so that

kc~CU[0,A]. The rate of evidence accumulation for the cth option dc is sampled

independently for each accumulator from a normal distribution with mean vc and standard
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deviation s. As a result, the rate of evidence will vary between trials, but will have the same

expected value. Finally, the LBA model assumes that the observed RT is the sum of the

decision time, plus some extra time τ for the nondecision process such as motor execution (a

parameter that is not shown in Fig. 6). For simplicity, τ is usually assumed to be constant

across trials. Thus, the final observed RT is given by

To satisfy scaling conditions of the model, it is common to set the standard deviation of the

sampled drift rates to one, so s=1, but other constraints are possible (see Donkin et al.,

2009b).

We denote the response time for the jth subject on the ith trial as RTj,i and the response

choice as REj,i. To simultaneously explain both RT and choice, we require the “defective”

distribution for the ith accumulator, which is the probability of the cth accumulator reaching

the threshold and the other accumulators not reaching the threshold. The density function for

this distribution is given by

(2)

where v={v1,…,vC}, f(c,t) and F(c,t) are the PDF and cumulative density function (CDF) for

the time taken for the cth accumulator to reach the threshold, respectively (see Brown and

Heathcote, 2008; Turner et al., in press, for details). To incorporate the nondecision time

parameter into the PDF, we substitute (t–τ) for t in Eq. (2). Thus, the behavioral data for the

jth subject Bj={REj,RTj}, and we write the likelihood function for the jth subject as

where θj={bj,Aj,vj,s,τj}.

Because there are three speed conditions in the experiment, we use a vector of response

threshold parameters  so that ,  and  are used for the accuracy,

neutral and speed conditions of the experiment for the jth subject, respectively. We

constrained the upper bound of the start point A to be equal across the emphasis conditions.

Neural model

DWI relies on the Brownian motion of water molecules. It is possible to fit a tensor model to

the data and subsequently compute probabilistic tractography (Behrens et al., 2003). This

allows one to estimate tract strength, a probabilistic white matter connectivity measure,

between different cortico-subcortical brain regions. Based on previous results, four different

tract strength measures – between the left and right pre-SMA into the left and right striatum

– were taken (see Fig. 7 and Forstmann et al., 2008).
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We use Nj,m to denote the mth tract strength measurement for the jth subject and use a single

parameter δj to model the mean tract strength measurement such that

We set the standard deviation of the normal distribution over the logit of the tract strengths

to equal one because we were not interested in relating the variance in the tract strength

measurements to the cognitive model parameters and because it reflected the empirical

standard deviation of tract strengths from the experiment. We used the logit transformation

on the tract strength measurements out of convenience so that the normal distribution, which

has infinite support, could be used to model these measurements.

Joint model

To combine both the behavioral and the neural models into a single, unified model, we begin

by specifying the hyperparameter vector

which contains the mean parameters for each of the subject-level parameters. We then

combine all of the hyper variances of the subject-level parameters together to form the

matrix Σ, so that

where

and

Here we can see that Σ is partitioned to reflect that other matrices fill the partition with

meaningful constraints. For example, the variances for the subject-level parameters are all
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contained in the matrix , which is a diagonal matrix. Thus, we do not model the

relationships between the cognitive model parameters, although we can still explore them by

examining their joint posterior distribution once the model has been fit to the data. What is

crucial for the joint model, however, is that the relationships between the cognitive model

and the neural model are inferred by means of the matrix (i.e., a vector in this example)

ρδσθσ. These relationships will be directly modeled through the correlation parameter vector

ρ. Finally, for the parameters δj and θj for each Subject j, we assume the common structure

Thus, the likelihood function for the parameters δ and θ is given by

where N(x|a,b) denotes the normal density with mean parameter a and standard deviation b

at the location x.

In the Bayesian framework, we must also specify prior distributions for each of the group-

level parameters. We specified mildly informative priors for each of the hyper mean

parameters, so that

where k={1,2} and  denotes the underlying truncated normal distribution

with mean parameter a, standard deviation b, lower bound c and upper bound d, and mildly

informative priors for the hyper standard deviation parameters, so that
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Because we wanted to avoid any speculation about the relationships between the behavioral

and neural model parameters, we specified noninformative priors for each of the correlation

parameters, such that

Specifying the model in this way allows for easy computation of the Bayes factor via the

Savage–Dickey density ratio (see Dickey, 1971; Dickey and Lientz, 1970; Friston and

Penny, 2011; Wetzels et al., 2010).

