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Abstract

While much effort has focused on detecting positive and negative directional selection in the human genome, relatively
little work has been devoted to balancing selection. This lack of attention is likely due to the paucity of sophisticated
methods for identifying sites under balancing selection. Here we develop two composite likelihood ratio tests for detecting
balancing selection. Using simulations, we show that these methods outperform competing methods under a variety of
assumptions and demographic models. We apply the new methods to whole-genome human data, and find a number of
previously-identified loci with strong evidence of balancing selection, including several HLA genes. Additionally, we find
evidence for many novel candidates, the strongest of which is FANK1, an imprinted gene that suppresses apoptosis, is
expressed during meiosis in males, and displays marginal signs of segregation distortion. We hypothesize that balancing
selection acts on this locus to stabilize the segregation distortion and negative fitness effects of the distorter allele. Thus, our
methods are able to reproduce many previously-hypothesized signals of balancing selection, as well as discover novel
interesting candidates.
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Introduction

Balancing selection maintains variation within a population.

Multiple processes can lead to balancing selection. In overdom-

inance, the heterozygous genotype has higher fitness than either of

the homozygous genotypes [1,2]. In frequency-dependent balanc-

ing selection, the fitness of an allele is inversely related to its

frequency in the population [2,3]. In a fluctuating or spatially-

structured environment, balancing selection can occur when

different alleles are favored in different environments over time

or geography [2,4,5]. Finally, balancing selection can also be a

product of opposite directed effects of segregation distortion

balanced by negative selection against the distorter [6]. That is,

segregation distortion leads to one allele increasing in frequency.

However, if that allele is deleterious, then it is reduced in

frequency by negative selection. The combined effect of these

opposing forces can lead to a balanced polymorphism.

The genetic signatures of long-term balancing selection at a

locus can roughly be divided into three categories [2]. The first

signature is that the distribution of allele frequencies will be

enriched for intermediate frequency alleles. This occurs because

the selected locus itself is likely at moderate frequency within the

population and, thus, neutral linked loci will also be at

intermediate frequency. The second signature is the presence of

trans-specific polymorphisms, which are polymorphisms that are

shared among species [7]. This is a result of alleles being

maintained over long evolutionary time periods, sometimes for

millions of years [8–10]. The third signature is an increased

density of polymorphic sites. This is due to linked neutral loci

sharing similar deep genealogies as that of the selected site,

increasing the probability of observing mutations at the neutral

loci.

The majority of selection scans in humans have focused on

positive and negative directional selection. These studies have

found evidence of both types of selection, with negative selection

being ubiquitous, and the amount and mechanism of positive

selection currently being debated [11–13]. However, it is unclear

how much balancing selection exists in the human genome. Some

scans for balancing selection (e.g., Bubb et al. [14] and Andrés

et al. [15]) have been carried out using summary statistics such as

the Hudson-Kreitman-Aguadé (HKA) test [16] and Tajima’s D
[17] as well as combinations of summary statistics [15,18] (though

see Ségural et al. [7] and Leffler et al. [19] for recent

complementary approaches). The power of such approaches in

unclear, and so it is uncertain how important balancing selection

is in the human genome. Because balancing selection shapes the

genealogy of a sample around a selected locus, more power can

be gained by implementing a model of the genealogical process

under balancing selection [20,21]. Composite likelihood methods

have proven to be extremely useful for the analysis of genetic

variation data using complex population genetic models. [22–28].

This approach allows estimation under models without requiring
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full likelihood calculations, permitting many complex models to

be investigated.

In this article, we develop two composite likelihood ratio

methods to detect balancing selection, which we denote by T1 and

T2. These methods are based on modeling the effect of balancing

selection on the genealogy at linked neutral loci (e.g., Kaplan et al.
(1988) [20] and Hudson and Kaplan (1988) [21]) and take into

consideration the spatial distributions of polymorphisms and

substitutions around a selected site. Through simulations, we

show that our methods outperform both HKA and Tajima’s D
under a variety of demographic assumptions. Further, we apply

our methods to autosomal whole-genome sequencing data

consisting of nine unrelated European (CEU) and nine unrelated

African (YRI) individuals. We find support for multiple targets of

balancing selection in the human genome, including previously

hypothesized regions such as the human leukocyte antigen (HLA)

locus. Additionally, we find evidence for balancing selection at the

FANK1 gene, which we hypothesize to result from segregation

distortion.

Results

Theory
A new test for balancing selection. In this section, we

provide a basic overview of a new test for balancing selection, and

we describe the method in greater detail in the sections entitled

Kaplan-Darden-Hudson model, Solving the recursion relation, A
composite likelihood ratio test based on polymorphism and substi-
tution, and A composite likelihood ratio test based on frequency
spectra and substitutions sections. We have developed a new

statistical method for detecting balancing selection, which is based

on the model of Kaplan, Darden, and Hudson [20,21] (full details

provided in the Kaplan-Darden-Hudson model section). Under

this model, we calculate the expected distribution of allele

frequencies using simulations, and approximate the probability

of observing a fixed difference or polymorphism at a site as a

function of its genomic distance to a putative site under balancing

selection. Using these calculations, we construct composite

likelihood tests that can be used to identify sites under balancing

selection, similar to the approaches by Kim and Stephan [23] and

Nielsen et al. [26] for detecting selective sweeps.

Basic framework. Consider a biallelic site S that is under

strong balancing selection and maintains an allele A1 at frequency

x and an allele A2 at frequency 1{x. Consider a neutral locus i
that is linked to the selected locus S. Denote the scaled

recombination rate between the selected locus and the neutral

locus as ri~2Nri, where N is the diploid population size and ri is

the per-generation recombination rate. Assume we have a sample

of n genomes from an ingroup species (e.g., humans) and a single

genome from an outgroup species (e.g., chimpanzee). From these

data, we can estimate the genome-wide expected coalescence timebCC between the ingroup and outgroup species (see Materials and
Methods for details). Also, under the Kaplan-Darden-Hudson

model, we can obtain the expected tree length Ln(x,r) and height

Hn(x,r) for a sample of n lineages affected by balancing selection

by solving a set of recursive equations using the numerical

approach described in the Solving the recursion relation. The

relationship among bCC, Ln(x,r), and Hn(x,r) is depicted in

Figure 1A. Assuming a small mutation rate, the probability that a

site is polymorphic under a model of balancing selection, given

that it contains either a polymorphism or a substitution (fixed

difference), is

pn,r,x~
Ln(x,r)

2bCC{Hn(x,r)zLn(x,r)
, ð1Þ

and the conditional probability that it contains a substitution is

sn,r,x~1{pn,r,x. That is, conditional on a mutation occurring on

the genealogy relating the n ingroup genomes and the outgroup

genome, the probability that a site is polymorphic is the

probability that a mutation occurs before the most recent common

ancestor of the n ingroup species (i.e., mutation occurs on red

branches indicated in Fig. 1B), and the probability that a site

contains a substitution is the probability that a mutation occurs

along the branch leading from the outgroup sequence to the most

recent common ancestor of the n ingroup species (i.e., mutation

occurs on blue branches indicated in Fig. 1C).

Figure 1D shows how the spatial distribution of polymorphism

around a selected site is influenced by the underlying genealogy at

the site and how this spatial distribution of polymorphism can be

used to provide evidence for balancing selection. Within a window

of sites, we can obtain the composite likelihood that a particular

site is under selection by multiplying the conditional probability of

observing a polymorphism or a substitution at every other neutral

site as a function of the distance of the neutral site to the balanced

polymorphism.

Kaplan-Darden-Hudson model. The genealogy of a neu-

tral locus i linked to the selected locus S can be traced back in time

using the Kaplan, Darden, and Hudson [20,21] model, which

provides a framework for modeling the coalescent process at a

neutral locus that is linked to a locus under balancing selection.

This model assumes that the selected locus maintains a balanced

polymorphism that is infinitely old. Their framework involves

modeling selection as a structured population containing two

demes representing each of the two allelic classes and migration

taking the role of recombination and mutation. Lineages within

the first deme are linked to A1 alleles and lineages within the

second deme are linked to A2 alleles. Lineages migrate between

demes by changing their genomic background. That is, a lineage

in the first deme will migrate to the second deme if there was a

mutation that changed an A1 allele to an A2 allele or if there was a

recombination event that transferred a lineage linked to an A1

allele to an A2 background. Similarly, a lineage in the second

deme will migrate to the first deme if there was a mutation that

changed an A2 allele to an A1 allele or if there was a

recombination event that transferred a lineage linked to an A2

allele to an A1 background. The rate at which a lineage linked to

an A1 background transfers to an A2 background is

Author Summary

In the past, balancing selection was a topic of great
theoretical interest that received much attention. Howev-
er, there has been little focus toward developing methods
to identify regions of the genome that are under balancing
selection. In this article, we present the first set of
likelihood-based methods that explicitly model the spatial
distribution of polymorphism expected near a site under
long-term balancing selection. Simulation results show
that our methods outperform commonly-used summary
statistics for identifying regions under balancing selection.
Finally, we performed a scan for balancing selection in
Africans and Europeans using our new methods and
identified a gene called FANK1 as our top candidate
outside the HLA region. We hypothesize that the mainte-
nance of polymorphism at FANK1 is the result of
segregation distortion.
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b1~h1zri(1{x) and the rate at which a lineage linked to an A2

background transfers to an A1 background is b2~h2zrix.

Consider a sample of n lineages with k lineages linked to allele

A1 (i.e., in the first deme) and n{k lineages linked to allele A2

(i.e., in the second deme). Given this configuration, only four

events are possible. The first event involves a coalescence of a pair

of lineages linked to A1 alleles, the second involves a coalescence of

a pair of lineages linked to A2 alleles, the third involves the transfer

of a lineage from an A1 background to an A2 background, and the

fourth involves the transfer of a lineage from an A2 background to

an A1 background. The time until the first event (i.e., a

coalescence or a transfer of background) is exponentially

distributed with rate

lk,n{k(x,r)~

k

2

� �
x

z

n{k

2

� �
1{x

z
kb2(1{x)

x
z

(n{k)b1x

1{x
: ð2Þ

The probability that the event is a coalescence of a pair of A1-

linked lineages is

c
(1)
k,n{k(x,r)~

k

2

� �
xlk,n{k(x,r)

, ð3Þ

the event is a coalescence of a pair of A2-linked lineages is

c
(2)
k,n{k(x,r)~

n{k

2

� �
(1{x)lk,n{k(x,r)

, ð4Þ

the event is a transfer from an A1 to an A2 background is

m
(1)
k,n{k(x,r)~

kb2(1{x)

xlk,n{k(x,r)
, ð5Þ

and the event is a transfer from an A2 to an A1 background is

m
(2)
k,n{k(x,r)~

(n{k)b1x

(1{x)lk,n{k(x,r)
: ð6Þ

Note that in the notation of Kaplan et al. (1988) [20],

lk,n{k(x,r)~hk,n{k(x), c
(1)
k,n{k(x,r)~qk{1,n{k(x), c

(2)
k,n{k(x,r)~

qk,n{k{1(x), m
(1)
k,n{k(x,r)~qk{1,n{kz1(x), and m

(2)
k,n{k(x,r)~

qkz1,n{k{1(x).

