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Abstract

The changes from normal cells to cancer cells are primarily regulated by genome instability,

which foster hallmark functions of cancer through multiple mechanisms including protein

mislocalization. Mislocalization of these proteins, including oncoproteins, tumor suppressors, and

other cancer-related proteins, can interfere with normal cellular function and cooperatively drive

tumor development and metastasis. This review describes the cancer-related effects of protein

subcellular mislocalization, the related mislocalization mechanisms, and the potential application

of this knowledge to cancer diagnosis, prognosis, and therapy.
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1. Introduction

All eukaryotic cells are surrounded by a plasma cell membrane and contain a membrane-

bound nucleus. The compartment between the plasma and nuclear membranes, called the

cytosol, contains numerous other membrane-enclosed organelles, such as endoplasmic

reticulum, Golgi complex, mitochondria, and peroxisomes. Numerous proteins are localized

inside cellular spaces or are embedded into membranes, where they play various functions to

regulate cell survival, proliferation, differentiation, or death. Protein translation occurs

primarily in the cytosol. Accurate trafficking and translocation of proteins from the cytosol

to their ultimate destinations is essential for maintaining proper cellular function and

activities. It is estimated that about half of proteins have to be transported to their functional

destination [1].
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Cancer has hallmarks including “sustaining proliferative signaling, evading growth

suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis,

activating invasion and metastasis, reprogramming of energy metabolism, and evading

immune destruction” [2]. These changes from normal cells to tumor cells are primarily

regulated by genome instability, which fosters hallmark functions via different mechanisms

such as aberrant expression and function of tumor suppressors and oncogenes. Protein

mislocalization is a less emphasized mechanism in cancer development; however, aberrant

subcellular localization of certain proteins including tumor suppressor proteins and

oncoproteins has been frequently reported in various cancers. The mislocalization of these

proteins can alter their function such that their ability to suppress tumor cells is diminished

or their ability to induce cancer development, metastasis, or drug resistance is increased.

Thus, the mislocalization of such proteins could serve as novel diagnostic markers or

therapeutic targets of cancer. This review describes the mechanisms and functional diversity

of protein mislocalization associated with cancer and the potential application of this

knowledge in the clinical setting.

2. Mislocalization of oncoproteins

The mutation or overexpression of oncogenes can cause a cell to be transformed to a

malignant state. Many oncoproteins are mislocalized in tumor cells compared to normal

cells (Table 1). The well-known tyrosine kinase epidermal growth factor receptor (EGFR),

which is normally localized in the plasma membrane, can be trafficked to the nucleus,

causing cancer [3]. Nuclear EGFR can bind to the promoters of cyclin D1 and B-Myb,

inducing the expression of these cell cycle-promoting genes [4]. Because the EGFR nuclear

translocation mechanism and function have been reviewed extensively elsewhere [5], we

focus here on a less well known oncoprotein, mucin 1 (MUC1), as an example on the scope

of subcellular mislocalization and function in cancers. The complex role of MUC1 at

different subcellular localizations is depicted in Figure 1.

Mucins are large proteins with a common glycosylated proline-threonine-serine domain.

They are normally either secreted to extracellular compartments or are associated with the

plasma membrane [6]. Secreted and transmembrane mucins differ mainly in the absence and

presence of a single membrane-spanning region, respectively. Adenocarcinomas release

high levels of mucin, which is thought to shield tumors from toxic microenvironments [6].

Membrane-bound mucin is normally expressed at the apical borders of glandular epithelial

cells [7]. In carcinoma cells, mucin is overexpressed over the entire cell surface as well as in

the nucleus, mitochondria, and cytoplasm [7]. Expression of mucin on the membrane may

confer anti-adhesive properties, leading to the loss of cell–cell and cell–matrix interactions

of cancer cells. In addition, membranous mucin confers anti-recognition properties, leading

to immune surveillance evasion. Furthermore, transmembrane mucin can transduce

signaling to regulate cancer cell proliferation and growth by interacting with EGFR and β-

catenin [8].

The first report of nuclear localization of the MUC1 protein was made by Wen et al. in 2003

[9]. That group found that the MUC1 cytoplasmic domain (MUC1-C) was distributed on the

plasma membrane, in the cytoplasm, and in the nucleus of S2-013 and Panc-1 human
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pancreatic cancer cells [9]. The nuclear localization of MUC1-C and its interaction with β-

catenin has since been confirmed for various adenocarcinomas [9–14]. β-Catenin binds

directly to the MUC1-C SAGNGGSSL motif (amino acid residues from 50–59) [15]. EGFR

and c-Src phosphorylate MUC1-C at Y-46, thereby increasing the binding of MUC1 and β-

catenin [16, 17]. In contrast, GSK3β binds to and phosphorylates the MUC1-C at S-44 and

decreases the interaction of MUC1-C and β-catenin in the nucleus [18].

