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Abstract

Considering that many natural stimuli are sparse, can a sensory system evolve to take advantage of this sparsity? We explore
this question and show that significant downstream reductions in the numbers of neurons transmitting stimuli observed in
early sensory pathways might be a consequence of this sparsity. First, we model an early sensory pathway using an idealized
neuronal network comprised of receptors and downstream sensory neurons. Then, by revealing a linear structure intrinsic to
neuronal network dynamics, our work points to a potential mechanism for transmitting sparse stimuli, related to
compressed-sensing (CS) type data acquisition. Through simulation, we examine the characteristics of networks that are
optimal in sparsity encoding, and the impact of localized receptive fields beyond conventional CS theory. The results of this
work suggest a new network framework of signal sparsity, freeing the notion from any dependence on specific component-
space representations. We expect our CS network mechanism to provide guidance for studying sparse stimulus
transmission along realistic sensory pathways as well as engineering network designs that utilize sparsity encoding.
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Introduction

It is well known that natural stimuli, such as visual images, are

sparse in the sense that they can be well represented by a small

number of dominant components, typically in an appropriate

frequency space [1]. We may thus naturally expect that

organisms’ sensing has evolved to be adapted to such sparsity.

One sign of this adaptation may be the great reduction in

numbers between the receptor cells and the sensory neurons in

the immediate downstream layers along the early stages of

sensory pathways [2,3]. For example, in the retina, the stimuli

received by ,150 million rods and cones are transmitted through

only ,1.5 million retinal ganglion cells [2]. More generally, it is

important to know how the network topology of early sensory

pathways reflects this type of adaptation. How have the networks

along these pathways evolved so that they can best transmit

sparse stimuli and the least amount of information is lost through

network dynamics [4,5]?

Theoretically, the above question translates into the search for a

class of neuronal networks that takes advantage of stimulus sparsity

and thus best encodes such stimuli. Naturally, such networks

should need relatively few downstream neurons to sample the

input from the receptors. An instructive technological analog is

provided by the compressed sensing (CS) theory [6,7]. When using

sufficiently random sampling of sparse images, this theory allows

us to dramatically reduce the sampling rate as compared to that

expected for the uniform sampling of finite-bandwidth stimuli [8],

without degrading the image reconstruction. Greatly improving

the fidelity of high dimensional data reconstructions and

developing efficient sampling algorithms, applications of CS have

emerged in numerous fields, including physics, biology, and

imaging [9–13].

In the context of neuroscience, it has been conjectured that the

information processing in the brain may be related to the existence

of an efficient coding scheme, such as compressed sensing [14,15].

Using adaptive CS, for example, sparse representations of sets of

sub-sampled inputs can be developed through unsupervised

learning without knowledge of either the sampling protocol or the

sparse basis of the measured signal, revealing that CS may, in

theory, help to explain signal interpretation and transmission in the

brain [16]. Following the CS mathematical structure, it has also

been suggested that linear, discrete-time network dynamics can be

used to encode sparse temporal sequences of information in their

current activity and therefore neuronal networks may possess a

greater theoretical memory capacity than previously hypothesized

[17]. In this work, we take a new direction by constructing a spiking-

neuron network model of an early sensory pathway and demon-

strating how the firing rates of a relatively small set of sensory

neurons with nonlinear dynamics can successfully encode network

inputs. Deriving a linear mapping embedded in the network

dynamics, we use CS theory and the dynamics of our model

network over a biologically realistic time-scale to reconstruct visual

stimuli, which are known to be sparse in frequency space [1]. We

also find that the performance of this model can be greatly improved

by incorporating the biologically realistic property of localized

receptive fields [18,19]. Unlike previous work [14,15], the derived

input-output relationship is not constructed through learning, and is

instead intrinsic to the network dynamics, suggesting a possible way

sensory information is transmitted downstream via sparse coding of

stimuli through network dynamics.
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Even before the discovery of CS, sparse coding was hypothe-

sized as a feature fundamental to optimally representing sensory

information, thus possibly leading to the emergence of spatial

receptive-field properties of simple cells in the primary visual

cortex [20,21]. Instead of using the framework of optimization

[20,21], we consider how the time-evolving output of populations

of firing neurons encodes stimulus information and examine the

key characteristics of a CS neuronal network best evolved to

transmit sparse stimuli. Underlining a novel notion of sparsity in

terms of network dynamics, our results suggest a stimulus may be

considered sparse if it can be accurately encoded by networks in

which the number of downstream neurons is much lower than the

number of input components, separating the notion of sparsity

from any dependence on a particular component-space transform

choice.