Let Lk,n{k(x,r) denote the expected tree length given a sample

with k A1-linked lineages and n{k A2-linked lineages. Using eq.

18 of Kaplan et al. (1988) [20], the expected total tree length can

be expressed using the recursion relation

Lk,n{k(x,r)~
n

lk,n{k(x,r)
zc

(1)
k,n{k(x,r)Lk{1,n{k(x,r)

zc
(2)
k,n{k(x,r)Lk,n{k{1(x,r)

zm
(1)
k,n{k(x,r)Lk{1,n{kz1(x,r)

zm
(2)
k,n{k(x,r)Lkz1,n{k{1(x,r):

ð7Þ

Similarly, the expected tree height Hk,n{k(x,r) given a sample

with k A1-linked lineages and n{k A2-linked lineages can be

expressed by

Figure 1. Calculation of probabilities of polymorphism and substitution under a model of balancing selection and the
incorporation of these probabilities into a genome scan. (A) Relationship among tree length Ln(x,r), tree height Hn(x,r) and inter-specific

coalescence time bCC. (B) A site is polymorphic if a mutation occurred on the Ln(x,r) length of branches until the most recent common ancestor of the

ingroup sample (red region). (C) A site is a substitution if a mutation occurred on the 2bCC{Hn(x,r) length of branches that represent the divergence
between the outgroup species and the most recent common ancestor of the ingroup species (blue region). (D) Height and length of genealogies in
relationship to their spatial proximity to a selected site and how the shapes of these genealogies affect the pattern of polymorphism around the site.
The composite likelihood ratio is high near a selected site as there is an excess of polymorphisms close to the site and a deficit far from the site.
doi:10.1371/journal.pgen.1004561.g001
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Hk,n{k(x,r)~
1

lk,n{k(x,r)
zc

(1)
k,n{k(x,r)Hk{1,n{k(x,r)

zc
(2)
k,n{k(x,r)Hk,n{k{1(x,r)

zm
(1)
k,n{k(x,r)Hk{1,n{kz1(x,r)

zm
(2)
k,n{k(x,r)Hkz1,n{k{1(x,r):

ð8Þ

Solving the recursion relation
Consider a sample of n lineages. Denote the (nz1)-dimensional

vector of tree lengths for a sample of size n as

(n)~

L0,n(x,r)

L1,n{1(x,r)

L2,n{2(x,r)

..

.

Ln,0(x,r)

266666664

377777775,

such that element k, k~0,1, . . . ,n, of ‘(n) is ‘(n)
k ~Lk,n{k(x,r).

Next, define the (nz1)-dimensional vector

b(n)~

n

l0,n(x,r)
zc

(2)
0,n(x,r)L0,n{1(x,r)

n

l1,n{1(x,r)
zc

(1)
1,n{1(x,r)L0,n{1(x,r)zc

(2)
1,n{1(x,r)L1,n{2(x,r)

n

l2,n{2(x,r)
zc

(1)
2,n{2(x,r)L1,n{2(x,r)zc

(2)
2,n{2(x,r)L2,n{3(x,r)

..

.

n

ln,0(x,r)
zc

(1)
n,0(x,r)Ln{1,0(x,r)

266666666666664

377777777777775
,

such that element 0 is

b
(n)
0 ~

n

l0,n(x,r)
zc

(2)
0,n(x,r)‘(n{1)

0 ,

element n is

b(n)
n ~

n

ln,0(x,r)
zc

(1)
n,0(x,r)‘(n{1)

n{1 ,

and element k, k~1,2, . . . ,n{1 is

b
(n)
k ~

n

lk,n{k(x,r)
zc

(1)
k,n{k(x,r)‘(n{1)

k{1 zc
(2)
k,n{k(x,r)‘(n{1)

k :

Further, consider an (nz1)|(nz1)-dimensional tridiagonal

matrix of migration rates

M(n)~

1 {m
(2)
0,n(x,r) 0 0 0

{m
(1)
1,n{1(x,r) 1 {m

(2)
1,n{1(x,r) 0 0

0 {m
(1)
2,n{2(x,r) 1 P 0

0 0 P P {m
(2)
n{1,1(x,r)

0 0 0 {m
(1)
n,0(x,r) 1

2666666664

3777777775
,

with (nz1)-dimensional main diagonal diag(M(n))~½1,1, . . . ,1�,
n-dimensional lower diagonal

lower(M(n))~½{m
(1)
1,n{1(x,r),{m

(1)
2,n{2(x,r), . . . ,{m

(1)
n,0(x,r)�,

and n-dimensional upper diagonal

upper(M(n))~½{m
(2)
0,n(x,r),{m

(2)
1,n{1(x,r), . . . ,{m

(2)
n{1,1(x,r)�.

All elements that do not fall on the main, lower, and upper

diagonals of M(n) are zero.

Given M(n), b(n), and ‘(n), we can rewrite the recursion relation

in eq. 7 as system of equations

M(n)‘(n)~b(n): ð9Þ

Because we can calculate eqs. 5 and 6, M(n) is a constant matrix.

For a sample of size n, suppose we know ‘(n{1) for a sample of size

n{1. Therefore, ‘(n{1) is now a constant vector and hence,

because we can calculate eqs. 2–4, b(n) is also a constant vector.

Therefore, eq. 9 is a tridiagonal system of nz1 equations with

nz1 unknowns, which can be solved in O(n) time using the

tridiagonal matrix algorithm [29].

The base case for the recursion in eq. 8 is when the number of

lineages equals one. That is, when all lineages have coalesced and

the most recent common ancestor is linked either to an A1 allele or

to an A2 allele. This base case can be represented by L0,1(x,r)~0

and L1,0(x,r)~0. Given these values, set ‘(1)~

½L0,1(x,r),L1,0(x,r)�~½0,0� and solve the system of equations

M(2)‘(2)~b(2) for ‘(2). Next, given ‘(2), solve the system of

equations M(3)‘(3)~b(3) for ‘(3). Iterate this processes until

M(n)‘(n)~b(n) is solved for ‘(n). An analogous process can be used

to solve the recursion (eq. 8) for the expected tree height.

Using the framework in this section for a sample of size n, we

can obtain values for L0,n(x,r),L1,n{1(x,r), . . . ,Ln,0(x,r). Given

that the A1 allele has frequency x and the A2 allele has frequency

1{x, the expected tree length for a sample of size n is

Ln(x,r)~
Xn

k~0

n

k

� �
xk(1{x)n{kLk,n{k(x,r): ð10Þ

Similarly, we can obtain the expected tree height Hn(x,r) for a

sample of size n. The tree heights and total branch lengths are then

used in eq. 1 to compute the likelihood of the data under the

selection model.

A composite likelihood ratio test based on polymorphism

and substitution. In this section, we illustrate how eq. 1 can be

incorporated into a composite likelihood. We will then describe a

likelihood ratio test that compares the balancing selection model

described above to a neutral model based on the background

genome patterns of polymorphism. Consider a window of I sites

that are either polymorphisms or substitutions and consider a

putatively selected site S located within the window. Suppose site i

within the window has ni sampled alleles, ai observed ancestral

alleles, and is a recombination distance of ri from S. Let

n~½n1,n2, . . . ,nI �, a~½a1,a2, . . . ,aI �, and r~½r1,r2, . . . ,rI �. De-

fine the indicator random variable 1fai~kg that site i has k

ancestral alleles. Using the Kaplan-Darden-Hudson model, the

probability that site i is polymorphic is pni ,ri ,x and the probability

that the site is a substitution (or fixed difference) is

sni ,ri ,x~1{pni ,ri ,x. Under the model, the composite likelihood

that site S is under balancing selection is

Detecting Ancient Balancing Selection Using the Coalescent
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LM(n,r,x ; a)~P
I

i~1
sni ,ri ,x

1fai~0gzpni , ri , x

Xni{1

k~1

1fai~kg

" #
, ð11Þ

which is maximized at x̂x~
arg max
x[(0,1) LM(n, r, x ; a). Notice that

sampling distribution for a site depends on the distance to the

selected locus. In this method, as in previous composite likelihood

methods for detecting selection, there is therefore no need for

weighting sites depending on their distance from the selected sites.

Such weighting is already incorporated in the probabilistic model.

Similarly, there is no need for sliding windows, or the use of

Hidden Markov Models (HMMs) to indicate the selected region.

The likelihood ratio can, in principle, be calculated for any point

in the genome, taking all other points in the genome into account.

However, for practical computational reasons, we only calculate

the likelihood ratio for a site using nearby sites in a fixed window

of 100 substitutions or polymorphisms upstream and downstream

of the focal site. As the distance from the selected site increases,

little is gained by incorporating information from more sites.

Further, suppose that for a sample of size k, k~2,3, . . . ,n,

conditioning only on sites that are polymorphisms or substitutions,

the proportion of loci across the genome that are polymorphic is

p̂pk and the proportion of loci that are substitutions is ŝsk~1{p̂pk.

Then the composite likelihood that site S is evolving neutrally is

LB(n ; a)~P
I

i~1
ŝsni

1fai~0gzp̂pni

Xni{1

k~1

1fai~kg

" #
: ð12Þ

It follows that the composite likelihood ratio test statistic that site

S is under balancing selection is T1~2fln½LM(n, r, x̂x ; a)�{
ln½LB(n ; a)�g.

A composite likelihood ratio test based on frequency

spectra and substitutions. A balanced polymorphism not

only increases the number of polymorphisms at linked neutral

sites, but also leads to an increase in minor allele frequencies at

these sites. Therefore, power can be gained by using frequency

spectra information in addition to information on the density of

polymorphisms and substitutions.

Given a sample of size n, an A1 allele at frequency x, A2 allele at

frequency 1{x, and a polymorphic neutral site that is r
recombination units from a selected site, we can obtain the

probability pn,k,r,x that there are k, k~1,2, . . . ,n{1, ancestral

alleles observed at the neutral site. The composite likelihood that

site S is under balancing selection is

LM(n, r, x; a)~P
I

i~1
sni ,ri ,x

1fai~0gzpni ,ri ,x

Xni{1

k~1

pni ,k,ri ,x
1fai~kg

" #
,ð13Þ

which is maximized at x̂x~
arg max
x[(0,1) LM(n, r, x ; a).

Further, suppose that for a sample of size k, k~2,3, . . . ,n,

conditioning only on sites that are polymorphisms or substitutions,

the proportion of polymorphic loci across the genome that have j,
j~1,2, . . . ,k{1, ancestral alleles is p̂pk,j . Then the composite

likelihood that site S is evolving neutrally is

LB(n ; a)~P
I

i~1
½̂ssni

1fai~0gzp̂pni

Xni{1

k~1

p̂pni ,k
1fai~kg�: ð14Þ

It follows that the composite likelihood ratio test statistic that site

S is under balancing selection is T2~2fln½LM(n, r, x̂x ; a)�{
ln½LB(n ; a)�g. Because it is computationally difficult to derive

analytical formulas for frequency spectra under the Hudson-

Darden-Kaplan model, we approximate these distributions by

simulating frequency spectra under the Hudson-Darden-Kaplan

model for a range of equilibrium frequencies x and recombination

parameters r. We then use a look-up table to identify the optimal

spectrum to use, and if the optimum is intermediate between two

spectra, the two closest distributions are employed. The two new

methods, T1 and T2, have been implemented in the software

package BALLET (BALancing selection LikElihood Test), which

is written in C and is available at http://www.personal.psu.edu/

mxd60/software.html.