Given the priors listed above, the full joint posterior distribution for the model parameters is

given by

where .

Results

To fit the joint model to the data, we again used a blocked version of DE-MCMC with the

same choices as above for the tuning parameters. We used the DE local-to-best method to

obtain starting points with high posterior density (Turner and Sederberg, 2012). We ran the

algorithm with 24 chains operating in parallel for 5000 iterations, and treated the first 1000

iterations as a burn in period. Thus, we obtained 96,000 samples from the joint posterior

distribution.
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There are a number of ways to assess the fit of the model to the data, but for brevity, we

report only a few of these ways here. Fig. 8 shows the estimated posterior distribution for

the correlations between the single neural model hyperparameter δ and the cognitive model

parameters: threshold parameter for the accuracy condition (b(1); top left panel), threshold

parameter for the neutral condition (b(2); top middle panel), threshold parameter for the

speed condition (b(3); top right panel), the upper bound of the start point parameter (A;

bottom left panel), the drift rate for correct (v(1); bottom middle panel) and the drift rate for

incorrect (v(2); bottom right panel) responses. The correlation between the nondecision time

parameter τ and δ is not shown (it had no substantial correlation). The relationships between

the parameters are weak, but the figure does indicate a moderate inverse relationship

between response threshold and tract strength for at least the accuracy and neutral conditions

and a moderate positive relationship between the drift rate for the correct responses and tract

strength. Taken together, these patterns suggest that as tract strength increases, subjects will

tend to require less information to make a decision and will make this decision with greater

accuracy.

If we wished to perform significance tests, at this point we could evaluate the probability of

a particular hypothesis by analyzing the posterior distribution. For example, suppose we

wished to test the hypothesis that the rate of evidence accumulation for a correct response

was significantly positively related to the level of tract strength. We could then integrate the

marginal posterior distribution of the parameter ρ5, which represents the correlation between

 and δμ, to obtain an estimate for the probability of a positive relationship between the

two variables. For these data, we found this probability to be 0.836, which provides

evidence that there exists a positive correlation between these two variables.

To examine this relationship further, we examined the posterior predictive distributions of

the joint model. Fig. 9 shows the posterior predictive distributions (gray clouds) along with

the observed data (black dots) for each of the speed emphasis conditions (columns). We

examined the relationship between tract strength and RT in two ways. First, we examined

how tract strength was related to the mean RT at the individual level, shown in the top row.

To generate the posterior predictive density, we generated 1000 tract strength values and

choice RT pairs for 1000 parameter sets (θj,δj), which were sampled from the joint posterior

distribution corresponding to each subject j. The mean RT was calculated for each simulated

data set, collapsing across the choice variable. The figure shows that there is a slight

negative relationship between tract strength and the mean RT.

We also examined how the mean RT was related to tract strength at the group level (bottom

row). To generate this posterior predictive density, we first sampled a value for ϕ and Σ

from their estimated posterior distributions. We then generated hypothetical parameter

values for (θ,δ), which were then used to generate values for tract strength and choice RT

pairs in the same way as in the top panel. The generated posterior predictive density is

important because it is a generalization of the pattern between the neural and behavioral

model parameters that is learned by the joint model from the data. The figure illustrates a

strong negative relationship between tract strength and mean RT: as tract strength increases,

the mean RT tends to decrease. The strength of this relationship decreases across the
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emphasis conditions such that as speed is further stressed, the correlation between tract

strength and mean RT decreases.

While Fig. 9 does show the basic predictions of the model as a function of tract strength, it is

not obvious how the predictions of the full RT distribution might vary as a function of tract

strength. It is also unclear how the neural data affects the predictions of the joint model

when compared with a behavioral model that ignores the neural data. To explore this, we

performed a simulation study with two conditions of withheld data. In the first condition, we

removed all observations from two of the 24 subjects: one subject had a high average tract

strength value (0.973) and one had a low tract strength value (0.405). In the second

condition, we removed only 50% of the data from the same two subjects. Both the joint and

behavioral models were fit to the data from each condition and the maximum a posterior

(MAP) estimates were calculated from the joint posterior distributions. The MAP estimates

were then used to generate a posterior predictive density estimate, which we summarized by

calculating the median prediction for all choice RT pairs.

