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Abstract

There is considerable interest in using nanoparticles as labels or to deliver drugs and other 

bioactive compounds to cells in vitro and in vivo. Fluorescent imaging, commonly used to study 

internalization and subcellular localization of nanoparticles, does not allow unequivocal 

distinction between cell surface-bound and internalized particles, since there is no methodology to 

turn particles ‘off.’ We have developed a simple technique to rapidly remove silver nanoparticles 

outside living cells leaving only the internalized pool for imaging or quantification. The silver 

nanoparticle (AgNP) etching is based on the sensitivity of Ag to a hexacyanoferrate/thiosulfate 

redox-based destain solution. In demonstration of the technique we present a new class of 

multicolored plasmonic nanoprobes comprising dye-labeled AgNPs that are exceptionally bright 

and photostable, carry peptides as model targeting ligands, can be etched rapidly and with minimal 

toxicity in mice and that show tumour uptake in vivo.

Designing nanoparticles for therapeutic, diagnostic and theranostic applications is of pivotal 

importance in advancing nanomedicine.1,2 Nanoparticles (NPs) enter cultured cells at rates 

determined by their surface coating, size and shape.3 Many of the clinically relevant 
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nanoparticle targets are intracellular and NPs are typically coated with an effector layer to 

engage cellular receptors and trigger internalization. Cell culture assays are used to gauge 

the particle binding and internalization by fluorescent, chemical, radioactive, or enzymatic 

tracers. Distinguishing internalized NPs from cell surface-bound particles is of pivotal 

importance for assessing the efficacy of NPs as targeting platforms. Disrupting ligand-

receptor interactions typically involves exposing cells to low pH or using a competitive 

ligand, which may have unwanted effects on cell physiology and can be challenging with 

high-avidity NPs. Dye-labeled polymers, iron oxide, quantum dots, and gold NPs have been 

extensively studied as multivalent tracers, however, their removal requires harsh conditions 

which limits utility (e.g. dimethylformamide, strong acid, or iodine).4-6

Plasmonic nanomaterials made from gold (Au) and silver (Ag) are increasingly used for 

biological applications, particularly microscopy, stemming from their size and shape-

dependent optical properties. Surface plasmons create a localized electromagnetic field, the 

so-called antenna effect, that leads to surface-enhanced Raman scattering (SERS) and metal-

enhanced fluorescence – trackable signals that originate from molecules positioned at or 

near the surface, or within nanojunctions.7-11 Of these two metals, Ag generally yields five 

to ten-fold more intense signals than Au,12 which on the other hand is more commonly 

studied due to its chemical nobility, ease of synthesis, and distance-dependent quenching of 

dyes.13 Plasmon coupling can increase both the absorption and radiative rate of dyes, while 

limiting photo-oxidation, dye self-quenching, and excited-state saturation.8 The greatest 

enhancement is expected from AgNPs that are ∼40–100 nm in diameter,8 a range suitable 

for cell targeting, however, fluorescent Ag nanoprobes that bind receptors have not yet been 

developed.

Here we present a nanoparticle platform that leverages the plasmonic properties of Ag to 

enable single particle tracking in both darkfield and fluorescence modalities, and is paired 

with a mild, non-permeable solution that affords the distinction between intra- and 

extracellularly located AgNPs through a rapid, non-toxic etching step. Our nanoparticle 

probe comprises a fluorescent dye-labeled polyethylene glycol (PEG) and NeutrAvidin 

(NA) coating around a fluorescence-enhancing AgNP core (Ag-NA). The NA serves as 

attachment sites for biotinylated targeting peptides, as drawn schematically in Fig. 1a. We 

enlisted C-end rule (CendR) peptides for proof of principle delivery into cells. CendR 

peptides trigger neuropilin-1 (NRP-1)-dependent cell and tissue penetration when exposed at 

the C-terminus of a polypeptide chain.2,14 The Ag etching solution consists of a mixture of 

two chemical components (Fig. 1b) commonly used for de-staining silver-stained protein 

bands in polyacrylamide gels or in photographic emulsions, retasked here for etching AgNPs 

in a biological setting. The first etching component is a redox agent hexacyanoferrate 

(HCF), Fe(III)(CN)6
3-, that oxidizes Ag0 to Ag+, in combination with the second component 

thiosulfate (TS), S2O3
2-, that ligates and clears away the newly formed Ag+ ions, thereby 

dissolving the core (Supplementary Figs. S1-S2).15,16 Importantly, HCF and TS are charged 

and do not readily diffuse through cell membranes,17,18 thus protecting internalized AgNPs 

from being etched (Fig. 1). Labeled components released from etched AgNPs lose their 

fluorescence enhancement, further reducing the background signal.
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Uptake into cells and extracellular etching were characterized using fluorescence and 

darkfield microscopy. CF488 dye-labeled Ag-NA carrying the prototypic CendR peptide 