Evaluating the methods using simulations
To evaluate the performance of T1 and T2 relative to HKA and

Tajima’s D, we carried out extensive simulations of balancing

selection using different selection and demographic parameters.

We simulated genomic data for a pair of species that diverged tD

years ago. We introduced a site that is under balancing selection at

time tS , and the mode of balancing selection at the site is

overdominance with selection strength s and dominance param-

eter h. In the simulations discussed in this article, we varied the

demographic history in the target ingroup species, the strength of

selection s, the dominance parameter h, and the time at which the

selected allele arises tS . We consider two values for the strength of

selection, s~10{4 and 10{2, five values for the dominance

parameter, h~100, 10, 3, 1.5, and 1.125, and three times at which

the selected allele arises, tS~105, 5|106, and 1:5|107 years

ago. Under the overdominance model considered here, the

equilibrium frequency occurs at (h{1)=(2h{1) yielding equilib-

rium frequencies of 0.50, 0.47, 0.40, 0.25, and 0.10 for h~100,

10, 3, 1.5, and 1.125, respectively. These parameters were chosen

to represent strong (s~10{2) and substantially weaker (s~10{4)

selection coefficients and a range of equilibrium frequencies. In

addition, the time tS~5|106 years ago was meant to represent

an ancient balanced polymorphism, whereas the other two values

for tS represent violations of assumptions of our methods. That is,

the trans-species polymorphism occurring at tS~1:5|107 years

ago violates the assumption that lineages from the ingroup species

are necessarily monophyletic, and the recent balanced polymor-

phism arising tS~105 years ago represents balancing selection on

an allele that is young relative to the average coalescence time for

the ingroup species. Details of how the simulations were

implemented are further described in the Materials and Methods
section.

Ancient balanced polymorphism. We performed simula-

tions under each of the three demographic models depicted in

Figure 2. For these simulations, we constructed receiver operator

characteristic (ROC) curves to illustrate relationships between the

true and false positive rates of each method. Figure 3 displays

ROC curves for T1, T2, HKA, and Tajima’s D for simulations

where s~10{2 and h~100. Under a model of constant

population size (left panel of Fig. 3), T2 tends to obtain more

true positives than T1, T1 more true positives than HKA, and

HKA more true positives than Tajima’s D (left panel of Fig. 3). In

practice, however, we are typically concerned with a method’s

performance at low false positive rates. For a false positive rate of

1%, T1, T2, HKA, and Tajima’s D have true positive rates of 30,

40, 14, and 6%, respectively. Similarly, at a false positive rate of

5%, T1, T2, HKA, and Tajima’s D have true positive rates of 58,

67, 37, and 25%, respectively. These results show that T1 and T2

each vastly outperforms both HKA and Tajima’s D, with T2

performing better than T1. However, these simulations were

performed using the standard neutral model, which is also the
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demographic model assumed in T1 and T2. Thus, to examine the

robustness of our methods, we next considered two complex

demographic scenarios that could potentially affect the results of

our methods—a population bottleneck (Fig. 2B) and a population

expansion (Fig. 2C).

The middle panel of Figure 3 displays ROC curves under a

model in which the ingroup species experiences a recent severe

bottleneck (Fig. 2B). For a false positive rate of 1%, the true

positive rates of T1, T2, HKA, and Tajima’s D are 75, 74, 72, and

5%, respectively. Similarly, for a false positive rate of 5%, the true

positive rates of T1, T2, HKA, and Tajima’s D are 80, 81, 80, and

14%, respectively. Thus, aside from Tajima’s D, all methods

perform well under this demographic model. This is because a

severe population bottleneck decreases levels of diversity across the

genome, resulting in a lower polymorphism-to-substitution ratio.

Because T1, T2, and HKA all compare levels of polymorphism

and divergence at a putatively selected site to those of the

corresponding genomic background, these methods are able to

identify the increased diversity at a site under balancing selection.

In contrast, Tajima’s D does not perform such a comparison and,

thus, has little power to detect balancing selection under this

demographic scenario.

The right panel of Figure 3 depicts ROC curves under a

demographic model in which the ingroup species experiences

recent population growth (Fig. 2C). As with constant population

size, T2 tends to obtain more true positives than T1, T1 more true

positives than HKA, and HKA more true positives than Tajima’s

D for a given false positive rate. At a false positive rate of 1%, T1,

T2, HKA, and Tajima’s D have true positive rates of 39, 41, 15,

and 10%, respectively, and at a false positive rate of 5%, T1, T2,

HKA, and Tajima’s D have true positive rates of 65, 69, 37, and

32%, respectively. Interestingly, all four methods perform better

under a recent population growth than under a constant

population size. This result is potentially due to less fluctuation

in the frequency of a selected allele in the recent past when the

population size is large.

By considering the demographic models in Figure 2, we have

shown that T1 and T2 generally outperform both HKA and

Tajima’s D. Next, we investigated the effect of varying h (h~100,

10, 3, and 1.5) when s~10{2 (Fig. S1). Under a model with

Figure 2. Demographic models used in simulations in which a selected allele arises after the split a pair of species. (A) Divergence
model. Model parameters are a diploid effective population size N , divergence time tD of the ingroup and outgroup species, and the time tS when
the selected allele arises. (B) Divergence model with a recent bottleneck within the ingroup species. Additional model parameters are the diploid
effective population size Nb during the bottleneck, the time tb when the bottleneck began, and the time te when the bottleneck ended. (C)
Divergence model with recent population growth within the ingroup species. Additional model parameters are the current diploid effective
population size N�g after recent growth and the time t�g when the growth occurred.
doi:10.1371/journal.pgen.1004561.g002

Figure 3. Performance of T1 , T2, HKA, and Tajima’s D under the demographic models in Figure 2 with selection parameter s~10{2

and dominance parameter h~100. The first column is the divergence model in Figure 2A. The second column is the divergence model in
Figure 2B with a recent bottleneck within the ingroup species. The third column is the divergence model in Figure 2C with recent population growth
within the ingroup species.
doi:10.1371/journal.pgen.1004561.g003
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constant population size (Fig. 2A), T2 outperforms T1, T1

outperforms HKA, and HKA outperforms Tajima’s D. As h
decreases, the performances of HKA and Tajima’s D decrease,

whereas the performances of T1 and T2 are not dramatically

affected. Under a model with a recent population bottleneck

(Fig. 2B), T1, T2, and HKA all perform well, whereas Tajima’s D

performs poorly. In this scenario, h appears to have little influence

on the relative performance of these methods. Finally, under a

model with a recent population expansion (Fig. 2C), T2 outper-

forms T1, T1 outperforms HKA, and HKA outperforms Tajima’s

D. Decreasing h results in a decrease in the performance of

Tajima’s D, but has little influence on the performances of all

other methods. Moreover, the performances of T1 and T2 are

similar for all h, whereas the perforances of HKA and Tajima’s D
are similar for large h (h~10 and 100), and dissimilar for low h

(h~1:5 and 3).

For s~10{2, T1 and T2 generally perform quite well (Figs. 3

and S1). However, because T1 and T2 were developed to detect

long-term balancing selection of infinite strength, it is unclear how

the methods perform under weak selection. To investigate this

scenario, we considered s~10{4, with h§10 representing

relatively strong balancing selection (i.e., relatively high hs) and

hv10 representing relatively weak balancing selection (i.e.,
relatively low hs). For h~100 (Fig. 4), we find that the relative

performance of the four methods are similar to those in the case of

strong selection (s~10{2). Curiously, all methods perform better

when s~10{4 (Fig. 4) than when s~10{2 (Fig. 3). To investigate

the factors influencing this strange behavior, we plotted the mean

difference in the number of polymorphic sites for a scenario with

s~10{4 and h~100 verses one with s~10{2 and h~100 as

function of the distance from the site under balancing selection

(Fig. S2). We find that, on average, there are more polymorphic

sites when the selection coefficient is weak, with the difference in

numbers of polymorphic sites disappearing with increasing

distance from the site under selection. This phenomenon is due

to a drop in local effective population size near the site under

balancing selection for the scenario with strong selection. Because

h is so large (h~100) and the population size is finite, heterozygous

individuals leave a disproportionately large fraction of offspring in

the next generation, therefore causing an apparent drop in local

effective size near the site under selection.

When s~10{4 under a model of constant population size

(Fig. 2A), T2 outperforms T1, T1 outperforms HKA, and HKA

outperforms Tajima’s D when h is large (h~10 and 100; Fig. S3),

similar to what we observe when s~10{2 (Fig. S1). In contrast to

our observations when s~10{2, all methods perform poorly when

h is small (h~1:5 and 3), each identifying signatures of selection

only slightly better than random (Fig. S3). Hence, when the

selection coefficient is weak and the level of overdominance is low,

T1 and T2 cannot extract enough information from the data to

make meaningful predictions. However, HKA and Tajima’s D
perform just as poorly, and therefore T1 and T2 generally

outperform HKA and Tajima’s D under a demographic model

with constant population size.

Next, when s~10{4 under a model with a recent population

bottleneck (Fig. 2B), T1, T2, and HKA all perform well, whereas

Tajima’s D performs poorly (Fig. S3), similar to what we observe

when s~10{2 (Fig. S1). In contrast to the results for s~10{2, h
has some influence on the relative performance of these methods.

As h decreases, the performance of all methods decreases—though

not substantially. In addition, similarly to what we observe when

s~10{2, the performances of T1, T2, and HKA are approxi-

mately the same. Hence, even under weak selection coefficients,

population bottlenecks tend to enhance the performance of T1, T2,

and HKA, whereas they inhibit the performance of Tajima’s D.

Finally, when s~10{4 under a model with a recent population

expansion (Fig. 2C), T2 outperforms T1, T1 outperforms HKA,

and HKA outperforms Tajima’s D for large h (h~10 and 100; Fig

S3), as observed when s~10{2 (Fig. S1). In contrast to the results

for the case of s~10{2, all methods perform poorly when h is

small (h~1:5 and 3). Hence, like the case under constant

population size, when the selection coefficient is weak and the

level of overdominance is low, T1 and T2 cannot extract enough

information from the data to make meaningful predictions.

However, HKA and Tajima’s D perform just as poorly, and

therefore T1 and T2 generally outperform HKA and Tajima’s D
under a demographic model with recent population growth.

So far the lowest dominance parameter considered here was

h~1:5, which has an equilibrium frequency of 0.25. To further

assess the limits of our methods, we considered h~1:125, which has

a substantially smaller equilibrium frequency of 0.10. When

s~10{2, we find that all four methods perform poorly under the

Figure 4. Performance of T1 , T2, HKA, and Tajima’s D under the demographic models in Figure 2 with selection parameter s~10{4

and dominance parameter h~100. The first column is the divergence model in Figure 2A. The second column is the divergence model in
Figure 2B with a recent bottleneck within the ingroup species. The third column is the divergence model in Figure 2C with recent population growth
within the ingroup species.
doi:10.1371/journal.pgen.1004561.g004
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constant population size (Fig. 2A) and growth (Fig. 2C) models (Fig.