There is substantial evidence that MUC1-C contributes to the growth and metastatic

properties of tumors. This contribution is at least partially mediated by nuclear MUC1-C,

which regulates the functions of several important tumor regulators, including β-catenin,

EGFR, and p53. β-catenin is associated with MUC1-C in both the cytoplasm and nucleus

[9]. Nuclear MUC1 co-activates β-catenin–dependent gene transcription [10], whereas the

Y46F mutation decreases the MUC1 association with β-catenin, anchorage-independent

growth, and tumorigenicity [10]. Nuclear localization of MUC1 and its interaction with γ-

catenin can be induced by heregulin [12]; furthermore, mutation of an RRK motif in MUC1-

C abrogates the nuclear localization of MUC1 and γ-catenin [12]. In addition, MUC1-C

regulates the trafficking and nuclear activity of EGFR, which binds to the promoter of cyclin

D1 and therefore induces gene expression and cell proliferation [19]. MUC1 can also

associate with estrogen receptor α (ERα) complexes on estrogen-responsive promoters,

which enhances ERα promoter occupancy and recruitment of the p160 co-activators SRC-1

and GRIP1. Consequently, MUC1 stimulates ERα-mediated transcription and contributes to

the E2-mediated growth and survival of breast cancer cells [20].

The nuclear localization of MUC1-C has an anti-apoptotic role in drug-resistant cancers.

MUC1-C binds directly to p53 in the nucleus, which in turn increases the occupancy of p53

on the p21 promoter region while decreasing the binding of p53 to the Bax promoter [6].

Upregulation of p21 induces cell cycle arrest, which can protect cells from p53-mediated

apoptosis [21]. On the other hand, Bax is a pro-apoptotic protein that mediates p53-induced

apoptosis [22]. Therefore, as a consequence of MUC1-p53 interaction in the nucleus, MUC1

activates p53-dependent growth arrest and suppresses p53-dependent apoptotic response to

DNA damage [6]. MUC1-C is constitutively associated with nuclear factor κB (NF-κB)

p65, and tumor necrosis factor α stimulation induces occupancy and activation of these

complexes on the NF-κB response element in the Bcl-xL gene promoter [23]. Bcl-xL, which

acts as a pro-survival/anti-apoptotic factor, is often overexpressed in cancer cells during the

development of chemoresistance [24, 25]. Therefore, nuclear MUC1 may protect cell

chemoresistance by up-regulating Bcl-xL. MUC1 has been shown to protect multiple

myeloma cells against apoptosis induced by melphalan and dexamethasone through

activating the β-catenin and NF-κB pathways [26]. Moreover, MUC1 sequesters c-Abl in the

cytoplasm, and thereby inhibiting the action of genotoxic anticancer agents [27].

Nuclear MUC1-C may also play an important role in inducing endothelial–mesenchymal

transition (EMT) and cellular invasion [28]. MUC1-C forms a complex with NF-κB p65 and

functions as a co-activator of p65 in the nucleus [23]. The MUC1-C–p65 complex occupies

and activates the promoter of ZEB1, a crucial transcriptional factor that induces EMT [28,

29]. MUC1 in turn associates with ZEB1 and contributes to the ZEB1-mediated

transcriptional suppression of miR-200c, an EMT suppressor. As a consequence of MUC1-
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mediated ZEB1 activation and miR-200c suppression, nuclear MUC1-C induces EMT and

cellular invasion of breast cancer cells and possibly other cancers [28].

In addition to nuclear localization, localization of MUC1 in the mitochondria has been

reported for a variety of cancer cell lines such as HCT116 colon carcinoma cells and

ZR-75-1 breast cancer, as well as primary tumors [30–35]. These observations were

confirmed using both confocal microscope imaging and western blotting of mitochondrial

lysate fractions [30, 31]. Furthermore, MUC1 is localized to mitochondria in 33.33% (5 of

15) of dysplasia samples and in 47.05% (8 of 17) of adenocarcinoma samples of human

gastric tissues [35]. The transport of MUC1-C to mitochondria can be induced by heregulin,

a pleiotropic growth factor [30]. Heregulin induces the activation of c-Src kinase, which

phosphorylates MUC1-C and stimulates the binding of MUC1 to HSP90 [32, 33]. Whereas

nuclear localization of MUC1-C depends on its association with β-catenin, delivery of

MUC1 to the mitochondrial outer membrane is facilitated by HSP90 [32, 33].