Results

Minimal Compressed Sensing Network
To study sparse stimulus transmission along early stages of

sensory pathways, we have constructed our conceptual network

model to consist of two layers, an input layer and a processing

layer, representing the receptors and sensory neurons (sensory

cells), e.g., retinal ganglion cells in the retina. Invoking the fact

that the receptor neurons in the retina exhibit graded-potential

rather than the usual action-potential responses [22], we

represent the input layer by currents injected into the sensory

neurons in the processing layer. Each current represents the

stimulus intensity in the receptive field of a given receptor, which

relays this intensity downstream to a number of sensory neurons.

We describe these neurons using the pulse-coupled, integrate-

and-fire (I&F) model [23–30]. Our model is intentionally

idealized, so that only the most general features of early sensory

pathways are incorporated. In this way, we aim to emphasize the

possible role of the CS mechanism in a broad class of sensory

systems.

In our model, the membrane-potential dynamics of the ith

sensory neuron is governed by the differential equation

t
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and evolves from the reset potential VR until it reaches the

threshold potential VT . At the lth time this occurs, til , we say that

this neuron has fired (or spiked), reset ui to VR, and inject the

currents (S=NA)d(t{til) into all the other sensory neurons post-

connected to it, with d(:) being the Dirac delta function. Here, t is

the membrane-potential time-scale, n and m are the numbers of

the receptors and sensory neurons, respectively, NA is the number

of sensory-neuron connections, p~(p1, . . . ,pn) are the stimulus

strengths transmitted by the receptors, B~(Bij) and A~(Aij) are

connection matrices between the receptors and sensory neurons

and between sensory neuron pairs, respectively, and f and S are

the respective overall strengths of those connections. Stimulus

components, pi, take on integer values between 0 and 255,

indicating the light intensity of the stimulus. These components

will typically be fixed over time, since we primarily consider

stationary stimuli. We simulate this model for a run-time of

200 ms using an event-driven algorithm in which we analytically

solve for sensory neuron voltages and spike times, choosing

parameters t~20 ms, the dimensionless potential values VR~0

and VT~1, n~104, m~103, S~1, and f ~1 [31,32].

We first assume that every sensory neuron samples the stimulus

randomly from the entire receptor pool, and choose the numbers n
of the receptors and m of the sensory neurons to be such that n&m
(In most of our computations, due to the limitations imposed by

our computational power, we take the ratio n:m to be 10:1 instead

of the 100:1 observed in early sensory pathways [2,3].) While this

assumption of random sampling is fundamental to conventional

CS theory, we later consider the more realistic case in which

photoreceptors are sampled locally by sensory neurons, which

yields a significant improvement in stimulus encoding [18,19].

Moreover, the sensory neurons are also initially assumed to be

connected to each other randomly, but, as we will subsequently

demonstrate, we can also assume that the sensory neurons are

uncoupled without affecting the results of this work. While retinal

ganglion cells, for example, are in some cases not thought to be

connected to each other, there are also other cases in which

connectivity is observed, and we therefore address this by

considering both scenarios [33–35]. Although ganglion-cell

connections are typically gap junctions [34], we model these

connections with pulse-coupling to maintain model idealization

and simplicity. Therefore, we first take the elements Bij and Aik of

both connectivity matrices to be Bernoulli-distributed, and later

consider several realistic alternative assumptions, such as the

localized properties of receptive fields [36]. The inputs into the

sensory neurons are assumed noiseless in our preliminary

discussion, but we will address the impact of more biological

noisy processing, due to fluctuations in photon absorption for

example, in the upcoming section [37].

We emphasize that we are modeling a general early sensory

pathway, rather than incorporating details specific to the retina, and

therefore omit several detailed properties in order to accentuate the

underlying CS mechanism. For example, compared to the actual

retinal network, we only consider ‘‘on,’’ rod-like receptors,

Author Summary

In forming a mental percept of the surrounding world,
sensory information is processed and transmitted through
a wide array of neuronal networks of various sizes and
functionalities. Despite, and perhaps because of, this,
sensory systems are able to render highly accurate
representations of stimuli. In the retina, for example,
photoreceptors transform light into electric signals, which
are later processed by a significantly smaller network of
ganglion cells before entering the optic nerve. How then is
sensory information preserved along such a pathway? In
this work, we put forth a possible answer to this question
using compressed sensing, a recent advance in the field of
signal processing that demonstrates how sparse signals
can be reconstructed using very few samples. Through
model simulation, we discover that stimuli can be
recovered from ganglion-cell dynamics, and demonstrate
how localized receptive fields improve stimulus encoding.
We hypothesize that organisms have evolved to utilize the
sparsity of stimuli, demonstrating that compressed sensing
may be a universal information-processing framework
underlying both information acquisition and retention in
sensory systems.