S4). In contrast, as with the higher equilibrium frequencies (Fig. S1),

T1, T2, and HKA statistics performed well, whereas Tajima’s D
performed poorly under the bottleneck (Fig. 2B) model (Fig. S4).

We next examined violations in recombination rate assumptions

of T1 and T2 by investigating the robustness of T1 and T2 to error

in recombination rate estimation. For each simulation, we

assumed a recombination rate of 2:5|10{8 per site per

generation. We first wanted to investigate whether using an

incorrect recombination map would increase the chances that T1

and T2 identify false positive. Figure S5 depicts results under a

model with constant population size (Fig. 2A) in which there is no

selected allele. With respect to identifying false signals of balancing

selection, our results indicate that T1 and T2 are robust to

recombination rate underestimation and overestimation. We next

wanted to examine whether using an incorrect recombination map

would influence the power of T1 and T2 to identify ancient

balanced polymorphisms. Figure S6 depicts results for a model

with constant population size (Fig. 2A) with time of selection

tS~5|106, s~10{2, large (h~100) and small (h~1:5) domi-

nance parameters, and recombination rate overestimated by one

or two orders of magnitude and underestimated by one or two

orders of magnitude. We do not consider h~1:125 due to the

poor performance of all methods considered here for that

parameter setting. Incorrectly inferring an order of magnitude

higher recombination rate slightly improves the performance of

both T1 and T2. However, incorrectly inferring a two orders of

magnitude higher recombination rate yields poor performance for

both T1 and T2 under reasonable false positive rates (e.g., less than

5%). Incorrectly inferring the recombination rate by one or two

orders of magnitude lower than the truth does not vastly alter the

power for T1, but substantially decreases the power of T2.
Ancient trans-species balanced polymorphism. One

hallmark of balancing selection is that it maintains polymorphism

for a long time, potentially for millions of years [8–10]. Thus, some

balanced polymorphisms, referred to as trans-specific polymor-

phisms, are shared across multiple species. Figure S7 displays the

three demographic models that we consider in which a selected

allele arises in the population ancestral to the split of the ingroup

and outgroup species. For each demographic scenario, we set

tS~1:5|107 years ago, creating a selected allele that is three

times as ancient as the one that we consider in Figure 2. All other

model parameters are identical to those considered in Figure 2.

Figures S8 and S9 indicate that the performances of T1, T2,

HKA, and Tajima’s D are not greatly affected by considering an

ancient trans-species balanced polymorphism when compared to

an ancient balanced polymorphism that occurred more recently

than the split of a pair of species. This is important because the

scenario of an ancient trans-species balanced polymorphism is a

violation of the assumptions of the model since it forces lineages

from the ingroup species to not be monophyletic with respect to

the outgroup species. Hence, though T1 and T2 make the

assumption that lineages from the ingroup species are monophy-

letic, this assumption does not hinder the methods in practice.
Young balanced polymorphism. The two methods devel-

oped in this article assume that selection is infinitely strong and

that the balanced polymorphism is infinitely old. Here we consider

the performance of T1, T2, HKA, and Tajima’s D under a

scenario in which a young balanced polymorphism arose tS~105

years ago. Considering selection coefficients s~10{2 (Fig. S10)

and s~10{4 (Fig. S11), all four methods performed poorly under

the constant size and growth demographic scenarios, regardless of

the dominance parameter. In contrast, T1, T2, and HKA all

perform well and Tajima’s D performs poorly under the

bottleneck scenario, similar to the results for the ancient balanced

polymorphisms. These results show that the new methods have

limited power to detect young balanced polymorphisms,

except under a scenario in which the background density of

polymorphisms is substantially lowered—as in the case of a strong

recent population bottleneck.

Matching the mean density of polymorphisms to a

constant size model. The alternate demographic scenarios

that we investigated here have focused on the performance of T1,

T2, HKA, and Tajima’s D for a recent population bottleneck or

growth, relative to a constant size population. However, we have

not considered whether a population bottleneck or growth actually

changes the absolute performance of the methods, as these

demographic events not only change the density of polymorphisms

relative to constant size models, but they also change the shape of

the frequency spectrum. To control for the density of polymor-

phisms, we chose the ancestral effective size under the bottleneck

and growth models so that the expected number of segregating

sites under the bottleneck and growth models is the same as a

constant size model of diploid effective size 104. That is, we set the

ancestral sizes for complex demographic models such that these

complex models yield identical mean densities of polymorphic sites

as a model of constant population size of 104 diploid individuals.

The details on how we chose these ancestral effective sizes can be

found in the Materials and Methods section, with the ancestral

diploid effective sizes under the bottleneck and growth models as

14015 and 8762, respectively.

Figures S12 and S13, Figures S14 and S15, and Figures S16 and

S17 display results for times tS at which a balanced polymorphism

arose of 5|106, 1:5|107, and 105 years ago, respectively.

Interestingly, these results indicate that the bottleneck and growth

models behave similarly to a constant size model once the mean

density of polymorphic sites is matched to that of a constant size

model. That is, there no longer is a substantial improvement for

T1, T2, and HKA for bottleneck models relative to a constant size

model. Hence, it is not the shape of the frequency spectrum that

gave the apparent increase in power under the bottleneck model

(e.g., compare Fig. 3 to Fig. 5 and Fig. 4 to Fig. 6). Rather, it was

the large decrease in the background density of polymorphisms

relative to that of the assumed effective population size under the

model of balancing selection. In addition, when matching the

mean density of polymorphisms, methods tended to perform better

under the growth model than under the bottleneck model (e.g.,

Figs. 5 and 6), counter to what was observed without matching the

mean density of polymorphisms (e.g., compare Fig. 3 to Fig. 5 and

Fig. 4 to Fig. 6). This observation is potentially due to the

increased variance in coalescence times under the new bottleneck

model compared to the new growth model, when the mean density

of polymorphisms is matched to a constant size model.

Empirical analysis
Balancing selection in humans. We probed the effects of

balancing selection in humans by using whole-genome sequencing

data from nine unrelated individuals from the CEU population

and nine unrelated individuals from the YRI population (see

Materials and Methods). We performed a scan for balancing

selection at each position in our dataset by considering a window

of 100 substitutions or polymorphisms upstream and downstream

of our focal site. This window size was taken for computational

convenience, rather than by consideration of the recombination

rate or polymorphism density within the region. Though we used a

window size of 200 polymorphisms or substitutions for computa-

tional convenience, T1 and T2 can also be computed using all sites

on a chromosome. The mean window length was ,14.7 kb for the
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Figure 5. Performance of T1 , T2 , HKA, and Tajima’s D under the bottleneck and growth demographic models in Figure 2 with
selection parameter s~10{2 and dominance parameter h~100. The left panel is the divergence model in Figure 2B with a recent bottleneck
within the ingroup species. The right panel is the divergence model in Figure 2C with recent population growth within the ingroup species. The
population sizes for the bottleneck and growth demographic histories have been scaled so that they produce the same number of segregating sites
as a constant size population with diploid effective size N~104 individuals.
doi:10.1371/journal.pgen.1004561.g005

Figure 6. Performance of T1 , T2 , HKA, and Tajima’s D under the bottleneck and growth demographic models in Figure 2 with
selection parameter s~10{4 and dominance parameter h~100. The left panel is the divergence model in Figure 2B with a recent bottleneck
within the ingroup species. The right panel is the divergence model in Figure 2C with recent population growth within the ingroup species. The
population sizes for the bottleneck and growth demographic histories have been scaled so that they produce the same number of segregating sites
as a constant size population with diploid effective size N~104 individuals.
doi:10.1371/journal.pgen.1004561.g006
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CEU and ,13.7 kb for the YRI populations, which should be

sufficiently long because recombination quickly breaks down the

signal of balancing selection at distant neutral sites. That is, under

the Hudson-Darden-Kaplan model, the scale at which one would

observe an increase in diversity is 1=r~1=(4Nr)~

1=(4|104|2:5|10{8)~1000 nucleotides, or a 1 kb window

[21]. Manhattan plots for T1 (Figs. S18 and S19) and T2 (Figs. S20

and S21) test statistics suggest that there are multiple outlier

candidate regions. Intersecting the locations of these scores with

those from the longest transcript of each RefSeq gene (i.e.,
transcription start to stop including exons and introns) led to

identification of many previously-hypothesized and novel genes

potentially undergoing balancing selection (see Tables S1–S4, with

previously-hypothesized genes highlighted in bold).

Multiple genes at the HLA region are strong outliers (top 0:01%
of all scores across the genome) in our scan for balancing selection

(Tables S1–S4). Because this study uses high-coverage sequencing

data, resolution in the HLA region is particularly fine (Figs. S22

and 7), with strong signals in classical MHC genes such as HLA-A,

HLA-B, HLA-C, HLA-DR, HLA-DQ, and HLA-DP genes [14].

The HLA region, which is located on chromosome six, is a

well-known site of balancing selection in humans [8–10]. The

protein products encoded by HLA genes are involved in antigen

presentation, thus playing important roles in immune system

function. Genes at the HLA locus are known to be highly

polymorphic and are thought to be subject to balancing selection

due to frequency-dependent selection, overdominance, or fluctu-

ating selection in a rapidly changing pathogenic environment

[30,31]. As the HLA region is so well known as a locus under

balancing selection, it is important that our methods identify

strong candidate candidate genes in the regions as a proof of

concept.

One gene that we found particularly intriguing is FANK1 (Figs.

S23 and 8). This gene is one of the top four candidates in the CEU

and YRI populations when using either the T1 or T2 statistic

(Tables S1–S4). In addition, FANK1 is the top candidate among

genes that have not been previously hypothesized to be under

balancing selection when using either test in the CEU and the T1

test in the YRI. FANK1 is expressed during the transition from

diploid to haploid state in meiosis [32,33]. Though it is often

identified as spermatogenesis-specific [32,33], it is also expressed

during oogenesis in cattle [34] and mice [35]. Its function is to

Figure 7. Signals of balancing selection within the HLA region for the CEU (blue) and YRI (orange) populations using the T2 test
statistic. From bottom to top, the horizontal dotted gray lines indicate the 0:5%, 0:1%, 0:05%, and 0:01% empirical cutoffs, respectively.
doi:10.1371/journal.pgen.1004561.g007
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suppress apoptosis [33], and it is one of ten to 20 genes identified

as being imprinted in humans (i.e., allele specific methylation)

[36]. Interestingly, it also shows marginal evidence of segregation

distortion (Fig. 8) [37]. Further, as a CpG island resides directly

underneath our signal in both the CEU and YRI populations, we

analyzed the region around FANK1 with all GC?AT transitions

on chromosome 10 removed as well as all transitions on

chromosome 10 removed and we still retain the peak (Fig. S24),

strongly suggesting that the signature of balancing selection that

we identified around FANK1 is not driven by CpG mutational

effects. We were additionally surprised to find that the putative

selection signal was approximately 40 kb wide, which is abnor-

mally large for balancing selection. Looking back at the

recombination map, we find that the rates in this region are

extremely low, which explains the large width of the peak.