Mitochondrial MUC1-C plays a protective role for tumor cells by suppressing intrinsic

apoptosis, which contributes to the drug-resistant phenotype of cancer cells. Mitochondrial

MUC1-C attenuates cytochrome c release and caspase-3 activation and therefore suppresses

apoptosis [30]. Furthermore, mitochondrial MUC1-C also binds directly to the BAX BH3

domain in the cytoplasm and mitochondria, thereby blocking the function of BAX in

activating the mitochondrial death pathway [31]. Treatment of multiple myeloma cells with

a MUC1-C inhibitor causes cell death associated with increased levels of reactive oxygen

species, oxidation of mitochondrial cardiolipin, and loss of the mitochondrial

transmembrane potential [36]. Many genotoxic anticancer drugs induce apoptosis by

activating the intrinsic apoptosis pathway. Mitochondrial MUC1 may confer the drug-

resistant phenotype to cancer cells by attenuating the release of mitochondrial cytochrome c

and the activation of other pro-apoptotic factors. For example, overexpression of MUC1-C

in HCT116 cancer cells reduces the cell apoptosis induced by cisplatin and TRAIL; this

effect is abolished by Y46F mutation of MUC1, a mutation that is ineffective in blocking

cisplatin-induced cytochrome c release [30]. Conversely, small interfering RNA knockdown

of MUC1-C in A549 carcinoma cells sensitizes them to apoptosis induced by cisplatin in

vitro [30]. Moreover, HCT116 tumor cells expressing MUC1 are resistant to cisplatin

treatment in vivo compared with cells that do not express this protein [30].

Hypoxia induces cell apoptosis, mainly through the intrinsic or mitochondrial pathway [37].

It has been reported that MUC1 plays a critical role in attenuating hypoxia-induced loss of

mitochondrial transmembrane potential and apoptosis [38]. This effect is mediated by

inhibiting the activation of hypoxia-inducible factor 1α, the key regulator of hypoxia-

induced apoptosis, as well as by suppressing the accumulation of reactive oxygen species

[38]. The suppression of hypoxia-induced apoptosis can be abolished by the MUC1-C Y46F

mutation [38]. Thus, localization of MUC1-C in the mitochondria may be an important

mechanism for cancer cell survival under hypoxia stress, which is a general feature of the

microenvironment for solid tumors.
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3. Mislocalization of tumor suppressor proteins

Tumor suppressors are generally proteins that slow down the cell cycle, promote apoptosis,

or both. Many of these proteins have been found to display different subcellular localization

patterns between physiologically normal cells and cancer cells. These include BRCA1, p53,

retinoblastoma, ING1/p33 [39], and adenomatous polyposis coli (APC) [40] (Table 1). In

general, tumor suppressors possessing transcriptional functions tend to localize in the

nucleus of normal cells but in the cytoplasm of cancer cells. We focus here on p53 as an

example of how the localization of tumor suppressors can affect tumor development.

The p53 protein is a homotetrametric transcription factor that is well known to safeguard

against cancer. It exerts its antitumor role mainly through regulating the cell cycle

checkpoint, DNA damage repair, and cell apoptosis. In order to regulate the target gene

transcription, p53 has to be translocated into the nucleus when DNA damages occurs or

cellular stress reaches a dangerous level [41]. Thus, the nucleus is the primary site of p53

function in tumor suppression.

The nuclear–cytoplasmic shuttling of p53 is tightly controlled by nuclear import/export as

well as cytoplasmic sequestration mechanisms. The nuclear localization signal (NLS) and

nuclear export signal (NES) are the essential elements for a protein undergoing

nucleocytoplasmic transportation. The p53 protein harbors three NLSs [42, 43] and two

NESs [44, 45]. Many other proteins work directly or indirectly with these signals to regulate

p53 translocation. For example, the binding of importin-α with the NLS of p53 enables the

nuclear import of p53 [43, 46]. In contrast, the NES of p53 can bind to CRM1, leading to the

nuclear export of p53 [44, 47]. MDM2 can bind to nuclear p53, inducing p53 ubiquitination

and export from the nucleus [48]. Other modifications, such as S315 phosphorylation of

p53, mediate cell cycle-dependent nuclear retention of p53 by E2F1 [49]. Other proteins,

such as c-Abl and PI3K/AKT, can regulate MDM2 activity, which in turn influences the

nuclear export of p53. The nuclear localization of p53 protein allows it access to its many

target genes, such as p21, p53R2, MDM2, p53R2, BAX, p53AIP1, NOXA, and PUMA. The

expression of these p53-targeted genes results in cell cycle arrest, DNA repair, and cell

apoptosis [50].