RPARPAR (R) were visualized in NRP-1-expressing prostate cancer cells (PPC-1) before 

and after etching (Fig. 1c, Supplementary Fig. S3-S6).14 The etchant selectively removed 

extracellular R-Ag-NA488 (those bound to the cell surface and the culture plate surface 

between cells), whereas the internalized fraction (appearing as yellow) were protected by the 

plasma membrane and remained unaltered in intensity (Fig. 1c, Supplementary Fig. S3). 

Darkfield imaging revealed the surviving fraction to consist of, in part, a red-shifted 

scattering population of Ag located in the perinuclear region of the cells (Supplementary 

Fig. S3). Surface plasmon oscillations, a resonant source for Rayleigh scattering, are known 

to plasmonically couple8,19 when cores are within one diameter length from each other. This 

spectral feature can be a useful indicator of endosomal fusion and consolidation of Ag. 

Notably, etching of surface Ag from living cells could be accomplished in cell culture 

medium (Fig. 1c).

Pre-labeling the Ag-NA with dyes puts them in accord with a versatile “plug and play” 

targeting format used in multiplexed assays. We prepared a suite of dye-labeled Ag-NA 

nanoprobes to explore their use in multispectral applications, and characterized the 

plasmonically-driven fluorescence enhancement (EF). Metal NPs enhance the photostability 

and fluorescence intensity of a dye depending on i) distance from the metal surface 

(optimally ∼3-10 nm, or quenched if directly touching the surface),20 ii) photophysical 

properties of attached dyes and labeling density, iii) spectral overlap between the plasmon 

resonance and dye at the wavelength of interest, and iv) the scattering efficiency of the core 

– which depends sensitively on composition, diameter, and shape.8 In Fig. 2a we determined 

EF by etching dye-labeled samples at a constant volume, keeping the number of dyes and 

their concentration fixed, and comparing intensity from attached (unetched) versus the same 

dye free in solution (etched). The Ag-NA-dye constructs (diagrammed in Fig. 1a with 

peptides) were ∼5 to 15 fold brighter prior to etching, indicating that dyes are enhanced by 

the local field around 70 nm Ag-NA. This held true for a range of dyes from ultraviolet to 

near-infrared (NIR) (Fig. 2a, Supplementary Fig. S7). In contrast, we found that smaller Ag-

NA (20 nm, with a similar coating) gave EF values of ∼1, consistent with the predicted 40 

nm diameter threshold for enhancement. The cyanine dyes Cy3, CF555, and DL550 showed 

the largest EFs, 12 ± 2 (Fig. 2a, Supplementary Fig. S7) for 70 nm Ag-NA, consistent with 

an EF of 12 previously reported using Ag islands on quartz films coated with Cy3- and Cy5-

labeled albumin.20 While the current Ag-NA design establishes a broad spectral range on a 

rapidly etched (Fig. 2b) single core platform, we anticipate that EF in the NIR range could 

be improved by a judicious tuning of the plasmonic spectral envelope (Supplementary Fig. 

S1), for example, by using non-spherical Ag cores which are known to exhibit NIR to IR 

resonance.7

To develop a set of etching techniques we evaluated the toxicity of this etchant in cell 

cultures and in vivo with mice. Long-term cell viability was not affected by AgNPs or their 

etching, but decreased if continuously exposed to high etchant concentrations for 24 h (Fig. 

2c, Supplementary Fig. S4). The etchant combination is thus mild, and selective, since 

AuNPs could not be dissolved owing to their higher reduction potential (Supplementary Fig. 
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S5).6,21 In addition, it is known that the anti-oxidant ascorbate can reduce HCF and we 

confirmed that etchant activity is rapidly quenched (Supplementary Fig. S5), a feature which 

could enable pulse-chase experimental formats.22 Clinical blood chemistry analysis of mice 

injected with Ag-NA or the etchant showed normal hepatic and kidney function as 

measured, for example, by analysis of alanine aminotransaminase, amylase, and blood urea 

nitrogen levels, indicating the general safety of both Ag-NA23 and etchant18,32,33 in cell and 

tumor homing studies (Fig. 2d, Supplementary Fig. S4). However, detailed studies may be 

needed to further explore the potential toxicity. Importantly, the concentration of etchant we 

tested was sufficient to etch AgNPs in blood (Fig. 2e).