Fig. 10 shows the results of the simulation study for the accuracy condition. The left panel

shows the raw data for the low tract strength subject (dashed black lines) and the high tract

strength subject (solid gray lines). In each panel, the correct RT distributions are shown on

right whereas the incorrect RT distributions are shown on the left. The right panel shows the

posterior predictive distributions for the joint (top) and behavioral (bottom) models for the

first (i.e., the condition where 100% of the behavioral data were withheld) and second

conditions (i.e., the condition where only 50% of the behavioral data were withheld),

respectively. For the first condition, the figure shows that the predictions for the behavioral

model do not differ across the two subjects because the model has no information that can

be used to dissociate one subject from another. On the other hand, the predictions from the

joint model show a clear separation between the two subjects as a result of the information

learned from the neural data of the two subjects and the relationship learned between the

behavioral and neural model parameters from the remaining 22 subjects. In particular, the

joint model correctly predicts that the high tract strength subject will tend to produce faster

and more accurate responses than the low tract strength subject.

While the neural data for this real-world experiment are sparse, the joint model is able to

identify a signal in the data that is amplified in the hierarchical model. However, due to the

sparsity of the neural data, a principled model would predict that as the number of

observations from the behavioral data grows, the predictions of the joint and behavioral

models should quickly converge because the proportion of shared information between the

two models increases. The right panel of Fig. 10 shows that this is indeed the case: the

predictions of the joint and behavioral models are nearly identical when 50% of the

behavioral data are available. Furthermore, the predictions of both models accurately reflect

the patterns of observed data from the two withheld subjects (leftmost panel).

General discussion

We have presented a new approach to unifying neural and cognitive models to better

understand cognition. In contrast to previous methods, our method is extremely flexible
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because it can combine any neural model with any cognitive model. Our method also

provides a way to infer the relationships that might exist between the biological and physical

properties of the brain and higher-level cognitive processes.

By combining two separate models into a single Bayesian hierarchical model, we can make

predictions about missing data. In our simulation study, we showed that when only neural

data are available, the model can use the structural relationships between the model

parameters inferred from the group to make predictions about behavioral data. The same

feature of the model can also be used to make predictions about the relationships between

behavioral and neural model parameters at the group level. For example, the joint posterior

distributions for cognitive parameters and fMRI activation shown in Figs. 4 and 5 show

what the model predicts the relationship will be between these two variables in general. The

model develops these predictions based solely on the data that were observed.

We have also demonstrated that the joint model can predict future behavioral data from new

subjects based only on the neural data associated with those subjects. The joint model

accomplishes this by learning the structural relationships between the neural and behavioral

model parameters from the group of available subjects, and then generalizes this information

to new subjects. By contrast, behavioral models that learn only from behavioral data cannot

differentiate between subjects because they do not use the neural data. Generally, any joint

model will need to explicitly establish a link between neural and behavioral data to

accomplish this generalization or prediction task.

While we did not fully exploit the importance of constraining the neural model parameters

in the examples presented in this article, we speculate that constraining these parameters can

help identify important neural signatures, which are often masked by the noise inherent in

neural data. The added constraint could prove useful in developing richer, theoretically

motivated models of neural data.

By using flexible hyperparameter structures we can also infer which relationships between

the model parameters are important. That is, we are not limited to investigating only a priori

hypotheses, as in the model-based imaging approach (O'Doherty et al., 2007). This makes

our approach suited to exploratory studies once proper adjustments have been made to the

prior odds term (Stephens and Balding, 2009). To infer those relationships, we need only

specify a correlation structure between the parameters of interest. The magnitude of the

relationship manifests in the marginal posterior distribution of the correlation parameter.

Using the estimate of the correlation parameter, we can then assess the importance of the

relationship by examining summary statistics or regions of interest of the posterior (e.g., a

region of practical equivalence analysis; see Kruschke, 2011).

Another important feature of our framework is that it is not limited to a particular pair of

models or type of data. That is, any cognitive model of interest can be combined with any

neural model of interest within the joint modeling framework, as long as likelihood

functions are available for both. Similarly, we are not restricted to particular types of data.