Sparsity and Compressed Coding in Sensory Systems
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neglecting any time-course details of the graded potentials the

receptors produce [38] and any crosstalk among the receptors [39].

In addition, we also neglect the rich variety of the neuron types in

the retina [40] and their complex connectivity [41], the center-

surround structure of the ganglion neurons’ receptive fields [18,19],

any spatial differences in the density of the receptor distribution

[42], as well as any inhibition [22].

To determine the degree of connectivity between our networks,

we introduce the notion of convergence, which is defined as the

average number of neurons presynaptic to any neuron in a given

network. In particular, we use a convergence of 50 for A, the

sensory-neuron connection matrix, and a convergence of 10 for B,

the sensory-neuron to receptor connection matrix. The architec-

ture of the network is represented graphically in Fig. 1. For this

neuronal network, conceptually, the question is whether its

dynamics take advantage of the sparse stimulus structure, and

whether its topology can effectively and efficiently transduce the

input information to the sensory neurons.

The above question translates to how to design the network

parameters so that the information from the original stimulus is

best retained by the firing rates embedded in sensory-neuron spike

trains when m%n, i.e., how closely we can reconstruct the original

stimulus from the sensory neurons’ firing rates given the model

network’s connectivity. A stimulus presented to n receptors is

considered k-sparse, with k%n, when at least one of its transforms

into an appropriate frequency or wavenumber space, such as

Fourier or wavelet, has at most k components whose magnitude

exceeds a small threshold E [6,43]. Given such a stimulus, our

model sensory-neuron network generates a set of spike trains,

which presumably encodes sparse stimulus information.

If we want to use the CS theory as a guiding principle in our

model network construction, we immediately encounter a

conceptual difficulty because a prerequisite for CS is linear signal

measurement, whereas neuronal dynamics are nonlinear. How-

ever, it turns out that there is a linear structure corresponding to

the input-output relationship embedded within this network.

Using coarse-graining methods similar to kinetic theory in

nonequilibrium statistical physics, we derive the linearized firing-

rate system

f
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valid when the neuronal firing rates, mj , satisfy mj&1 for all j and

the membrane potential jump induced by each spike is small,

S=NA%1 [44,45]. The firing-rate model (2) was previously

derived in the population sense for ensembles of neuronal

networks with stochastic inputs of homogeneous strength. How-

ever, our work here reveals that through coarse-graining over an

ensemble of network realizations differing in initial voltage

conditions, in which each network realization is forced by the

same set of heterogeneous deterministic inputs, this firing-rate

model can be extended to each individual neuron coupled in the

network. For weak sensory-neuron coupling-strength and high

sensory-neuron firing rates, we therefore obtain a linear network

mapping of the stimulus intensities pi arriving at each receptor

onto the firing rates mj generated by each sensory neuron. In this

case, the network is mean-driven, with each sensory neuron

receiving a large number of small inputs from its neighbors, which

can be approximated by a Poisson spike train of inputs. Under this

assumption, we derive a non-linear input-output mapping, which

we then linearize in the mj&1 limit. The linear network mapping

(2) is between the n-dimensional input vector p and the m-

dimensional output vector of neuronal firing rates m; it is not a

map between population-averaged input (the network input) and

the population-averaged output (the network firing rate) as in

traditional coarse-graining applications [44,45].

The proximity of the firing rates we have obtained from the I&F

model (1) and the linear network mapping (2) is depicted in Fig. 2.

The red line displays the dependence of the relative firing rate

Figure 1. Mathematical model. Graphical depiction of mathematical model and network connectivity.
doi:10.1371/journal.pcbi.1003793.g001

Sparsity and Compressed Coding in Sensory Systems
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difference on the overall stimulus intensity f . Since the firing rate

of each neuron is determined by its unique external input and

network connectivity, the error given in Fig. 2 is the sum of the

errors for all individual neurons. It is clear that, neuron-by-neuron,

the two sets of firing rates agree well with one another over a wide

stimulus-intensity range, f w* 0:6, i.e., as long as the input to the

sensory neurons is not too weak. For much of this regime,

especially near f&0:7, the model sensory neuron firing rates are

typically between 20 Hz and 100 Hz, closely resembling exper-

imentally observed firing rates of biologically realistic neurons,

such as retinal ganglion cells [34,46].

With the embedded linear network mapping (2), we arrive at

our hypothesis that CS can potentially be a governing principle in

transmitting sparse stimuli from the receptors to the sensory

neurons, while simultaneously achieving a great reduction in the

number of sensory neurons. In signal processing, the well-known

Shannon-Nyquist theorem asserts that we must sample a signal

with a given bandwidth uniformly at the rate of twice that

bandwidth in order to be able to faithfully reproduce it [8].