We evaluated the performance of etchable dye-labeled Ag in flow cytometry. Flow 

cytometry is a well-established quantitative method for fluorescent detection of cells that has 

not yet been used with fluorescent Ag probes, yet should benefit from their expectedly high 

radiative rate and saturation limit.20,24 Ag-NA with Alexa Fluor 647 dye were loaded with 

either RPARPAR (R-Ag-NA647) or RPARPARA (RA-Ag-NA647), a C-terminally blocked 

control peptide that has negligible affinity to NRP-1.25,26 A plus/minus etch strategy was 

implemented with the aim of quantifying the specific internalization of NPs. Cells were first 

incubated with R-Ag-NA647 or RA-Ag-NA647 and then each sample was split into two 

parts – one of which was etched to remove the non-internalized fraction (Fig. 3a). Using 

flow cytometry we found that the forward scatter (FSC) typically used as an indicator of cell 

size was insensitive to Ag-NA647. We therefore chose FSC to gate for cells (applied in Fig. 

3b). We then compared signals from etched and unetched samples and calculated the 

internalized fraction by the mean intensity ratio. Approximately 60% of the fluorescence 

signal from R-Ag-NA647 was not etchable (i.e. ∼60% internalized) after 1 h of incubation 

with cells. Functionalized with the control peptide, RA-Ag-NA647 showed only weak 

binding with complete etchability (∼1% internalized, Fig. 3b, c), consistent with the 

receptor-binding motif being crucial for internalization. Robust internalization and etch-

protection using the peptide RPARPAR was further corroborated by darkfield scattering 

from R-Ag-NA647 inside suspended cells (Fig. 3d).

We found that, unlike most probes commonly used in flow cytometry, binding by Ag-

NA647 dramatically altered the side scatter (SSC) signal from cells, and the effect was 

proportional to the fluorescence signal across a wide dynamic range (Fig. 3d,e). Cells 

without Ag-NA647 did not show this behavior (black). The basis for increased SSC is likely 

the intense resonant AgNP plasmon scattering light at the 488 nm laser wavelength7 (Fig. 

3b, Supplementary S2-3). Post-etch dot plots showed a disappearance of low-signal events 

in both SSC and fluorescence, additional evidence that non-internalized Ag-NA647 were 

removed (Fig. 3e). Generalizing these results, AgNP SSC could be monitored in label-free 

uptake assays, or as a confirmatory or ratiometric reference signal, e.g. when using pH-

sensitive dyes. The proportionality we observe between SSC and fluorescence indicates 

uniform dye labeling as well as a minimal change of AF647 fluorescence following 

endocytosis. These results provide a blueprint for the design and use of AgNPs for flow 

cytometry applications.

Imaging of probes in live cells is particularly demanding, as it requires a material to be both 

bright and photostable. To explore such applications we prepared CF555 dye-labeled 70 nm 

Braun et al. Page 4

Nat Mater. Author manuscript; available in PMC 2015 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



R-Ag-NA555 and allowed them to internalize into NRP-1 expressing GFP-PC-3 (prostate 

cancer) cells (Fig. 4). These cells have cytosolic GFP and were chosen to allow distinction 

to be made between R-Ag-NA555 adsorbed between cells (red) and those inside the cell 

(yellow overlay). Etching specifically reduced the membrane-bound as well as plate-

adsorbed R-Ag-NA555 (Fig. 4a, Supplementary Movie S8). At a lower dose R-Ag-NA555 

was easily tracked as NPs that moved in relation to each another inside cells (Fig. 4b). Due 

to the large (>1 μm) separation, the Ag were presumably contained in separate endosomes. 

Their convergence into a single spot was therefore most likely an endosome fusion event, as 

we found no subsequent separation over 25 min. These results show that dye-labeled Ag 

nanoprobes can be tracked through the cell uptake and intracellular transport process.

We found that aldehyde-fixed GFP-PC-3 cells remained protective over the endocytosed R-

Ag-NA555, since particles near the center of the cells were not removed by etchant (Fig. 

4d). Disrupting the membrane of fixed and etched cells by adding the detergent Triton 

X-100, in the presence of etchant, quickly diminished the remaining fluorescent regions 

(Fig. 4d,e). Presumably, this resilience was due to the stability of lipid bilayers that exclude 

HCF or TS.17 The permeability data adds further support to the proposed mechanism that 

impermeable membranes are the critical factor shielding Ag from the highly charged etchant 

molecules.