However, Figures S5 and S6 indicate that erroneously inferring a

lower recombination rate does not increase the power of detecting

a selection signal, and can substantially impair the ability for T2 to

detect a selection signal.

More broadly, a glance at the top signals for the CEU (Tables

S1 and S3) and YRI (Tables S2 and S4) populations, reveals a

substantial overlap in the candidate genes identified between the

pair. If balancing selection has maintained a polymorphism for a

long period of time, then we would expect these populations to

share many signals in common due to their relatively recent

population split. Tables S1–S4 indicate that our scan also

identified a number of genes that were previously-hypothesized

to be under balancing selection. However, the majority of this

overlap is due to the HLA region. One candidate that we did not

find support for was the ABO gene, which has been identified as a

potential strong candidate using diverse complementary approach-

es such as summary statistics [38] and trans-specific polymorphism

information [7]. A number of factors, including the small sample

size for each of the CEU and YRI populations used here and

potential differences in the Complete Genomics dataset relative to

others, could have caused the ABO gene to not be at the top of our

list of candidates.

Gene ontology analysis. To elucidate functional similari-

ties among genes identified to be under balancing selection, we

performed gene ontology (GO) enrichment analysis using

GOrilla [39,40]. First, we compared an unranked list of the

top 100 candidate genes (Tables S1–S4) to the background list

of all unique genes. Genes obtained using either test statistic are

enriched for processes involved in the immune response in both

the CEU and YRI populations (Tables S5–S8). Similarly, the

top genes are enriched for MHC class II functional categories

(Tables S9–S11), with the exception of the T2 statistic applied to

YRI, which has no functional enrichment. Further, these top

genes tend to be components of the MHC complex and

membranes (Tables S12–S15), which often directly interact with

pathogens. Interestingly, removing all HLA genes from both the

top 100 and background sets of genes reveals no GO

enrichment for process, function, or component categories,

indicating that enrichment is predominately driven by the HLA

region. Because we can also provide a score for each candidate

gene in our likelihood framework, we performed a second

analysis in which we ranked genes by their likelihood ratio test

statistic, with the goal of identifying GO categories that are

enriched in top-ranked genes. Using this framework, the top

candidate genes tend to be involved in immune response and

cell adhesion processes (Tables S16–S19); MHC activity and

membrane protein activity functions, such as transporting

and binding molecules (Tables S20–S23); and MHC complex,

membrane, and cell junction components (Tables S24–S27). In

contrast to the case of the top 100 candidate genes, removing all

HLA genes from the ranked list still resulted in GO enrichment

in categories such as cell adhesion (processes), membrane

protein activity (function), and components of membranes and

cell junctions (component).

Discussion

In this article, we presented two likelihood-based methods, T1

and T2, to identify genomic sites under balancing selection. These

methods combine intra-species polymorphism and inter-species

divergence with the spatial distribution of polymorphisms and

substitutions around a selected site. Through simulations, we

showed that T1 and T2 vastly outperform both the HKA test and

Tajima’s D under a diverse set of demographic assumptions, such

Figure 8. Signal of balancing selection at the FANK1 gene for the CEU (blue) and YRI (orange) populations using the T2 test statistic.
From bottom to top, the horizontal dotted gray lines indicate the 0:5%, 0:1%, 0:05%, and 0:01% empirical cutoffs, respectively. SNPs (rsIDs)
correspond to markers showing significant levels of transmission distortion within the Meyer et al. study [37].
doi:10.1371/journal.pgen.1004561.g008
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as a population bottleneck and growth. In addition, application of

T1 and T2 to whole-genome sequencing data from Europeans and

Africans revealed many previously identified and novel loci

displaying signatures of balancing selection.

Simulation results suggest that T2 performs at least as well as T1,

and so a natural question is whether T1 would ever be used. Based

on the fact that T2 uses the allele frequency spectrum and T1 does

not, then T1 would be a valuable statistic to employ when allele

frequencies cannot be estimated well. One example is a situation

in which the sample size is small (e.g., one or two genomes). Under

this scenario, the T2 test statistic would likely provide little

additional power over the T1 statistic. As another example, it is

becoming increasingly common for studies to sequence a pooled

sample of individuals rather than each individual in the sample

separately. This pooled sequencing will tend to yield inaccurate

estimates of allele frequencies across the genome, which could

heavily influence the performance of the T2 statistic. However, if

there is sufficient enough evidence that a site has a pair of alleles

observed in the sample, then this site can be considered

polymorphic regardless of its actual allele frequency. Future

developments that can statistically account for this uncertainty in

allele frequency estimation could be incorporated into the T2 test

statistic so that it can be applied to pooled sequencing data. In

addition, our investigation into the robustness of T1 and T2 to

errors in recombination rate estimates suggested that T1 tends to

perform better than T2 when the estimate of the recombination

rate is inaccurate. Because reliable genetic maps are unavailable

for most organisms that have had their genome sequenced, T1

may be the preferable statistic for many current applications.

The model of balancing selection used in this article is from

Hudson and Kaplan [21], and assumes that natural selection is so

strong that it maintains a constant allele frequency at the selected

locus forever. The simulation scenarios considered here assumed

that the strength of balancing selection was also constant since the

selected allele arose. However, selection coefficients can fluctuate

over time, which provides the basis for future work on

investigating the robustness of methods for detecting balancing

selection under scenarios in which the strength of selection

fluctuates or when selection is weak. Future work can use the

framework developed here to construct methods for identifying

balancing selection under models with more relaxed assumptions

(e.g., see Barton and Etheridge [41] and Barton et al. [42] for

potential models).

Recall that we chose a window size based on a fixed number of

polymorphisms and substitutions. However, we could have chosen

a window in a different way. For example, a window could have

been chosen based on physical or genetic distance, rather than a

fixed number of substitutions or polymorphisms. However, basing

each likelihood calculation on a fixed number of substitutions or

polymorphisms, rather than physical or genetic distance, enables

each likelihood ratio to be based on the same number of terms,

thereby letting the likelihood ratio depend on the density of

polymorphisms vs. substitutions rather than the number of

polymorphisms in the window. This contrasts other composite

likelihood approaches for detecting positive selection (e.g., Nielsen

et al., 2005 [26]), where the likelihood under the selection model

approaches the likelihood under neutrality with increasing

distance from the site under selection. This characteristic exhibited

by these other composite likelihood approaches permits variable-

size windows, so that at some point adding new terms to the

likelihood ratio will not change its value. However, for our

method, the likelihood under selection does not approach the

likelihood under the background level of diversity (neutrality) with

increasing distance from the putative site under selection, causing

the value of the likelihood ratio to change by modifying the

number of terms. If we chose a standard neutral model for the null

hypothesis, then the likelihood under selection would approach the

likelihood under the null model with increasing distance from the

selected site. To attempt to account for demographic history, we

have instead chosen to use the genome-wide level of diversity for

the null hypothesis, which does not require that the likelihood

under selection to approach the likelihood under the null

hypothesis with increasing distance from the putative balanced

polymorphism.

In our empirical analysis, we calculated the likelihood ratio (T1

or T2) for numerous positions along the genome. We then ranked

genes according to the largest likelihood ratio estimated between

the annotated transcription start and stop of the gene. A

consequence of ranking genes in this manner is that longer genes

are more likely to be significant. However, because ancient

balancing selection only impacts a relatively small region of the

genome (in contrast to recent positive selection), the signal of

ancient balancing selection could be masked if we instead assigned

the average likelihood ratio as the score for a large gene. We

therefore opted to assign the score for a gene as the highest

likelihood ratio calculated within that gene.

Our methods have been shown to be substantially more

powerful than HKA and Tajima’s D at detecting ancient balanced

polymorphisms. However, a glance at Figures 3 and 4 indicates

that under constant size and growth models our methods have

little power to detect balanced polymorphisms at low false positive

rates—a range that would be necessary to detect ancient balancing

selection if it were rare. Hence, if balancing selection is relatively

rare, then relying solely on statistics considered here to identify

ancient balanced polymorphisms could possibly lead to an

overabundance of false positives. Complementary evidence, such

as considering patterns of linkage disequilibrium or trans-specific

polymorphisms in candidate regions, should also be employed to

hone in on true signals of ancient balancing selection.

Though we have shown that T1 and T2 perform well under a

population bottleneck and growth, they may be less robust to other

forms of demographic model violations, such as population

structure. Because population subdivision increases the time to

coalescence and corresponding length of a genealogy, we expect

higher levels of polymorphism across the genome. Under most

assumptions, population subdivision affects the genome uniformly;

it increases the level of background polymorphism and likely only

slightly decreases the power of the new statistics. However, in some

cases, such as an ancient admixture event (e.g., with Neanderthals

[43] or Denisovans [44]), levels of variability may increase in only

a few regions of the genome, increasing the mean coalescence time

in these regions. Such regions may appear to have excess

polymorphism relative to background levels and, hence, display

false signals of balancing selection under the T1 statistic. However,

in non-African humans, introgressed regions typically have low

population frequencies [43,44], and, hence, it would be unlikely

for polymorphic sites in these regions to harbor many introgressed

alleles segregating at intermediate frequencies. Thus, the T2

statistic, which explicitly utilizes allele frequency spectra informa-

tion, would likely be able to distinguish these blocks of archaic

admixture from regions of balancing selection. Further, as

observed in other studies of natural selection [45,46], increased

robustness to confounding demographic processes can potentially

be gained through the use of additional information. For example,

population bottlenecks as well as gene flow can increase linkage

disequilibrium [47,48]. Therefore, knowledge about linkage

disequilibrium in a region could aid in distinguishing population

subdivision from long-term balancing selection.
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Another concern when performing genomes scans for balancing

selection is the possibility of false positives due to bioinformatical

errors. For example, misalignment of sequence reads in duplicated

regions may lead to falsely elevated levels of variability. In many

cases, this problem can be alleviated by removing duplicated

regions from analyses. However, a non-negligible portion of the

human genome is not represented in standard reference sequences

and, thus, there may be many unidentified paralogs in the

genome. Fortunately, removing sites that deviate from Hardy-

Weinberg equilibrium helps to alleviate these problems, because

SNPs fixed between or segregating at high frequencies in one of

two (or more) paralogous regions will have an excess of

heterozygotes in combined short-read alignments. We applied a

Hardy-Weinberg filter to all empirical data analyzed in this article.

We note that deviations from Hardy-Weinberg equilibrium are

expected under certain forms of balancing selection. In theory, a

balancing selection signal could, therefore, be lost due to such

filtering. However, we used a filtering cutoff of pv10{4 (see

Materials and Methods). The strength of selection required to

cause this type of deviation from Hardy-Weinberg equilibrium

used in the filtering is extremely strong, and such selection would

almost certainly have been detected using other methods. Well-

established examples of balancing selection in the human genome,

such as the selection affecting the HLA loci, are not lost because of

filtering, and would generally not be easily detectable using

deviations from Hardy-Weinberg as a test. Nonetheless, because

phenomena other than balancing selection, such as bioinforma-

tical errors or archaic admixture, could potentially lead to false

signals of balancing selection, additional evidence should be

obtained before definitively concluding that a site has been

subjected to balancing selection.

