Skip to main content
. 2014 Jun 18;78(4):277–289. doi: 10.1111/ahg.12065

Table 4.

Performance of different imputation models in terms of genetic effect estimation: IM0 refers to imputation carried out using the observed frequencies of the α3.7-globin deletions, IM1 includes four SNPs as imputation covariates (rs1800629, rs3211938, rs334, and rs542998), IM2 includes eight phenotypes and socio-environmental factors (Hb, mild anemia, malaria parasite positivity, transect, altitude, and ethnicity), and IM3 includes all variables in IM1 and IM2

IM0 IM1 IM2 IM3
Estimation bias Estimation bias Estimation bias Estimation bias
Log- (CI coverage, %) Log- (CI coverage, %) Log- (CI coverage, %) Log- (CI coverage, %)
likelihood likelihood likelihood likelihood
Missing completely at randoma bias (%) λ1 λ2 bias (%) λ1 λ2 bias (%) λ1 λ2 bias (%) λ1 λ2
     Pmiss = 10% −8.80 (1.00) 0.04 (100) −0.06 (100) −8.80 (1.00) 0.03 (100) −0.06 (100) −1.16 (0.13) 0.10 (100) −0.07 (100) −1.14 (0.13) 0.10 (100) −0.08 (100)
     Pmiss = 25% −8.90 (1.02) 0.07 (100) −0.04 (100) −8.95 (1.02) 0.07 (100) −0.06 (100) −1.02 (0.12) 0.11 (100) −0.09 (100) −1.00 (0.11) 0.10 (100) −0.10 (100)
     Pmiss = 50% −9.12 (1.04) 0.12 (100) −0.09 (100) −9.16 (1.05) 0.12 (100) 0.13 (100) −0.93 (0.11) 0.13 (100) −0.15 (100) −0.93 (0.11) 0.13 (100) −0.16 (100)
Missing data from one villageb
     Kilimanjaro
         Mokala −0.19 (0.02) 0.02 (100) 0.01 (100) −1.47 (0.17) 0.24 (80) 0.13 (100) 7.83 (0.89) −0.31 (8) 0.41 (100) 2.63 (0.30) 0.19 (100) 0.64 (0)
         Machame −0.06 (0.01) 0.01 (100) <−0.01 (100) −0.90 (0.11) 0.06 (100) −0.08 (100) 4.39 (0.50) −0.16 (100) 0.25 (100) 1.62 (0.19) −0.02 (100) 0.20 (100)
         Ikuini 0.21 (0.02) −0.02 (100) −0.01 (100) −0.80 (0.09) 0.07 (100) −0.01 (100) 1.20 (0.13) −0.09 (100) −0.05 (100) 0.51 (0.06) −0.02 (100) 0.07 (100)
         Kileo 0.46 (−0.05) −0.05 (100) −0.07 (100) −0.19 (0.02) 0.00 (100) −0.05 (100) 2.71 (0.31) −0.15 (100) 0.05 (100) 1.98 (0.23) −0.07 (100) 0.14 (100)
     South Pare
         Bwambo −0.30 (0.03) 0.01 (100) −0.07 (100) −0.30 (0.03) 0.01 (100) −0.07 (100) −0.26 (0.03) 0.01 (100) −0.06 (100) −0.25 (0.02) 0.01 (100) −0.06 (100)
         Mpinji 0.21 (−0.02) −0.02 (100) −0.01 (100) −1.50 (0.17) 0.22 (90) 0.10 (100) 8.66 (0.99) −0.34 (0) 0.42 (100) 2.80 (0.32) 0.16 (100) 0.64 (0)
         Goha −0.15 (0.03) 0.03 (100) 0.04 (100) −0.46 (0.05) 0.03 (100) −0.05 (100) 1.07 (0.12) −0.08 (100) −0.03 (100) 0.26 (0.26) 0.01 (100) 0.10 (100)
         Kadando −0.33 (0.04) 0.06 (100) 0.07 (100) −0.94 (0.11) 0.11 (100) 0.03 (100) 1.27 (0.15) −0.06 (100) 0.06 (100) 1.14 (0.13) 0.01 (100) 0.22 (100)
     West Usambara
         Kwadoe 0.02 (<0.01) <−0.01 (100) −0.02 (100) −0.20 (0.02) −0.00 (100) −0.08 (100) 4.05 (0.46) −0.10 (100) 0.35 (99) 2.73 (0.31) −0.08 (100) 0.20 (100)
         Funta 0.04 (<0.01) 0.02 (100) 0.05 (100) −0.30 (0.03) 0.02 (100) −0.04 (100) 0.00 (0.00) 0.00 (100) −0.02 (100) 0.12 (0.01) −0.01 (100) −0.03 (100)
         Tamota −0.66 (0.07) 0.05 (100) −0.05 (100) −1.60 (0.18) 0.25 (62) −0.02 (100) 9.63 (1.10) −0.38 (4) 0.38 (96) 2.74 (0.31) 0.23 (83) 0.65 (13)
         Mgila 0.24 (0.03) 0.07 (100) 0.21 (100) −0.65 (0.07) 0.13 (100) 0.16 (100) 8.56 (0.98) −0.21 (87) 0.47 (58) 4.35 (0.50) −0.02 (100) 0.43 (70)
     Tanga coast
         Mgome −0.75 (0.09) 0.04 (100) −0.32 (100) −1.32 (0.15) 0.18 (88) 0.05 (100) 8.15 (0.93) −0.33 (23) 0.41 (94) 3.38 (0.39) 0.10 (100) 0.59 (8)
a

Results based on 100 MCAR data sets in which each data set was analyzed by MICE using 25 imputed data sets generated from chains of 25 iterations and random initial conditions.

b

Results based on 100 imputed data sets generated by MICE using chains of 25 iterations and random initial conditions.