The potential of Ag in multiplexed microscopy was tested with cells and tissues (Fig. 5). We 

prepared both green and red dye-labeled 70 nm Ag-NA, mixed and physically filtered them 

(0.22 μm), and deposited on a glass slide. Dye-labeled Ag-NA were bright enough and 

sufficiently separated from one another to be visualized individually in their respective 

fluorescent channels and in darkfield,27 despite their small size (Fig. 5a). We next coated the 

red and green Ag-NA with two different peptides that bind to different receptors, and 

incubated them with PPC-1 cells.28 The observed heterogeneous binding pattern of green 

and red fluorescent Ag-NA indicates a capacity for differential targeting and multiplexing 

(Fig. 5b). We also explored smaller size Ag-NA in the context of imaging, and for uptake 

pathway studies. Antibody staining with anti-NRP-1 on fixed cells showed colocalization 

with 20 nm RPARPAR Ag-NA555 (Fig. 5c, not etched) demonstrating that smaller 20 nm 

Ag-NA are viable as photostable targeted nanoprobes, despite their being less bright than the 

larger Ag.

We evaluated the use of AgNPs with living three-dimensional (3D) ‘organotypic’ tumor 

slices. These cultures preserve the complex tumor tissue architecture and the epithelial-

stromal interactions, important considerations in drug delivery and tissue transport studies.29 

We used a tumor penetrating peptide iRGD, with sequence [CRGDKGPDC]. iRGD binds 

integrins overexpressed in many types of tumors and is proteolytically processed into a 

CendR peptide, that then internalizes into cells.25,30 Tissue penetration of iRGD-Ag-NA647 

(70 nm) was readily visualized by post-etch mapping in 3D using confocal microscopy, 

revealing localized hot spots of endocytosis (Fig. 5d, e) that were not found using control 

particles.

Injected therapeutic NPs follow a path that can be broken down to three major steps: 

circulation, binding, and internalization. Extravasation occurs as NPs pass from blood into 
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tissue by passive leakage or endocytosis,31 and these contributions sum to give the signal 

and contrast seen with “always-on” imaging probes. Endocytosis by cells is challenging to 

detect, but is of great interest for delivery of membrane-impermeable drugs (e.g. nucleic 

acids) that act against intracellular targets. To test if etchable NPs can provide 

internalization contrast, we injected iRGD-Ag-NA into circulation in mice bearing the 4T1 

breast cancer tumors. After perfusion to remove unbound NPs from the vasculature, we 

etched tissue sections from both tumor and liver (Fig. 6a). The spatial pattern of Ag in the 

tumor (Fig. 6b) was found to dramatically change upon etching, showing loss of the diffuse 

signal and revealing an underlying punctate pattern reminiscent of the in vitro result in Fig. 

4a,d. By comparing + and no etch we estimated the degree of Ag internalization into the 

tumor cells to be ∼25% (Fig. 6c). This result was compared to liver internalization (∼100% 

Fig. 6b,c), that can be attributed to internalization by liver-resident macrophages known to 

rapidly capture circulating NPs.

Injecting etchant into mice previously injected with AgNPs cleared the blood of circulating 

AgNPs (Fig. 2c). In light of this finding, and considering the small size of the etchant 

molecules, we explored the possibility that AgNPs trapped in the extravascular/extracellular 

space may also be etched. Indeed, the components TS and HCF are known to distribute 

through tissues without crossing membranes,18,32,33 and have been used to estimate the 

extracellular fluid volume in mammals.18,32 Furthermore, the reaction products comprise 

stable and soluble compounds (Fig. 1b) that should not interfere with the autometallography 

used to amplify Ag signal for histological analysis.

We developed an in vivo etching strategy that gives circulating NPs a set amount of time to 

find their target before chasing with an intravenous bolus of etchant (Fig. 6a, lower 

pathway). Comparing +/- etchant would then discriminate between accumulation in the 

tumor (homing) and internalization by cells within the tumor (i.e. cell uptake). A possible 

complication for etching is that parts of the tumor can have dysfunctional local vasculature, 

impairing delivery,34 however, those regions might also receive fewer AgNPs. We chose the 

well-studied MMTV-PyMT transgenic mouse model that has relevance to human breast 

cancer, particularly the stages of its progression.35 The Ag nanoprobe was modified to carry 

polyethylene glycol (PEG)-linked iRGD, instead of NA linked with biotin iRGD, to more 

closely resemble therapeutic “stealth” NPs, and to allow repeat injections in an 

immunocompetent setting.36 iRGD is a tumor-specific homing peptide that is converted into 

a CendR peptide in tumors. It has been found to increase tumor homing and extravasation of 