However, according to CS theory, images that are (approxi-

mately) sparse in a wavenumber-space can be reconstructed from

random samplings whose number m is much smaller than the

number n of pixels composing the image by finding the

reconstruction with the smallest number of nonzero wavenum-

ber-space components. Ref. [43] shows that this difficult

optimization problem becomes equivalent to the much simpler

question of finding the reconstruction whose wavenumber-space-

component magnitudes add up to the smallest sum. Mathemat-

ically, one thus replaces a computationally expensive L0

optimization problem in wavenumber space by a much simpler

L1 optimization problem, which can be efficiently solved via

several optimization algorithms [47,48].

By applying the CS approach of Candès and Tao to the linear

mapping (2), we can reconstruct the stimulus from our model spike

trains [7]. Thus, to estimate the sensing accuracy of our model

early-sensory-pathway network, we measure the firing rates of

each neuron in this network, and use the linear network mapping

embedded in this model to carry out the relevant L1 optimization

procedure for finding the sparsest stimulus reconstruction. In

particular, we reconstruct the stimulus given the rates mj , which we

measure from the full simulation of the I&F network (1), by

minimizing the sum
Pn

j~1 Dp̂pj D, where p̂p~(p̂p1, . . . ,p̂pn) is the

vectorization of the two-dimensional discrete cosine transform of

the pixel matrix corresponding to stimulus p, subject to the

condition that the stimulus components pi satisfy the linear system

(2). (See the Methods Section for details.) It is important to remark

that this reconstruction procedure requires only a brief simulation

time, generally no more than 100 ms, since any initial transients in

the network dynamics are very brief and typically last no more

than 25 ms. In the next section, we further analyze the

dependence of the CS reconstruction on the simulation time,

and demonstrate that successful signal recovery takes place over a

biologically realistic time-scale.

We display three sets of results of our CS reconstruction

procedure in Fig. 3, for which the stimuli are images of increasing

complexity: stripes, dots, and flowers. Visually, the CS algorithm

renders recognizable reconstructions of all the objects, and

performs best with large shapes, flat surfaces, and gradual

transitions, while leaving some graininess, which appears especially

pronounced near sharp edges.

Network Characteristics for Optimal Reconstruction
In determining the type of networks that can best take

advantage of stimulus sparsity and optimally encode information,

we study how the relative error, E, of the CS stimulus

reconstruction depends on the various model network character-

istics. We measure this error using the formula

Figure 2. Validity of network firing-rate mapping. Closeness of the firing rates produced by the I&F model and firing-rate mapping for each
neuron in the network. The stimulus used is the image in Fig. 3c; Left ordinate axis: Gain curves depicting the dependence of the network-averaged
firing rate on the overall external drive strength. Right ordinate axis: The same dependence of the cumulative neuron-to-neuron relative firing rate

difference between the I&F model and the linear network mapping. This difference is EmI&F{mlinE=EmI&FE, where EmE~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i~1 m2
i

q
, and

m~(m1, . . . ,mm) represents the vector of the sensory-neuron firing rates.
doi:10.1371/journal.pcbi.1003793.g002

Sparsity and Compressed Coding in Sensory Systems
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E~
Epstimulus{preconstructionE

EpstimulusE
,

where the Euclidean norm, DD:DD, is defined analogously to the

definition in the caption of Fig. 2. To isolate the effect of each

characteristic, we vary only one parameter at a time while holding

the remaining parameters constant.

First, we address how these CS networks depend on the

convergence of the connections between the receptors and the

sensory neurons, as represented by the matrix B [49,50]. As shown

in Fig. 4a, the error decreases until the optimal convergence of

about 10 is reached, and then increases. We remark that the high

error for low convergence levels is due to the model sensory

network not being able to sample all the receptors, while for high

convergence levels all the sensory neurons receive nearly identical

input. It should be clear why the convergence 10 is optimal; it is

the ratio n:m of the receptors versus the sensory neurons for our

network model. At this ratio, with very high probability, each

receptor feeds into precisely one sensory neuron. Due to the

random sampling by the sensory neurons, on the other hand,

again with high probability, the number of receptors relaying

stimuli to a given sensory neuron will be approximately n:m. Thus,

all or most of the stimulus is used by the model sensory network,

and there is little or no over- or undersampling.

Likewise, we address the question of how stimulus strength f
controls the optimality of CS networks. In Fig. 4b, we fix the

convergence of B and the relative component sizes of the stimulus

p, and scale linearly the overall stimulus strength f . We observe

that the reconstruction is best for moderate strength values, with

particularly high reconstruction error for low f , and slowly

degrading reconstruction quality as f becomes too large. For the

optimal stimulus strength, the sensory neurons are then neither

underdriven, such that there are not enough firing events to

properly encode network input, nor driven so hard that their

interaction becomes too strong, overwhelming the information in

the input signal.