One source of additional evidence of balancing selection is

whether a signal lies within a region harboring a trans-specific

polymorphism [7,19] because it is unlikely to have a polymor-

phism segregating in each of a pair of closely-related species

without selection maintaining the polymorphism. However,

relying solely on evidence from trans-specific polymorphisms

would miss many true signals of balancing selection that are not

maintained as trans-specific polymorphisms. In addition, regions

with bioinformatical errors (e.g., mapping errors) may give the

same errors in both species, resulting in a false signal of a shared

polymorphism between the pair of species. Nevertheless, the

observation of a trans-specific polymorphism can provide

convincing evidence of an ancient balanced polymorphism

[7,19]. Previous studies of selection have shown that combinations

of statistics can be powerful tools when identifying genes under

selection [15,18,49]. Hence, combining our methods with other

summaries (e.g., linkage disequilibrium [45–48]) or information on

trans-species polymorphisms [7,19] will lead to increasingly

effective approaches for detecting balancing selection.

The current approach taken by T1 and T2 ignores higher order

linkage disequilibria, in the sense that it ignores linkage

disequilibrium between pairs of neutral markers and only

considers correlations between neutral markers and the site under

selection. However, incorporating higher order linkage informa-

tion, such as employing tests based on haplotypes, could provide

some advantage. For example, T1 and T2 have little power to

detect young balanced polymorphisms. However, the haplotype

pattern around a young balanced polymorphism is likely to mimic

that of an incomplete or partial selective sweep. Therefore,

methods that use haplotype information (e.g., EHH [50], iHS

[51], and nSL [52]), could provide a complementary and powerful

approach to detecting recent balancing selection—a selective

regime that the methods considered here have little power.

Another commonly-cited source of evidence for balancing

selection is based on consideration of the topology and branch

lengths of within-species haplotype trees. Under long-term

balancing selection, the underlying genealogy (e.g., see Fig. S25)

will be symmetric, with long basal branches separating a pair of

allelic classes (i.e., haplotypes containing one variant and

haplotypes containing the other variant). However, the underlying

genealogy for a linked neutral variant may differ substantially from

that of the selected site. Around a balanced polymorphism, there

will be a strong reduction of linkage disequilibrium, not unlike a

recombination hotspot, because the long genealogy in the

balanced polymorphism provides extra opportunities for recom-

bination. Consequently, the signal of balancing selection will be

narrow, and trees estimated from sites located in a window around

the balanced polymorphism may fail to detect the presence of

highly divergent haplotypes. The utility of within-species haplo-

type trees as a signature of long-term balancing selection is

unclear, as the genealogy of the haplotype may not match the

genealogy of the selected region. For example, Figure S26 shows

that haplotype trees based on scenarios under balancing selection

appear similar to those under neutrality, with the difference that

external branches are slightly longer under balancing selection

than under neutrality, which contrasts with the generally-held

belief that basal branches should be long. These inferred long

external branches are a product of estimating haplotype trees in

recombining regions [53], which would likely be unavoidable in

genomic regions under ancient balancing selection even if

recombination events were undetected. As such, haplotype

networks or trees built without explicitly accounting for recombi-

nation may not be powerful tools for identifying regions under

balancing selection.

An assumption of the methods T1 and T2 introduced in this

article is that two allelic classes at a selected site are maintained for

an infinitely long period of time at a constant equilibrium

frequency by balancing selection. However, balancing selection is

not restricted to act only on two stable allelic classes, and the

equilibrium frequency can fluctuate with time and space.

Examples of balancing selection that do not conform to our

model assumptions are frequency-dependent selection [2,3],

fluctuating selection [2,4,5], selection maintained through segre-

gation distortion [6], and selection maintaining more than two

allelic classes [6]. Though these modes of balancing selection

exhibit different evolutionary dynamics, they all lead to increased

diversity around the site under selection, and therefore a decay in

the density of polymorphisms with increasing genetic distance

from the selected site. It is this information that T1 and T2 are

employing to identify signatures of balancing selection, and though

the dynamics of these modes of balancing selection violate the

assumptions of our methods, it is likely that the statistics developed

here could identify genomic signatures left behind by these

selective scenarios provided selection was strong enough.

Within our scan, we identified a gene called FANK1, which is

expressed during the transition from diploid to haploid states in

meiosis [32,33], is often identified as spermatogenesis-specific

[32,33], suppresses apoptosis [33], is imprinted [36], and exhibits

evidence of segregation distortion (Fig. 8) [37]. These character-

istics suggest that maintenance of polymorphism at FANK1 results

from segregation distortion, which can occur when the allele

favored by distortion is associated with negative fitness effects,

particularly if the negative effect is pronounced in the homozygous

state (see p. 562–563 of Charlesworth and Charlesworth [6];

Úbeda and Haig [54]). The distorting allele will increase in

frequency when rare because of the segregation distortion in

heterozygotes. But when it becomes common, selection will act
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against it because it will more often occur in the homozygous state

when rare. Under such a scenario, theoretical results suggest that it

is possible for a distorter to spread through a population without

reaching fixation, obtaining a frequency that permits the

maintenance of a stable polymorphism (see p. 564 of Charlesworth

and Charlesworth [6]). In addition, the inclusion of imprinting at

such a locus further enchances the parameter space at which a

polymorphism can be maintained [54].

The function of FANK1 makes it a particularly good candidate

for harboring alleles causing segregation distortion. It is expressed

primarily during meiosis and inhibits apoptosis, which has

previously been hypothesized to be associated with segregation

distortion [55,56]. A large proportion of sperm cells are eliminated

by apoptosis, so allelic variants causing avoidance of apoptosis

after meiosis could serve as segregation distorters. However,

mutations that lead to avoidance of apoptosis may be associated

with negative fitness effects, especially in the homozygous states,

because they could lead to dysspermia or azoospermia. Apoptosis

during spermatogenesis plays a critical role in maintaining the

optimal relationship between the number of developing sperm

cells and sertoli cells, which support developing sperm cells.

Though some of the sites identified in FANK1 show marginal

levels of segregation distortion, the region displaying the largest

level of segregation distortion in the human genome is located

300 kb upstream of FANK1 [37]. Further, a recent genome-wide

association study for male fertility identified a significant SNP

(rs9422913) located approximately 250 kb upstream of FANK1
[57]. Even though these regions are quite distant from FANK1, if

strong enough linkage exists with FANK1, then it is possible for a

two-locus segregation distorter to spread within a population (p.

569 of Charlesworth and Charlesworth [6]). Hence the signals of

segregation distortion [37] and fertility [57] displayed in these

regions upstream of FANK1 could be a result of an association

with FANK1.

Thus, FANK1 is an interesting candidate for further study of

balancing selection. The association of segregation distortion and

balancing selection has been empirically described in other species,

e.g., Caenorhabditis elegans [58]. However, as it has not yet been

documented in humans, FANK1 may be the first example of a

segregation distorter causing balancing selection in humans.

However, further experiments would be needed to test the

hypothesis of segregation distortion in FANK1.

In the last several years, there has been an accumulation of

evidence against the pervasiveness of hard sweeps in some species,

e.g., in humans [11–13]. Instead, other adaptive forces, such as

balancing selection, could play an important role in shaping

genetic variation across the genome. Interestingly, a recent

theoretical study showed that a large proportion of adaptive

mutations in diploids leads to heterozygote advantage [59],

suggesting that much of the genome may be under balancing

selection. If this intriguing prospect is true, then because our

methods for detecting balancing selection are the most powerful

that have been developed to date, they will be useful tools in

uncovering the potentially many regions under balancing selection

in humans and other species.

Materials and Methods

Estimating inter-species expected coalescence times
To compute the probabilities of polymorphism pni ,ri ,x and

substitution sni ,ri ,x under our model, we must first obtain an

estimate of the inter-species coalescent times bCC. For the purposes

of our simulation and empirical analyses, we introduce a basic

estimate (bCC) of the expected coalescence time between the ingroup

and outgroup species. Consider a sample of n lineages (i.e., n
haploid individuals) from an ingroup species and one lineage from

an outgroup species. For simplicity, assume that the ingroup

species, outgroup species, and ancestral species from which the

ingroup and outgroup diverged has an effective population size of

N~104 diploid individuals. Further, assume that the per-site per-

generation mutation rate is m~2:5|10{8 and that the total

sequence length analyzed is K . We estimate the expected

coalescence time of all n lineages in the ingroup species asbHH~p̂p=½4NmK(1{1=n)�, where p̂p is the mean number of pairwise

sequence differences and 4NmK(1{1=n) is the expected number

of mutations for a sequence of length K and n sampled lineages.

Suppose that bdd is the number of substitutions of fixed differences

observed between the ingroup and outgroup species. Then we

estimate the mean coalescence time between the ingroup and

outgroup species by bCC~½ bHHzbdd=(2NmK)�=2.

Application of the new test statistics to data
In the empirical analysis of human genomic data, we obtained

values for the T1 and T2 test statistics for a large number of

positions spaced across the genome. From these values, we

overlapped protein coding regions (or genes including exons and

introns) with the positions in the genome that the test statistics

were calculated at. We assigned the value of the test statistic for the

gene as the maximal value of the test statistic for the positions that

it overlapped. We then ranked the set of genes based on their

scores to identify genes that are outliers. Note that we are not

attempting to identify regions with statistical significance or a

certain p-value threshold, but instead are looking for genes that

may be outliers, and so the 0:01, 0:05, 0:10, and 0:50% empirical

cutoffs are not meant to represent a formal significance cutoff.

When applying the T1 and T2 test statistics to simulated and

empirical data, we do not estimate the rate of mutation h1 from A1

alleles to A2 alleles or the rate of mutation h2 from A2 alleles to A1

alleles at the selected site S, as defined in the Hudson-Darden-

Kaplan model. We instead treat these rates as a constant, with

h1~h2~0:05 for the analyses in this article. The motivation is

that, if these mutation rates did not exist, then the tree height

would increase rapidly for small recombination rates. Our method

assumes that a most recent common ancestor of the set of sampled

alleles is reached more recently than the inter-species coalescence

time bCC between the ingroup and outgroup species (i.e., Hn(x,r)

vbCC even for small r). Simulation results (see Evaluating the
methods using simulations) show that our new methods perform

extremely well, even though we set the nuisance h1 and h2

parameters to a constant value. To maximize of the equilibrium

frequency x of the A1 allele, we utilized the value of x, denoted by

x̂x, that maximized the composite likelihood under the model, by

choosing x̂x from values of 0:05,0:10, . . . ,0:95.

Simulation procedure to evaluate the performance of T1

and T2

We applied T1 and T2 to data simulated under population

divergence models, using parameters to mimic humans (ingroup)

and chimpanzees (outgroup). The models that we simulated under

are illustrated in Figure 2. For each of three models, we set each of

the ingroup, outgroup, and ancestral population sizes to N~104

diploid individuals [60] and the divergence time between the

ingroup and the outgroup species to tD~5|106 years ago [61].