NPs in several breast cancer models.25,37

Tumor-bearing MMTV-PyMT mice injected with iRGD-Ag-PEG displayed a heterogeneous 

homing pattern in the tumor (Fig. 6d,e, 4 h, –etch condition), similar to Fig. 6b and other NP 

homing studies.25,28 Quantifying Ag pixels showed an initial homing burst (0.5 h, no etch), 

followed by a doubling between 0.5 h and 4 h, and doubling again by 24 h circulation time 

(Fig. 6f). Clearance by the reticuloendothelial system of circulating NPs could explain the 

decreased homing rate. Notably, relative to non-etched counterparts, mice that received an 

injection of etchant had a diminished quantity of Ag, irrespective of circulation time for 

iRGD-Ag-PEG. Assuming the Ag pixels from etched samples were due to the cell-

internalized NPs, we may conclude the following: a significant amount of iRGD-Ag-PEG 
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internalized as early as 0.5 h (Fig. 6f, +etch), and increased four-fold by 24 h (+etch). The 

rate of internalization paralleled the rate of Ag homing (no etch, 24 h). Comparing +etch and 

no etch we estimate ∼30% of the homing resulted with internalization by 24 h, similar to the 

ex vivo tumor result in Fig. 6c (∼25%, 24 h). Together, these data suggest a new method to 

determine intracellular biodistribution kinetics that uses etchable AgNPs as a model 

nanosystem for targeted therapeutics.

AgNP probes combine traits of etchability and brightness, in both fluorescence and 

scattering imaging modalities, with spectral barcoding, photostability, and sensitivity to the 

single particle level. The AgNPs were functionalized with NeutrAvidin for facile loading of 

affinity tags, and imaged inside cancer cells in vitro and in vivo. AgNPs also seem 

particularly promising for flow cytometry, which was implemented here to more finely parse 

receptor specificity and uptake efficiency. As other virus-like particles, AgNPs can carry a 

multiplicity of ligands that increase their avidity – short peptides, employed in this work, are 

of particular interest due to their specificity and minimal immunogenicity, however, 

antibody or aptamer38 targeting elements may be conjugated to AgNPs. Coatings that 

respond to an electrochemical cue by a shape-change are also possible, including Au-

Ag,39-41 redox-sensitive cleavable linkers,39,42 and biomolecular nanostructures.43-45 

Multiplexed detection of internalized Ag should lead to a better understanding of NP-cell 

interactions and the role of size, shape, and coating during molecular transport through 

tissue and cells. The recent emergence of NIR and multi-photon excitation systems for in 

vivo mapping provide key design features for engineering the inherently non-linear optical 

properties of plasmonic nanoparticles. Taken together, these results illustrate how plasmonic 

nanoprobes based on etchable Ag cores will be a powerful tool in studies of targeted uptake 

and trafficking from a subcellular to tissue level.

Methods Summary

Materials

Ag nanoparticles were synthesized and coated as described in the Supplementary 

Information. Coatings around Ag were based on either NeutrAvidin (Ag-NA) protein or 

PEG-maleimide (Ag-PEG). Amine-reactive dyes were attached to NA nanoparticles for 

fluorescence microscopy and FACS (e.g. Ag-NA488). Peptides were synthesized with a 

biotin label for loading into the binding pocket of NA. Free cysteine-containing peptides 

were prepared as previously described and conjugated to PEG-maleimide.14,25 The etchant 

was composed of tripotassium hexacyanoferrate (HCF) and sodium thiosulfate pentahydrate 

(TS) (Sigma), working concentration of 1-10 mM HCF and TS.

In vitro imaging

Cell imaging experiments were performed in culture plates or glass bottom reservoirs as 

described in Supporting Information. Typically, biotin-X-RPARPAR-OH was attached to 

dye-labeled nanoparticles (e.g. R-Ag-NA488) and added to PPC-1 or PC3-GFP prostate 

cancer cells in DMEM culture medium with 10% FBS. In some experiments, cells were 

washed with Hanks buffered saline solution (HBSS, Hyclone). Addition of etchant solution 

to the medium removed extracellular Ag. Where indicated, nuclear stain Hoescht 
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(Invitrogen) was added to the media prior to epifluorescence imaging. Antibodies used were 

against NRP-1 (Novus), and Alexa Fluor 488 anti-Rabbit secondary antibody (Invitrogen).

Flow cytometery

PPC-1 cells were suspended in DMEM with 10 μM t-RNA. Ag-NA647, carrying either 

biotin-X-RPARPAR-OH (R) or biotin-X-RPARPARA-OH (RA), was incubated with cells 

for 1 h. Etchant in PBS was added to specified samples, followed by centrifugation and 

resuspension in media. Analysis was performed on a BD Accuri C6 Flow Cytometer.