In contrast, as displayed in Fig. 4c, the reconstruction error

appears to depend little on the convergence of the matrix A
encoding the connections among the sensory neurons. In

particular, for the error size, it makes little difference whether a

sensory neuron receives many weak pulses or a few strong pulses

from its neighbors, indicating that the amount of fluctuations

received from within the sensory neuron network plays a rather

small role. The error also appears to be relatively independent of

the overall connection strength, S, at sufficiently low S-values, and

then grows linearly with S, as shown in Fig. 4d. This reflects the

fact that cross-talk among the sensory neurons that is too strong is

likely to drown out the signal received from the receptors.

Altogether, it thus appears that the connections among sensory

neurons neither improve nor degrade the performance of the

model network as long as their strengths are moderate. In the case

of the retina, we note that while it was previously thought that

there is no recurrent connectivity among retinal ganglion cells,

recent experimental work shows that there is indeed gap-junction-

type coupling among specific types of ganglion cells. [11,33–

35,51,52]. In either case, as long as the recurrent coupling is not

too strong, the model sensory pathway will still accurately encode

Figure 3. Stimulus reconstructions with CS. a, b, c two-dimensional images with 104 pixels, d, e, f reconstructions by CS; E~0:001, percent of
Fourier components greater than E is *1%. We choose f ~1 and S~1, simulating network dynamics and recording neuronal spikes for a run-time of
200 ms.
doi:10.1371/journal.pcbi.1003793.g003
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sparse stimuli. Therefore, the results of this work may more

broadly apply to various types of ganglion cells, exhibiting diverse

types of connectivity.

Clearly, for a CS network to be dynamically responsive in

capturing transient stimuli, the system should be able to rapidly

sample the stimulus within a sufficiently short time interval from

the stimulus onset for the CS reconstruction. As shown in Fig. 4e,

the reconstruction error drops precipitously until the sampling

time increases to about 25 ms, and then remains approximately

steady. The 25 ms time scale agrees with typical sensory time

scales [53,54]. To address the possibility of minor distortions of

information along sensory pathways, we further address how the

performance of a CS network is degraded in the presence of noise.

As shown in Fig. 4f, we find that the relative reconstruction error

grows approximately linearly with the variance of the Gaussian

noise added to each stimulus component, demonstrating that a

recognizable reconstruction is still achievable even in the presence

of relatively high-variance noise.

Since thus far we have used a fixed number of sensory neurons,

a natural question to ask is how the performance of a CS network

improves as the number of sensory neurons increases. Fig. 4g

shows that the performance will in fact improve with additional

Figure 4. Optimal CS network characteristics. Characteristics of optimal CS networks examined using the dependence of relative reconstruction
error on network features: a convergence of the sensory-cell (sensory-neuron) to receptor connection matrix B, b stimulus strength f , c convergence
of the sensory-cell connection matrix A, d connection strength S, e simulation time over which spikes are recorded, f variance of Gaussian noise
added to stimulus components, g number of sensory-cells, and h level of randomness in the sensory-cell to receptor connection matrix B. In panel a,
we normalize the stimulus strength f by NB , the number of nonzero entries in the receptor-to-sensory-neuron connectivity matrix B, to keep the
amount of drive to a sensory neuron approximately constant when changing convergence. The minimal relative error at the optimal convergence in
panel a is approximately equal to 0.35.
doi:10.1371/journal.pcbi.1003793.g004

Sparsity and Compressed Coding in Sensory Systems
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sensory neurons given a fixed number of receptors and

corresponding optimal convergence. Since the reconstruction

quality improves significantly less with the addition of sufficiently

many sensory neurons, we observe that adding too many sensory

neurons may be wasteful from a computational point of view,

further justifying the optimality of sensory pathway architecture in

processing sparse stimuli.

Hypothesizing that randomness is a key aspect in CS network

sampling, we examine a central question of just how randomly

sensory neurons need to sample the stimulus in order to achieve

optimal sparsity encoding. To answer this question, we first design

the connectivity matrix B so that all sensory neurons sample

receptors from a regular grid. Then, we sequentially remove an

original connection in B, and replace it by a connection between a

randomly chosen receptor and the same sensory neuron. (See

Methods Section for details.) From Fig. 4h, we see that the error

decreases rapidly until *30% of the initial regular connections

have been rewired, and then slowly levels off. Therefore, some

degree of randomness is in fact necessary for a viable reconstruc-

tion, however the sampling need not be completely random for

successful sparsity encoding. In fact, the success of intermediate

levels of randomness may help to explain how the localized

sampling in receptive fields further improves the performance of

the CS network, which we will address later in this section.