We assumed a generation time of 20 years [62], a mutation

rate of m~2:5|10{8 mutations per-nucleotide per-generation

[62], a recombination rate of r~2:5|10{8 recombinations
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per-nucleotide per-generation, and a sequence length of 105

nucleotides. Assuming a per-generation selection coefficient s,

where 0ƒsƒ1, and a dominance parameter h, where hw1, at

time tS , a selected allele arose and evolved under an overdom-

inance model with A1A1 homozygotes having fitness 1, A1A2

heterozygotes having fitness 1zhs, and A2A2 homozygotes having

fitness 1zs. The formulation of this overdominance model is

similar to that of [63] in which the fitness is A1A1 is 1, A1A2 is

1{hs, and A2A2 is 1{s. Under the Gillespie formulation,

overdominance occurs when hv0, whereas it occurs when hw1 in

our formulation. However, both result in an equilibrium frequency

of (h{1)=(2h{1). Simulations were performed using mpop [64],

which was seeded with population-level chromosome data

generated by the neutral coalescent simulator ms [65]. After the

completion of each simulation, we sampled 18 chromosomes from

the ingroup species and one chromosome from the outgroup

species. For each set of parameter values, we simulated 103

independent replicates. Ancestral alleles were called using the

outgroup species, and so the called ancestral allele may not

actually be the true ancestral allele. For each of the three

demographic scenarios, we set tS~tD~5|106 years ago. For

the bottleneck model (Fig. 2B), we set the bottleneck population size

to Nb~550 diploid individuals, the time at which the bottleneck

began to tb~3:0|104 years ago, and the time at which the

bottleneck ended to te~2:2|104 years ago [66,67]. For the growth

model (Fig. 2C), we set the expanded population size to

Ng~2|104 diploid individuals and the time at which the

population began to grow to tg~4:8|104 years ago [67].

Additionally, we considered a more ancient balanced polymor-

phism arising tS~1:5|107 years ago and a more recent balanced

polymorphism arising tS~105 years ago. Because the forward

simulations in mpop are computationally burdensome, we rescaled

appropriate parameters by a factor of 10 such that the scaled

population parameters remain the same, but the simulations are

substantially sped up (by approximately a factor of 102). Note that

scaling parameters in this way can somewhat affect the time to

fixation of selected alleles. The distribution of false positive rates was

generated by 103 replicate neutral simulations from mpop, using the

same parameters as the corresponding selection scenarios (including

the rescaling factor) except without introducing a selected allele.

Matching the density of polymorphic sites
In the current set of simulations, the bottleneck and growth

models each produce a different density of polymorphisms (i.e.,
number of segregating sites) than the constant size model. This

section seeks to find an ancestral effective size for the growth and the

bottleneck models such that the mean density of polymorphisms is

close to that of the constant size model. We use eq. 1 in Marth et al.
(2004) [68] to calculate the expected frequency spectrum under the

bottleneck and growth models. The equation is
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where m is the per-generation mutation rate, M is the number of

epochs, Nm for m~1,2, . . . ,M, is the effective population size for

epoch m, and Tm for m~1,2, . . . ,M{1, is the duration of time

spent in epoch m. Our growth model contains two epochs, and so

the appropriate version of the equation is when M~2. Setting the

number of epochs to two, we the expected frequency spectrum

under the growth model as
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Note that in our growth model, T1~tg, N1~Ng, and N2~N.

Denote the ratio of effective size during growth to the ancestral

effective size as cg~Ng=N. Then we can rewrite the equation as
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Consider an ancestral reference effective size Ne

(Ne~N~10,000 for the constant size model). Denote the

expected number of segregating sites in a constant size model,

conditional on effective size Ne as ½SC(Ne)�. Conditional on this

ancestral reference effective size Ne, the expected site frequency

spectrum under our growth model is
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where cg~2 under our growth model. Therefore, the expected

number of segregating sites conditional on reference effective size

Ne is ½SG(Ne)�~
Pn{1

i~1 ½pG
n,i(Ne)�. We obtain a growth model

that produces the same density of polymorphic sites as our

constant size model by choosing
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Our bottleneck model contains three epochs, and so the

appropriate version of the equation is when M~3. Setting the

number of epochs to three, we the expected frequency spectrum

under the bottleneck model as
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Note that in our bottleneck model, T1~te, T2~tb{te,

N1~N , N2~Nb, and N3~N. Denote the ratio of the effective

size during the bottleneck to the ancestral effective size as

cb~Nb=N. Then we can rewrite the equation as
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Conditional on this reference effective size, the expected site

frequency spectrum under our bottleneck model is
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where cb~0:055 under our bottleneck model. Therefore, the

expected number of segregating sites conditional on reference

effective size Ne is ½SB(Ne)�~
Pn{1

i~1 ½pB
n,i(Ne)�. We obtain a

bottleneck model that produces the same density of polymorphic

sites as our constant size model by choosing

NB
e ~

arg min

Ne [ Zz
j ½SB(Ne)�{ ½SC(N)�j

~
arg min

Ne [ Zz
j ½SB(Ne)�{ ½SC(104)�j

~14015:

ð23Þ

Empirical dataset construction
We used data from nine European and nine African diploid

genomes sequenced by Complete Genomics [69]. All individuals

were unrelated [70], with the European individuals from the

CEU population (NA06985, NA06994, NA07357, NA10851,

NA12004, NA12889, NA12890, NA12891, NA12892) and the

African individuals from the YRI population (NA18501,

NA18502, NA18504, NA18505, NA18508, NA18517,

NA19129, NA19238, NA19329). We used the genotype calls

made by Complete Genomics that were found in the ‘‘master-

VarBeta’’ files. We downloaded pairwise alignments between

human reference hg18 and chimpanzee reference panTro2 from

the UCSC Genome Browser at http://genome.ucsc.edu/. Sites

with more than two distinct alleles across all Complete Genomics

individuals as well as the hg18-panTro2 alignments, sites in the

Complete Genomics data where one of the two alleles did not

match the reference sequence, and sites that were within two

nucleotides of structural variants called in any one of the

Complete Genomics individuals were removed. In addition,

combining all 54 unrelated individuals in the Complete

Genomics dataset, sites that had a p-value less than 10{4 for a

one-tailed Hardy-Weinberg test of excess heterozygotes [71] were

excluded. We used the full set of 54 unrelated individuals,

totalling 108 alleles, so that we would have sufficient power to

detect Hardy-Weinberg departures due to excess heterozygotes.

Sites flagged as departing from Hardy-Weinberg proportions in

this set of 54 individuals were then filtered out in the smaller

subsets of nine CEU and nine YRI individuals. It should be

noted that under a scenario of heterozygote advantage, it is

expected that we should observe an excess of heterozygous

individuals at sites in the vicinity of the site under balancing

selection. However, a major concern with sequencing data are

mapping errors, and so the Hardy-Weinberg filter is necessary to

reduce the confounding effects of regions with these bioinforma-

tical artifacts. As a consequence, this filter may increase the

chance that we miss certain regions that are under balancing

selection in our scan. Finally, sites that were polymorphic in the

Complete Genomics sample (i.e., either CEU or YRI) and sites

that contained a fixed difference between the Complete

Genomics sample and the chimpanzee reference sequence were

retained. As in the simulations, the ancestral allele was called

using the chimpanzee outgroup, and so the called ancestral allele

may not be the true ancestral allele. However, simulation results

shows that our new methods perform well even when the

ancestral allele is potentially misspecified. Further, it may be

possible to account for ancestral allele misspecification by using

multiple outgroups, or by statistically accounting for the

misspecification [72].

To obtain recombination rates between pairs of sites, we used

the sex-averaged pedigree-based human recombination map from

deCODE Genetics [73]. We constructed recombination rates

between all pairs of sites in the filtered Complete Genomics

samples by linearly interpolating rates between adjacent sites

within the sex-averaged maps.

Supporting Information

Figure S1 Performance of T1, T2, HKA, and Tajima’s D under

the demographic models in Figure 2 with selection parameter

s~10{2 and dominance parameter h. Each row represents a

different h value. The first column is the divergence model in

Figure 2A. The second column is the divergence model in

Figure 2B with a recent bottleneck within the ingroup species.

The third column is the divergence model in Figure 2C with

recent population growth within the ingroup species.

(PDF)

Figure S2 Mean difference in the number of polymorphic sites

for a model with s~10{4 versus one with s~10{2 as a function of

the distance from the site under balancing selection. Simulations

were performed under the constant size divergence model in

Figure 2A with selection parameter s, dominance parameter

h~100, and time of selection tS~5|106 years ago. The mean

difference in polymorphic sites is calculated for bins of size one

kilobase and is plotted for 50 bins.

(PDF)

Figure S3 Performance of T1, T2, HKA, and Tajima’s D under

the demographic models in Figure 2 with selection parameter

s~10{4 and dominance parameter h. Each row represents a

different h value. The first column is the divergence model in

Figure 2A. The second column is the divergence model in

Figure 2B with a recent bottleneck within the ingroup species.
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The third column is the divergence model in Figure 2C with

recent population growth within the ingroup species.

(PDF)

Figure S4 Performance of T1, T2, HKA, and Tajima’s D under

the demographic models in Figure 2 with selection parameter

s~10{2 and dominance parameter h~1:125. The first panel is

the divergence model in Figure 2A. The second panel is the

divergence model in Figure 2B with a recent bottleneck within the

ingroup species. The third panel is the divergence model in

Figure 2C with recent population growth within the ingroup

species.

(PDF)

Figure S5 Performance of T1 and T2 under the constant size

divergence model in Figure 2A with no selected allele (neutrality).

The first and second panels are scenarios in which we have

erroneously over-estimated the recombination rate by two and one

orders of magnitude, respectively (i.e., we respectively assumed

recombination rates of 2:5|10{6 and 2:5|10{7 per base per

generation when the simulations were performed using a rate of

2:5|10{8 per base per generation). The third and fourth panels

are scenarios in which we have erroneously under-estimated the

recombination rate by one and two orders of magnitude,

respectively (i.e., we respectively assumed recombination rates of

2:5|10{9 and 2:5|10{10 per base per generation when the

simulations were performed using a rate of 2:5|10{8 per base

per generation). False positive rate is determined by neutral

simulations under a model with recombination rate of 2:5|10{8

per base per generation.

(PDF)

Figure S6 Performance of T1 and T2 under the constant size

divergence model in Figure 2A with selection parameter s~10{2,

dominance parameter h~100 or 1.5, and time of selection

tS~5|106 years ago. The first and second columns are scenarios

in which we have erroneously over-estimated the recombination

rate by two and one orders of magnitude, respectively (i.e., we

respectively assumed recombination rates of 2:5|10{6 and

2:5|10{7 per base per generation when the simulations were

performed using a rate of 2:5|10{8 per base per generation).

The third and fourth columns are scenarios in which we have

erroneously under-estimated the recombination rate by one and

two orders of magnitude, respectively (i.e., we respectively

assumed recombination rates of 2:5|10{9 and 2:5|10{10 per

base per generation when the simulations were performed using a

rate of 2:5|10{8 per base per generation). False positive rate is

determined by neutral simulations under a model with recombi-

nation rate of 2:5|10{8 per base per generation.