Ex vivo tissue penetration assay

All animal work was approved by the Institutional Animal Care Committee of the Sanford 

Burnham Medical Research Institute. MCF10CA1a human breast cancer cells were 

inoculated in nude female mice and grown to ∼1 cm diameter. Tumors were excised and 

sliced with a Leica VT1200 vibratome at a thickness of ∼400 μm and cultured overnight. 

The next day the tumor slices were incubated with nanoparticles for 2 hours at 37 °C, 

washed with PBS, exposed for 1 min to etchant in PBS, washed, fixed, permeabilized, DAPI 

stained, and mounted (ProLong). Confocal microscopy (Olympus) Z-stacks were rendered 

in 3D perspective. Nanoparticles: Ag-NA647 with biotin-X-GGSGGSGG-[CRGDKGPDC]-

NH2 (iRGD-Ag-NA647), where X = aminohexanoic linker and the two cysteine residues 

were disulfide bonded, or Ag-NA647 with D-biotin (control).

Etching kinetics

Kinetics etching data was collected using a fluorimeter (Horiba) monitoring 90° scattering 

signal from 70 nm Ag-NA in solution. Excitation and emission were set at 470 nm and 520 

nm with 5 nm slit widths. Scattering signal dropped upon adding the etchant. The slope was 

fit using a linear function and converted to an etch rate in units of percent of initial signal 

per second. The time at which signal was 10% of initial intensity was plotted by manual 

examination of the raw data. Etchant reagent stoichiometry was 1:1 unless otherwise 

specified and Ag-NA concentration was fixed for all experiments.

In vivo homing with ex vivo etching

For in vivo homing experiments 25-50 nm iRGD-Ag-NA was injected by tail vein. Mice 

were perfused at 24 h under deep anesthesia (Avertin) and tissues were frozen in liquid 

nitrogen. Cryosections were prepared and fixed in 4% paraformaldehyde in PBS. Etchant 

was applied for 5 s followed by PBS and then water. Aldehyde was blocked and cells 

permeabilized in a glycine blocking solution. LI Silver Enhancement kit (Molecular Probes) 

was used to amplify Ag signals, and coverslipped. Brightfield images were quantified with 

ImageJ software (NIH).

In vivo homing and etching

iRGD-Ag-PEG synthesis is described in Supporting Information. Briefly, Ag-PEG-NH2 was 

backfilled using the peptide Ac-CCPGCC-NH2 (Lifetein, Inc.). A linker molecule NHS-

PEG-Maleimide was attached (5 kDa, Jenkem USA),28 followed by coupling FAM-cys-X-

[CRGDKGPDC]-NH2 as in ref.25 FAM is fluorescein, X = aminohexanoic linker, and 
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brackets indicate disulfide bond in iRGD between the two C residues. The sodium salt of 

HCF was prepared by sodium ion exchange resin treatment of 0.2 M K3Fe(CN)6 solution. 

Sodium-HCF was combined with 0.2 M Na2S2O3 and 1 M NaCl to prepare ∼150 mM Na+, 

17 mM Fe(CN)6
3-, and 50 mM S2O3

2- as the etchant. MMTV-PyMT tumor-bearing mice 

were injected with iRGD-Ag-PEG, and at a specified time later with etchant, both by tail 

vein. Tissue sections were fixed, blocked, permeabilized, and Ag amplified as above. Nuclei 

were stained using Nuclear Fast Red (Sigma), dehydrated, and mounted (DPX, Sigma). 

Aperio ScanScope XT scanner and ImageJ were used to image and quantify brown-black as 

positive Ag pixels per field. For darkfield imaging, samples without nuclear stain were 

imaged using a Leica DM-IRE2.

Statistical analysis

Values are reported as mean ± S.D. unless otherwise specified. Statistical analysis was 

performed with GraphPad Prism using two-way analysis of variance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Dye-labeled, peptide functionalized silver nanoparticles (AgNPs) and their etching for 
cell internalization and tracking
(a) Scheme of AgNPs coated with NeutrAvidin-PEG-thiol (NA) and lipoic-PEG-amine, 

each having attached fluorescent dyes (stars) with brightness enhanced by the local 

plasmonic field. Attachment of biotinylated internalizing peptide RPARPAR forms the 

complete Ag nanoprobe (R-Ag-NA488). These bind to and are taken up by cells, which are 

treated with exposure to etchant solution to remove extracellular particles. Plasmonic 

enhancement is lost for etched particles. (b) Etching reagents hexacyanoferrate (HCF) and 

thiosulfate (TS) oxidize and stabilize silver ions, respectively, releasing components into 

solution and dissolving the core. (c) Fluorescence confocal microscopy of cells incubated 

with R-Ag-NA488 (green) and membrane stain (red) shows how R-Ag-NA488 is retained 

selectively in cells when etched (right). Endosomal membranes strongly overlap with 

nanoparticles, appearing as yellow in the overlay.
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Figure 2. Nanoparticle characterization and toxicity screening
(a) Enhancement factor (EF) for several commonly used dyes shows a strong dependence 

for size of the Ag core. EF was calculated from the ratio of fluorescence for unetched/etched 

Ag-NA-dye conjugates. The approximate peak absorption value of the dye is on the x-axis. 