Next, we investigate the characteristics of sensory-neuron spike

dynamics that are significant in these sparsity-encoding CS

networks. We find that the parameter regimes yielding the least

error in the stimulus reconstructions are those in which the largest

degree of variability or disorder exists among the dynamics of the

model sensory neurons. We compute the average sensory network

membrane potential, u(t)~(1=m)
Pm

i~1 ui(t), which roughly

models the network local field potential (‘‘LFP’’) signal measured

experimentally [55,56], to give an indication of the variability in

network dynamics. In Fig. 5a, we plot the ‘‘LFP’’ correlation time

as a function of the convergence of the receptor-sensory-neuron

connection matrix B. It is clear that the ‘‘LFP’’ decorrelates the

Figure 5. CS network dynamics for optimal signal encoding. Impact of the convergence of the sensory-cell to receptor connection matrix, B,
on local-field-potential (‘‘LFP’’) and spike-train statistics: a correlation time of the sensory-cell network ‘‘LFP’’, b entropy of the sensory-cell network
interspike-interval (ISI) histogram, c variance of the sensory-cell network ISI distribution, and d skewness and kurtosis of the sensory-cell network ISI
distribution.
doi:10.1371/journal.pcbi.1003793.g005

Sparsity and Compressed Coding in Sensory Systems

PLOS Computational Biology | www.ploscompbiol.org 7 August 2014 | Volume 10 | Issue 8 | e1003793



fastest at the optimal convergence value, indicating relatively

aperiodic network dynamics. To quantify the corresponding

network information content, we compute the entropy, H, of

the spike train produced by the network of neurons

H~{
X
ISI

P(ISI) log P(ISI),

where P(ISI) denotes the probability distribution of the interspike-

interval (ISI) lengths, computed from a binned histogram of ISI’s

collected from each sensory neuron in the network. In our case,

the entropy of the ISIs measures the spike-train information

capacity, and therefore gives an indication as to how much

possible information can be encoded by the sensory-neuron

network over the time-scale of network activity [57,58]. This

entropy reaches its maximum at the optimal convergence, as

displayed in Fig. 5b, thereby transmitting the maximum amount

of information. It is important to remark that while we specifically

use firing rates to reconstruct stimuli, information about the actual

sensory-neuron spike trains is embedded in the firing rate statistics.

Since the firing rate gives the lowest order of information

regarding the ISI distribution, the ISI distribution is of particular

interest in quantifying the information encoded by sensory-neuron

activity.

In examining the distribution of the ISI’s, we observe a rich

firing structure among the sensory neurons at the optimal

convergence of connectivity matrix B. We demonstrate in Fig. 5c

how the variance s2
ISI~S(ISI{SISIT)2T of the ISI distribution

depends on the convergence of B. (Here, S:T denotes the mean

over the distribution.) This variance is clearly maximal at the

optimal convergence. Moreover, the ISI structure is further

characterized by its near-Gaussian distribution at optimal conver-

gence value, as shown in Fig. 5d, reaching its minimal skewness,

S(ISI{SISIT)3T=s3
ISI, and kurtosis, S(ISI{SISIT)4T=s4

ISI{3,

which vanish for the Gaussian distribution. From these observa-

tions, it is clear that the connectivity between the receptors and

sensory neurons plays a large role in determining the information

content of the sensory neuron spike dynamics, and by maximizing

the information content of these spikes, stimuli may be optimally

encoded.

Biological Extensions
We further corroborate the hypothesis that evolution may have

driven early sensory pathways to become CS networks by

incorporating a biologically realistic feature, i.e., localized

receptive fields, into our model CS network. We discover that

this feature indeed improves the performance of the highly

idealized CS network we have investigated so far. We model such

a receptive field by using a variant of the model in which each

sensory neuron samples receptors primarily within a small area,

which is closer to biological realism than random sampling

[18,19]. In particular, if the coordinates of the pixel representing a

receptor are given by the vector r and the coordinates of the

receptive-field center corresponding to a chosen sensory neuron

are given by the vector R, we take the probability that a

connection will exist between the two as

P~r exp½{(r{R)2=2s2�,

where r represents the probability of a connection if r~R, and s
is the size of the sensory neuron’s receptive field in the units of

pixel size. A schematic illustration of this type of sampling is

depicted in Fig. 6a, with the parameter values, r~0:9 and s~2,

resulting in a convergence of B of 25. A reconstruction of the

original image from the firing rates produced by this model is

shown in Fig. 6b. Note that we found the error of this

reconstruction to be 0.19, which is much less than the error of

0.35 we obtained for completely random stimulus-sampling over

the entire receptor pool, shown in Fig. 4a. This result, reaching

beyond the conventional CS theory, underscores the importance

of the local-receptive-field architecture in the evolution of the CS

properties of sensory pathways.