(PDF)

Figure S7 Demographic models used in simulations in which a

selected allele arises prior to the split a pair of species. (A)

Divergence model. Model parameters are a diploid effective

population size N, divergence time tD of the ingroup and

outgroup species, and the time tS when the selected allele arises.

(B) Divergence model with a recent bottleneck within the ingroup

species. Additional model parameters are the diploid effective

population size Nb during the bottleneck, the time tb when the

bottleneck began, and the time te when the bottleneck ended. (C)

Divergence model with recent population growth within the

ingroup species. Additional model parameters are the current

diploid effective population size Ng after recent growth and the

time tg when the growth occurred.

(PDF)

Figure S8 Performance of T1, T2, HKA, and Tajima’s D under

the demographic models in Figure S7 with selection parameter

s~10{2 and dominance parameter h. Each row represents a

different h value. The first column is the divergence model in

Figure S7A. The second column is the divergence model in Figure

S7B with a recent bottleneck within the ingroup species. The third

column is the divergence model in Figure S7C with recent

population growth within the ingroup species.

(PDF)

Figure S9 Performance of T1, T2, HKA, and Tajima’s D under

the demographic models in Figure S7 with selection parameter

s~10{4 and dominance parameter h. Each row represents a

different h value. The first column is the divergence model in

Figure S7A. The second column is the divergence model in Figure

S7B with a recent bottleneck within the ingroup species. The third

column is the divergence model in Figure S7C with recent

population growth within the ingroup species.

(PDF)

Figure S10 Performance of T1, T2, HKA, and Tajima’s D

under the demographic models in Figure 2 with selection

parameter s~10{2, dominance parameter h, and time of selection

tS~105. The first column is the divergence model in Figure 2A.

The second column is the divergence model in Figure 2B with a

recent bottleneck within the ingroup species. The third column is

the divergence model in Figure 2C with recent population growth

within the ingroup species.

(PDF)

Figure S11 Performance of T1, T2, HKA, and Tajima’s D

under the demographic models in Figure 2 with selection

parameter s~10{4, dominance parameter h, and time of selection

tS~105. The first column is the divergence model in Figure 2A.

The second column is the divergence model in Figure 2B with a

recent bottleneck within the ingroup species. The third column is

the divergence model in Figure 2C with recent population growth

within the ingroup species.

(PDF)

Figure S12 Performance of T1, T2, HKA, and Tajima’s D

under the demographic models in Figure 2 with selection

parameter s~10{2 and dominance parameter h. Each row

represents a different h value. The population sizes for these

demographic histories have been scaled so that they produce the

same number of segregating sites as a constant size population

with diploid effective size N~104 individuals. The first column is

the divergence model in Figure 2B with a recent bottleneck within

the ingroup species. The second column is the divergence model in

Figure 2C with recent population growth within the ingroup

species.

(PDF)

Figure S13 Performance of T1, T2, HKA, and Tajima’s D

under the demographic models in Figure 2 with selection

parameter s~10{4 and dominance parameter h. Each row

represents a different h value. The population sizes for these

demographic histories have been scaled so that they produce the

same number of segregating sites as a constant size population

with diploid effective size N~104 individuals. The first column is

the divergence model in Figure 2B with a recent bottleneck within

the ingroup species. The second column is the divergence model in

Figure 2C with recent population growth within the ingroup

species.

(PDF)
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Figure S14 Performance of T1, T2, HKA, and Tajima’s D

under the demographic models in Figure S7 with selection

parameter s~10{2 and dominance parameter h. Each row

represents a different h value. The population sizes for these

demographic histories have been scaled so that they produce the

same number of segregating sites as a constant size population

with diploid effective size N~104 individuals. The first column is

the divergence model in Figure S7B with a recent bottleneck

within the ingroup species. The second column is the divergence

model in Figure S7C with recent population growth within the

ingroup species.

(PDF)

Figure S15 Performance of T1, T2, HKA, and Tajima’s D

under the demographic models in Figure S7 with selection

parameter s~10{4 and dominance parameter h. Each row

represents a different h value. The population sizes for these

demographic histories have been scaled so that they produce the

same number of segregating sites as a constant size population

with diploid effective size N~104 individuals. The first column is

the divergence model in Figure S7B with a recent bottleneck

within the ingroup species. The second column is the divergence

model in Figure S7C with recent population growth within the

ingroup species.

(PDF)

Figure S16 Performance of T1, T2, HKA, and Tajima’s D

under the demographic models in Figure 2 with selection

parameter s~10{2, and dominance parameter h, and time of

selection tS~105. Each row represents a different h value. The

population sizes for these demographic histories have been scaled

so that they produce the same number of segregating sites as a

constant size population with diploid effective size N~104

individuals. The first column is the divergence model in Figure 2B
with a recent bottleneck within the ingroup species. The second

column is the divergence model in Figure 2C with recent

population growth within the ingroup species.

(PDF)

Figure S17 Performance of T1, T2, HKA, and Tajima’s D

under the demographic models in Figure 2 with selection

parameter s~10{4, and dominance parameter h, and time of

selection tS~105. Each row represents a different h value. The

population sizes for these demographic histories have been scaled

so that they produce the same number of segregating sites as a

constant size population with diploid effective size N~104

individuals. The first column is the divergence model in Figure 2B
with a recent bottleneck within the ingroup species. The second

column is the divergence model in Figure 2C with recent

population growth within the ingroup species.

(PDF)

Figure S18 Manhattan plot of genome-wide scans for balancing

selection within the CEU population using the T1 test statistic.

From bottom to top, the horizontal dotted gray lines indicate the

0:5%, 0:1%, 0:05%, and 0:01% empirical cutoffs, respectively.

The y-axis is truncated at log composite likelihood ratio of zero.

(PDF)

Figure S19 Manhattan plot of genome-wide scans for balancing

selection within the YRI population using the T1 test statistic.

From bottom to top, the horizontal dotted gray lines indicate the

0:5%, 0:1%, 0:05%, and 0:01% empirical cutoffs, respectively.

The y-axis is truncated at log composite likelihood ratio of zero.

(PDF)

Figure S20 Manhattan plot of genome-wide scans for balancing

selection within the CEU population using the T2 test statistic.

From bottom to top, the horizontal dotted gray lines indicate the

0:5%, 0:1%, 0:05%, and 0:01% empirical cutoffs, respectively.

The y-axis is truncated at log composite likelihood ratio of zero.

(PDF)

Figure S21 Manhattan plot of genome-wide scans for balancing

selection within the YRI population using the T2 test statistic.

From bottom to top, the horizontal dotted gray lines indicate the

0:5%, 0:1%, 0:05%, and 0:01% empirical cutoffs, respectively.

The y-axis is truncated at log composite likelihood ratio of zero.

(PDF)

Figure S22 Signals of balancing selection within the HLA region

for the CEU (blue) and YRI (orange) populations using the T1 test

statistic. From bottom to top, the horizontal dotted gray lines

indicate the 0:5%, 0:1%, 0:05%, and 0:01% empirical cutoffs,

respectively.

(PDF)

Figure S23 Signal of balancing selection at the FANK1 gene for

the CEU (blue) and YRI (orange) populations using the T1 test

statistic. From bottom to top, the horizontal dotted gray lines

indicate the 0:5%, 0:1%, 0:05%, and 0:01% empirical cutoffs,

respectively. SNPs (rsIDs) correspond to markers showing

significant levels of transmission distortion within the Meyer et al.
study.

(PDF)

Figure S24 Signal of balancing selection at the FANK1 gene for

the CEU (blue) and YRI (orange) populations when removing

either GC?AT transitions or all transitions. SNPs (rsIDs)

correspond to markers showing significant levels of transmission

distortion within the Meyer et al. study.

(PDF)

Figure S25 Genealogy at the site of balancing selection.

(PDF)

Figure S26 Haplotype trees based on randomly sampling 18

haplotypes without replacement from a random simulation under

the model in Figure S7A. Trees were generated using UPGMA

applied to a distance matrix of the proportion of nucleotide

differences between each pair of haplotypes. The x-kilobase (kb)

window represents a region that is x kb in length and is centered in

the middle of the haplotype.

(PDF)

Table S1 Top 100 signals in the CEU population using the T1

test statistic.

(PDF)

Table S2 Top 100 signals in the YRI population using the T1

test statistic.

(PDF)

Table S3 Top 100 signals in the CEU population using the T2

test statistic.

(PDF)

Table S4 Top 100 signals in the YRI population using the T2

test statistic.

(PDF)

Table S5 GO process analysis of top 100 signals, when

compared to all signals, from CEU population using the T1 test

statistic.

(PDF)
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Table S6 GO process analysis of top 100 signals, when compared

to all signals, from YRI population using the T1 test statistic.

(PDF)

Table S7 GO process analysis of top 100 signals, when compared

to all signals, from CEU population using the T2 test statistic.

(PDF)

Table S8 GO process analysis of top 100 signals, when compared

to all signals, from YRI population using the T2 test statistic.

(PDF)

Table S9 GO function analysis of top 100 signals, when

compared to all signals, from CEU population using the T1 test

statistic.

(PDF)

Table S10 GO function analysis of top 100 signals, when

compared to all signals, from YRI population using the T1 test

statistic.

(PDF)

Table S11 GO function analysis of top 100 signals, when

compared to all signals, from CEU population using the T2 test

statistic.

(PDF)

Table S12 GO component analysis of top 100 signals, when

compared to all signals, from CEU population using the T1 test

statistic.

(PDF)

Table S13 GO component analysis of top 100 signals, when

compared to all signals, from YRI population using the T1 test

statistic.

(PDF)

Table S14 GO component analysis of top 100 signals, when

compared to all signals, from CEU population using the T2 test

statistic.

(PDF)

Table S15 GO component analysis of top 100 signals, when

compared to all signals, from YRI population using the T2 test

statistic.

(PDF)

Table S16 GO process analysis of ranked signals from CEU

population using the T1 test statistic.

(PDF)

Table S17 GO process analysis of ranked signals from YRI

population using the T1 test statistic.

(PDF)

Table S18 GO process analysis of ranked signals from CEU

population using the T2 test statistic.

(PDF)

Table S19 GO process analysis of ranked signals from YRI

population using the T2 test statistic.

(PDF)

Table S20 GO function analysis of ranked signals from CEU

population using the T1 test statistic.

(PDF)

Table S21 GO function analysis of ranked signals from YRI

population using the T1 test statistic.

(PDF)

Table S22 GO function analysis of ranked signals from CEU

population using the T2 test statistic.

(PDF)

Table S23 GO function analysis of ranked signals from YRI

population using the T2 test statistic.

(PDF)

Table S24 GO component analysis of ranked signals from CEU

population using the T1 test statistic.

(PDF)

Table S25 GO component analysis of ranked signals from YRI

population using the T1 test statistic.

(PDF)

Table S26 GO component analysis of ranked signals from CEU

population using the T2 test statistic.

(PDF)

Table S27 GO component analysis of ranked signals from YRI

population using the T2 test statistic.

(PDF)
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