Error bars = S.D. from replicate wells. OR488, Oregon Green 488; CF dyes from Biotium. 

(b) Etching kinetics for Ag-NA depends linearly on the concentration and the molar ratio of 

the etchant components TS:HCF. The decrease in scattering intensity from the Ag plasmon 

band upon etching was used to calculate a rate, and the time to reach 10% of the initial value 

is plotted. 1:1 TS:HCF except where indicated, Ag-NA (70 nm core) concentration fixed in 

all conditions. (c) PPC-1 cells with RPARPAR Ag-NA (R-Ag) and etching showed no effect 

on 48 h viability (resazurin assay) for short-term exposures to etchant. N=6. Values 

normalized to the condition of no Ag, no etchant. Ag-NA without peptide, x-Ag, does not 

internalize into cells. Etchant concentration and duration of contact with cells is indicated. 

(d) In vivo blood chemistry was evaluated 24 h after x-Ag-NA or etchant injection. Marker 

levels were not significantly different from those for a PBS control injection, see Supporting 

Information for additional plots. Error bars = S.D. N=3-6 mice. (e) The etchant was capable 

of etching pre-injected Ag in mice. Ag was injected into the tail vein then 20 min later 

followed by either etchant or PBS injection, and blood was analyzed for fluorescence at 60 

min. Values were normalized to % of fluorescence at 5 min. Ag had been labeled with 

CF555 and PEG for blood etching, see Supporting Information. Error bars = S.D., N=2. 

Terms and units for d: GLOB, globulin g/L; TP, total protein g/L; GLU, glucose mM; BUN, 

blood urea nitrogen mM; CRE, creatinine μM; TBIL, total bilirubin μM; AMY, amylase 

units/L; ALT, alanine transaminase units/L; ALP, alkaline phosphatase units/L; ALB, 

albumin g/L.
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Figure 3. Flow cytometry with AgNPs
(a) Scheme of CendR peptide RPARPAR dependent R-Ag-NA647 binding to NRP-1 

expressing cells. After splitting into two samples one is etched. (b) Fluorescence histograms 

of cells with Ag-NA647 carrying either of two peptides. Cell-gated plots of internalizing R-

Ag-NA647 (red, -etch), and with etch (blue), versus non-internalizing control, RPARPARA 

(RA)-Ag-NA647 (yellow, -etch) and with etch (green). Cells without Ag were included as a 

control (black). Paired +/- etch is indicated in all panels by the clip icon. (c) Internalization 

into cells was quantified from b as the percent of mean signal retained after etching. Error 

bars (S.D.) were generated across five separate incubations and cytometric runs. (d) 

Darkfield imaging of cell suspensions with R-Ag-NA647 shows that etched cells lose the 

membrane puncta (Ag) but retain the perinuclear (and red-shifted) scattering spectra from 

internalized Ag. Inset shows cells without AgNPs. Scale bars are 25 μm. (e) R-Ag-NA647 

from b plotted as ungated dot plots in fluorescence versus forward scatter (FSC) or (panel f) 

side scatter (SSC). Black dot plots are from cells-only control. In e, FSC detected cells but 

the signal did not shift when cells were bound with R-Ag-NA647; only y-axis fluorescence 

shifts were observed. FSC thus served as a stable gate parameter, indicated by the blue bar, 

and was used for creating panel b. In f, both SSC and fluorescence increased due to R-Ag-

NA647 (red). Etching caused a slight loss in signal from cells (upper-right population), 

attributed to the etching away of membrane-bound Ag, and a loss of events below the cell-

minimum SSC at ∼106 counts was attributed to free R-Ag-NA647 or debris.
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Figure 4. Tracking AgNPs within live cells
(a) Epifluorescence microscopy of GFP-expressing PC-3 cells after binding and 

endocytosing R-Ag-NA555. These cells express the NRP-1 receptor. R-Ag-NA555 appears 

red when not associated with the GFP in cells, and these were removed by etching 

(arrowheads). The yellow color represents cell-associated R-Ag-NA555, due to spatial 

overlap with the cells, indicated by the full arrow. See also Supplementary Movie S8. (b) 