We choose a neural/behavioral model to explain the neural/behavioral data, and in this way,

we have unlimited flexibility in modeling the joint distribution of the data.
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Finally, our modeling approach applies constraints to the model parameters in a principled

way. Other approaches rely on only the behavioral data to inform the estimation procedure.

As a result, these approaches are unable to use the neural data to inform the parameter

estimates for behavioral models. By contrast, our approach uses these properties to restrain

parameter estimates to conform to more biologically-plausible scenarios. In this way, our

approach provides a unifying account of both applied and theoretical explanations of

cognition. Providing such a framework enables more informative predictions for future (i.e.,

unobserved) data on the basis of the data that were observed.

Limitations

Despite the potential of our approach, there are several limitations. First, using the

correlation parameter of a multivariate normal distribution may not be the best choice to

understand the relationships between model parameters. For example, if one were interested

in causal relationships between neural sources and cognitive mechanisms, a discriminative

approach such as structural equation modeling or generalized linear modeling would be

more useful. However, such a model specification would still fit within the proposed

framework. To do so, one would specify that say, the cognitive model parameters, are a

function of the neural sources. For example, one could specify a linear relationship between

the neural and cognitive model parameters, so that

where β is the standard coefficient matrix for linear regression and ε specifies the error term.

Here, we have defined a structural relationship between two latent parameters; however, one

could image a scenario where the parameters δ were the neural data themselves. For

example, in the data from the experiment above, one could specify that

Here, δ becomes a deterministic node in the model and can be used to enforce a stronger

constraint on the cognitive model parameters θ. In some preliminary studies, we have

examined functional approaches like the one described here. However, causal relationships

are meant more for confirmatory purposes (e.g., to confirm a hypothesis) whereas the

approach we present in this article is meant for exploratory purposes. We believe that the

latter is more applicable to the generative study of cognition.

Another limitation comes directly from the model structure. Specifically, the constraint from

the group-level model parameters could be conceived of as a limitation of our model. In

some preliminary studies, we have found that specifying priors for subject-level parameters

may be overly restrictive in some cases, such as when there are few observations at the

subject-level. In this situation, because little is known at the subject level, the model will

resort to using the information contained in the prior and the estimates for the subject-level
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parameters may systematically differ from estimates that would have been obtained without

the specification of a prior, an effect known as shrinkage.

However, the way that Bayesian models handle sparse data can also be seen as a benefit of

our approach. When little is known about individual subjects, hierarchical Bayesian models

learn a little from each subject and this information is passed back and forth between the

group- and subject-level parameters. This same information sharing scheme is what

facilitates the prediction of one source of data, e.g., the neural data, having only observed

the behavioral data. To remedy the problem of overly harsh prior specification, one can use

more flexible distributions to characterize the distribution of subject-specific model

parameters. For example, one could use nonparametric Bayesian techniques (Gershman and

Blei, 2012; Navarro et al., 2006), which allow the model to learn the most appropriate

representation of the distribution of subject-specific parameters. Such a flexible

representation would help to attenuate the problem of parameter shrinkage.

Throughout the manuscript, we focused on linking behavioral and neural model parameters

together across subjects (see Eq. (1)). However, the joint modeling framework can be further

extended to the individual subject level, where parameters for each trial can be linked

together. To do this, we need only specify that the individual trial parameters are correlated

for each individual subject. We could then specify a structure for the subject-specific

correlation parameters in a three-level hierarchy. Such an extension is particularly useful for

neural data, which are often obtained on a trial-to-trial basis.

A final limitation is in our specification of the covariance matrix Σ. For the models in this

article, we set the off-diagonal elements to zero because the correlations among the

behavioral and neural model parameters were not theoretically important. While this

particular constraint is useful in minimizing the computational complexity associated with

estimating the parameters of the hierarchical model, such a constraint could have negative

implications. For example, if the model were misspecified such that a strong (i.e., having a

large magnitude) correlation existed between the model parameters, the misspecification

would manifest as a bias in the estimates of the remaining parameters. In practice, we

recommend investigating a variety of model constraints so that simplifying assumptions can

be properly justified.