We remark that we can also reconstruct moving stimuli using

our CS approach. The reconstruction of a ten-snapshot image

sequence spaced 25 ms apart is displayed in Fig. 7. In recon-

structing each image frame, we only use spikes counted during the

time-course over which each respective image is presented. In this

way, we consider ten CS recovery problems, with each

corresponding to a separate set of observed firing rates. From

the highly accurate reconstructions even in the case of moving

stimuli, it is clear that the CS architecture is therefore feasible for

Figure 6. Localized receptive fields. a Stimulus sampling via localized receptive fields. b The corresponding CS stimulus reconstruction.
doi:10.1371/journal.pcbi.1003793.g006
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natural environments in which stimuli are constantly in motion.

Moreover, if the image frames instead change every 200 ms, the

average reconstruction quality is improved further. As in the case

of realistic retinal video processing, correlations between frames

and close corresponding dynamical regimes therefore allow for

rapid encoding of changing stimuli [59–61].

Discussion

We hypothesize that the CS principle for sparse-stimulus

transmission in neuronal networks, as demonstrated in our

computational model, should also hold in real neuronal systems

in the brain. In more general settings, the underlying linear

structure could be recovered using the first-order Wiener kernel

from non-linear systems analysis for the entire network [62,63].

Similarly, in deriving an input-output relationship outside of the

mean-driven regime, a linear-nonlinear (LN) model can also be

developed through application of a linear spatiotemporal filter and

a static nonlinear transformation (e.g. sigmoidal function), which

often can be cast in a linear form if the inverse of the nonlinear

transformation exists [64]. In either case, once the underlying

linear structure is discovered, the presented methodology could in

principle be used to attempt to reconstruct sparse stimuli using

very few neuronal output measurements.

Mathematically, this work suggests two important extensions to

conventional CS theory. First, while compressed sensing is

traditionally applied to static linear systems, we demonstrate one

possible way of generalizing this theory to dynamical systems that

model a large number of interacting agents. Second, the

improvement in stimulus encoding yielded by localized random

sampling akin to receptive fields suggests that alternative sampling

schemes, aside from purely random sampling, may in fact yield

better reconstructions so long as there is a sufficient degree of

incoherence in the samples such that CS is applicable. From this

standpoint, measurement devices engineered with localized

random sampling may be able to more successfully encode signals

than by applying the completely random sampling conventionally

used in compressive sensing data acquisition [65]. Likewise,

engineered devices sampling the output of a time-evolving network

may also have the capacity to reconstruct network input using

compressive sensing combined with an underlying linear input-

output network structure similar to the neuronal network studied

in this work.

Finally, we point out a new way of looking at the mathematical

framework of sparsity. Our findings give rise to a network definition

of stimulus sparsity, freeing this concept from any dependence on the

particular choice of wavenumber-space or other component-space

transform as in conventional definitions of sparsity. In particular, we

can define a stimulus as sparse if it can be accurately and efficiently

transmitted through a sensory-pathway-type network, such as one

that allows for a significant reduction in the numbers of downstream

sensory neurons versus the numbers of upstream receptors. This

alternative definition of sparsity therefore directly relates the

structure of a stimulus to the type of network dynamics it evokes.

Rather than indicating sparsity by the number of non-zero signal

components, sparsity can alternatively be determined in the network

framework by the amount of stimulus information embedded in the

evoked network dynamics. Thus, visual images are clearly sparse

according to both the networks that sample them completely

randomly and those with localized receptive fields.

In the long way towards understanding how the brain forms a

specific percept from a given stimulus, one must first understand

how the brain samples this stimulus. Our aim here was to examine

the hypothesis that the CS principle has evolved to govern the

information transduction and retention of sparse stimuli in a

sensory pathway while achieving a great reduction in the number

of sensory neurons. Our work shows that this hypothesis indeed

successfully captures information propagation in our model

Figure 7. Moving stimulus reconstruction. a A moving stimulus and b its reconstruction. Localized receptive fields were used; the average
relative error over the frames is 0.24. Image frames were presented for 25 ms each.
doi:10.1371/journal.pcbi.1003793.g007
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sensory network. In particular, our results on these network

characteristics may provide insight into the CS properties of

corresponding networks in the brain.

Materials and Methods

1 Correlation Time Definition
The correlation time gives the expected amount of time

necessary for signal responses to become decorrelated and is

defined mathematically as

T~

ð?
0

Dc(t)Ddt,

where c(t)~R(t)=R(0) is the correlation function of the ‘‘LFP’’

v(t), with

R(t)~ lim
t??