Intracellular tracking was possible by time-lapse epifluorescence imaging when a lower 

amount of R-Ag-NA555 was added with shorter incubation time. This post-etch image 

shows only a small number of red objects survived etching, and a pre-etch image of a region 

outside the cells (dashed box) is overlaid to show the representative intensity from R-Ag-

NA555 that had adsorbed to the substrate. A region inside the cell body (solid box) was 

chosen for the time series presented in c. (c) R-Ag-NA555 moved within the cell and 

relative to each other. Each frame advances forward by 20 s, with numbers in frames 

indicating the elapsed time. The two structures undergo an apparent fusion event at +220 s. 

(d) R-Ag-NA555 were incubated with PC-3-GFP cells and imaged during the sequential 

procedure of fixing (fix), etching, and permeabilization (perm.). Representative regions for 

R-Ag-NA555 that were internalized (green box), and a region of bound but external 

particles (gray box). (e) Time trace of the mean pixel intensity of the regions in d with each 

reagent added without washing. Rapid drops in intensity were due to etching of Ag and the 

gradual downward slope is due to fluorescence photobleaching. Two cells were averaged for 

this trace. Scale bars are 25 μm in a, 10 μm in b, 1 μm in c, 25 μm in d.
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Figure 5. Distinguishing individual AgNPs of different colors, in cancer cells and tumors
(a) Microscopy analysis of a mixture of Ag-NA488 (green) and Ag-NA550 (red) on a glass 

slide, 20× objective. Insets show single nanoparticle detection in epifluorescence (upper) 

and color darkfield (lower). (b) PPC-1 cells were incubated with the mixture of green and 

red Ag-NA, carrying Lyp-1 and RPARPAR peptides, respectively. The difference in binding 

between cells reflects receptor specific binding, with colocalization in endosomes occuring 

near the nucleus (Hoescht, blue), 100× objective. (c) Smaller 20 nm R-Ag-NA555 (red) 

imaged by epifluorescence after incubation with PPC-1 cells and counterstaining with anti-

NRP-1 antibody, Alexa Fluor 488 secondary antibody (green), and Hoescht. (d) Living 

tumor slices of 200 μm thickness were prepared from resected tumors and cultured in media. 

Confocal laser microscopy was performed after incubation and etching of (top) iRGD-Ag-

NA647 or (bottom) biotin Ag-NA647 as a non-peptide control. Strong internalization was 

seen with iRGD. Z-stacks were collected through 60 μm total thickness, step size 2 μm, 20× 

objective. (e) 2D slice from d, top, for iRGD-Ag-NA647. Inset shows the perinuclear 

localization in red, 40× objective. Scale bars are 25 μm except in a-inset 5 μm, d 100 μm, 

and in e-inset 5 μm. DyLight 488 and 550 were used in a and b, CF555 in c, and CF647 in d.
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Figure 6. In vivo etching
(a) Schematic of in vivo tumor homing, ex vivo and in vivo etching. Stages are: (i) iRGD-

Ag-NA homing and extravasation, (ii) tissue perfusion was followed by etching ex vivo, or 

instead, (iii) in vivo etching followed by perfusion, and (iv) tissue with Ag retained in cells. 

(b) Brightfield imaging of ex vivo 4T1 tumor and liver tissue sections are presented, ‒etch 

(upper), +etch (lower). Ag was amplified by autometallography and appeared as dark pixels. 

Diffuse dark pixels (full arrows) were attributed to extracellular Ag, arrowheads to 

endosomal Ag. (c) Samples from b were quantified for dark Ag pixels per field as a measure 

of iRGD-Ag-NA in the tissue. (d) In vivo etching with MMTV-PyMT tumors. Mice were 

perfused at 0.5, 4, or 24 h hours post injection of iRGD-Ag-PEG, and selected mice (+etch) 

were injected with etchant 10 min prior to perfusion. Shown are representative tumor tissue 

sections from 4 h –etch (left), + etch (right). (e) Darkfield imaging of Ag amplified section 

(4 h, –etch) shows strong signals (arrows) consistent with the pattern in brightfield, d. Note: 

this image has no nuclear counterstain and was taken from a separate section than d. (f) 

Tumor samples from d were quantified for dark Ag pixels per field, representing the amount 

of iRGD-Ag-PEG in the tissue for the indicated circulation times. Error bars = S.D. with 

N>2 randomly chosen fields per condition in c, N>4 in f. Scale bars are 100 μm in b,d,e.
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