Conclusions

In this article, we have presented a hierarchical Bayesian framework for combining both

neural and cognitive models into a single unifying model. We have shown that our approach

provides a number of benefits over current approaches and allows for principled inference of

the relationships between the biological properties of the brain assessed by neuroimaging

techniques and the theories of cognition that are used to understand higher levels of

cognitive processing. With this approach, one can investigate neural and behavioral data

using any combination of neural and cognitive models. By unifying the two seemingly

different aspects of cognitive processing, we have presented a step toward a better

understanding of cognition.
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Fig. 1.
Graphical diagram for the joint modeling approach of neural (left side) and behavioral (right

side) data.
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Fig. 2.
The classic equal-variance model of signal detection theory. Representations for targets and

distractors are represented as equal-variance Gaussian distributions, separated by a distance

d, known as the discriminability parameter. A criterion, shown as the vertical dashed line, is

used to determine the response. Deviation from the optimal criterion placement at d/2 is a

bias, and is measured by the parameter b.
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Fig. 3.
An example of how the neural model explains the raw data (left panel) through a finite

mixture of normal distributions (right panel). Voxels that have larger degrees of activity are

translated to regions of larger activation in the corresponding source of the normal mixture

model.
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Fig. 4.
Two examples of predictions made from the joint model given only neural data. The rows

correspond to the two different subjects — the first row represents a subject with low Source

1 activation and the bottom row represents a subject with high Source 1 activation. The left

panels show two simulated subjects having only neural data (i.e., no behavioral data). The

middle panel plots the joint distribution of the activation of Source 1 against

discriminability, a relationship that was inferred from the full set of data. The red vertical

dashed lines represent the estimated degree of Source 1 activation in the corresponding row

(see the left panel). The right panels show the predicted distribution of hit (y-axis) and false

alarm (x-axis) rates made by the model along with the mean prediction (shown as the black

“x” symbol), conditional on the neural data in the corresponding row. Reference lines of

d={0,1,2} are also show in the right panels.
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Fig. 5.
Two examples of predictions made from the joint model given only behavioral data. The

rows correspond to the two different subjects — the first row represents a subject with low

discriminability and the bottom row represents a subject with high discriminability. The left

panels show two simulated subjects having only behavioral data (i.e., no neural data) in the

form of a hit (y-axis) and false alarm (x-axis) rate, shown as the “x” symbol. Reference lines

of d={0,1,2} are shown in the left panels. The middle panels show the joint distribution of

the activation of Source 1 against discriminability, a relationship that was inferred from the

full set of data. The red horizontal dashed lines represent the estimated discriminability (i.e.,

the parameter d) from the data in the corresponding row (see the left panels). The right

panels show the predicted distribution of neural data at the voxel level.
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Fig. 6.
The linear ballistic accumulator (LBA) model. The LBA model represents response

alternatives by two accumulators (i.e., the left and right panels). Upon the presentation of a

stimulus, the two accumulators gather evidence ballistically and race to reach the threshold

b. The observer then selects the response alternative that corresponds to the accumulator that

reaches the threshold first. Both the rate of evidence accumulation and the initial amount of

evidence vary from trial to trial.
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Fig. 7.
Tract strength was computed between cortico (pre-SMA) and subcortical (striatum) brain

areas (Forstmann et al., 2011).
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Fig. 8.
The estimated posterior distributions for six of the seven correlation parameters.
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Fig. 9.
Posterior predictive distributions for the mean RT by tract strength at the individual subject

level (top row) and the group level (bottom row) for each speed emphasis condition

(columns) from the joint model (gray clouds). The observed data overlay each plot (black

dots).
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Fig. 10.
A model prediction comparison for a subject with a high average tract strength measurement

(gray solid lines) and a subject with a low average tract strength measurement (dashed black

lines). The left panel shows a histogram of the raw data whereas the right panels show the

predictions of the joint (top) and the behavioral (bottom) models under two conditions: the

left column corresponds to a condition in which all behavioral data are withheld and the

right column corresponds to a condition in which only 50% of the behavioral data are

withheld. Only the joint model is able to differentiate the predictions for the two subjects

when only neural data is available. In each panel, the RT distribution for incorrect responses

is shown on the left whereas the RT distribution for correct responses is shown on the right.
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