(1=t)

ðt

0

½u(szt){�uu�½u(s){�uu�ds

and time average of the ‘‘LFP’’ is �uu~ limt?? (1=t)
Ð t

0
u(s)ds. A

short correlation time implies less periodicity and therefore greater

variability in the ‘‘LFP’’.

2 Compressed Sensing Reconstruction
To reconstruct a stimulus, p~(p1, . . . ,pn), from the sensory-

neuron firing rates, m~(m1, . . . ,mm), we first cast the linearized

firing-rate model (2) into a form to which compressed sensing may

be applied. To apply compressed sensing in recovering a sparse

representation of p, we consider the vectorization of the two-

dimensional discrete cosine transform of the stimulus pixel matrix,

p̂p~(p̂p1, . . . ,p̂pn)~(D6D)p, where 6 denotes the n|n Kronecker

product

D6D~

D11D � � � D1
ffiffi
n
p D

..

.
P

..

.

D ffiffi
n
p

1D � � � D ffiffi
n
p ffiffi

n
p D

2
664

3
775,

D is the
ffiffiffi
n
p

|
ffiffiffi
n
p

, one-dimensional discrete cosine transform

matrix with entries

Dij~(D{1)T
ij ~v(i) cos

(i{1)(2j{1)p

2
ffiffiffi
n
p

� �
,

v(1)~(1=n)1=4, and v(i=1)~(4=n)1=4. In solving the related

problem of recovering p̂p, the linear model we consider is

f
Xn

j~1

Bij(D6D){1
ij p̂pj~ tmiz

1

2

� �
(VT{VR)

{
S

NA

Xm

k~1
k=i

Aikmk: ð3Þ

Since the cosine transform of the stimulus, p̂p, is sparse and the

matrix B(D6D){1 is random, recovering p̂p is reduced to

minimizing the sum
Pn

j~1 Dp̂pj D [6,7] under the constraint (3).

Solving this minimization problem is equivalent to solving the

well-known L1 optimization problem

minimize y1z � � �zyn

given {yiƒp̂piƒyi, i~1, . . . ,n,

under the constraint (3). We solve this optimization problem with a

greedy algorithm, known as the Orthogonal Matching Pursuit

[48]. Once p̂p is recovered, we recover the stimulus p using the

inverted two-dimensional discrete cosine transform of the matrix

representation of p̂p.

3 Regular versus Random Sampling
As mentioned in the main body of this paper, CS theory posits that

random sampling of sparse images significantly reduces the sampling

rate as compared to uniform sampling of finite-bandwidth stimuli,

while yielding the same quality of the reproduction. In particular, for

uniform sampling, the Shannon-Nyquist theorem requires that finite-

bandwidth stimuli must be sampled at the rate of twice their

bandwidth in order to achieve a faithful reconstruction [8]. In our

case, this would mean sampling by O(n) sensory neurons when all the

frequencies are represented in the image used as the stimulus. This is

because we need to capture each Fourier mode represented in the

stimulus in at least two points. On the other hand, the compressed-

sensing theory implies that much less frequent sampling should

suffice for k-sparse stimuli to perfectly reconstruct the stimulus with

probability one, in particular, on the order of O(k) [6,7], provided

the sampling is sufficiently random. Again, this is because, with

probability one, we will thus capture each represented Fourier mode

in two points. This is certainly not true if we sample the stimulus on a

regular, coarse grid with O(k) points in the spirit of the Shannon-

Nyquist theorem, unless the stimulus contains nothing but the lowest

k modes. In fact, such sampling diminishes the resolution. We here

elaborate on the illustration of this fact, as depicted in Fig. 4h.

In regularly sampling the stimulus, p, sensory neurons sample

only receptors that lay on a coarse grid contained within the finer

grid of receptors, modeled by the
ffiffiffi
n
p

|
ffiffiffi
n
p

pixel matrix

representation of p. The coarse regular grid, say of sizeffiffiffi
n
p

=2|
ffiffiffi
n
p

=2, is composed of all even-numbered row and column

entries of the finer pixel matrix. Fixing convergence at its optimal

level, the regular sampling scheme randomly connects sensory

neurons to receptors on the coarse grid. To add more randomness

and a larger variety of frequency modes to the sampling scheme,

we randomly select sensory neurons connected to receptors on the

regular grid, and then randomly rewire them with any of the

receptors on the pixel matrix.

As displayed in Fig. 4h, even if the sampling is random on a

coarse grid, not enough frequency modes may be captured to yield

a faithful signal reproduction. Upon random rewirings to the finer

grid of receptors, more frequency components may be detected,

thereby improving the quality of the reconstruction. However,

once the sampling scheme is sufficiently random and enough

variety in frequency modes is captured, an accurate reconstruction

can be achieved with little improvement following additional

rewirings.
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