In unstressed cells, p53 protein is present at a low level in the cytosol due to MDM2-

mediated targeted degradation. In a study of neuroblastomas, 96% (30 of 31) of

undifferentiated tumor samples exhibited an increased level of wild-type p53 in the

cytoplasm and a lack of nuclear staining; in contrast, cytoplasmic p53 was not detected in 14

differentiated ganglioneuroblastomas [51]. Cytoplasmic accumulation and retention of p53

has also been found in about 40% of breast cancer tissues, retinoblastomas, glioblastomas,

and hepatocellular carcinomas [41, 52]. The retention of cytoplasmic p53 by the heat shock

protein Mortalin has been reported for several tumor cell types, including human

glioblastomas, hepatocellular carcinomas, and colorectal adenocarcinomas [53]. In contrast

to the retention of wild-type p53 in the cytoplasm, mutant p53 tends to accumulate in the

nucleus of colorectal adenocarcinoma [54]. Cytoplasmic accumulation of p53 could be due

to the excess nuclear export of p53, defective cytoplasmic degradation, retention by

cytoskeleton proteins, or other mechanisms.
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Constitutive cytoplasmic localization of p53 in cancer cells has been associated with poor

response to chemotherapy, tumor metastasis, and short-term patient survival [41]. For

example, p53 is accumulated and sequestered in the cytoplasm of estrogen-independent

human breast cancer cells that are resistant to tamoxifen and methotrexate [55]. In addition,

cisplatin sensitivity is greatly reduced in head and neck squamous cell carcinomas with loss

of nuclear p53 signal [56].

Activation of programmed cell death, i.e., apoptosis, is an important mechanism in p53

tumor suppression. Translocation of p53 to mitochondria has been reported as a feature of

cancer cells. This translocation and the subsequent inactivation of manganese superoxide

dismutase explain the observed mitochondrial dysfunction, which leads to transcription-

dependent mechanisms of p53-induced apoptosis [57]. Monoubiquitylation promotes

mitochondrial p53 translocation, which can initiate apoptosis if DNA damage proves to be

irreparable [58].

4. Mislocalization of other cancer-related proteins

Many other types of proteins are differentially located in physiologically normal cells and

tumor cells. For example, sphingosine 1-phosphate is a bioactive lipid that has an important

role in promoting tumor survival, growth, and invasiveness. Mislocalization of sphingosine

1-phosphate receptor regulators is associated with poor prognosis and with the development

of tamoxifen resistance for ER-positive breast cancer patients [59]. This study demonstrated

that sphingosine 1-phosphate receptors 1 and 3 were not only located in the cell membrane

but can be also found in the cytoplasm in breast cancer; and cytoplasmic expression of these

proteins was associated with disease-specific poor survival [59].

Another example is B7-H1. This protein is of particular interest because its expression on

the surface of cancer cells could provide inhibitory signaling to T cells, inducing the

lymphocyte apoptosis [60]. Many cancer cells express B7-H1 as a mechanism to evade

immune attack and surveillance. A recent study found that doxorubicin down-regulated cell

surface expression of B7-H1 in breast cancer cell lines, which is concurrently translocated

into the nucleus [61]. Gene silencing of B7-H1 in breast cancer cells has been found to

increase doxorubicin-induced apoptosis, suggesting that nuclear localization of this protein

may play an anti-apoptotic role during chemotherapy [61]. Similarly, the inhibitory co-

stimulatory membrane molecules B7-H3 and B7-H4 have been reported to redistribute into

the nucleus in colon cancer and renal cell carcinoma and to be associated with more

advanced disease and poor prognosis [62, 63]. Furthermore, B7-H4 confers chemoresistance

to renal cell carcinoma by regulating cell cycle checkpoints [62].

5. Mechanisms of protein mislocalization

Protein synthesis occurs primarily in the cytosol. From there, proteins are transported to

their functional sites, such as the nucleus, plasma membrane, mitochondria, and other

organelles. Mechanisms for protein trafficking and translocation have been reviewed in

depth by Wickner and Schekman [64]. Briefly, transport systems recognize proteins by their

signal peptide sequences. In most cases, proteins form complexes with chaperones or

ribosomes, bind to a membrane receptor, are transferred through a membrane-embedded
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translocator or channel, and are released into or cross the membrane [64]. In addition to this

relatively universal transporter system, a protein may be redeposited by its interacting

regulatory proteins. Furthermore, modification of the signal transduction and post-

translocation systems is essential for triggering of the protein translocation events. In cancer

cells, several mechanisms are responsible for the dysregulation of protein trafficking, which

leads to abnormal subcellular localization of proteins.

5.1 Mutation of protein-targeting signals

The NLS and NES are the essential elements required for nucleocytoplasmic transportation

of a protein. For example, p53 harbors three NLSs [42, 43] and two NESs [44, 45].

Complete loss of nuclear p53 signal was observed in three of nine investigated head and

neck squamous cell carcinoma cell lines; this loss was due to mutations and disruption of the

p53 COOH-terminal NLS [56]. In human ovarian cancer line OV-MZ-32, p53 staining

occurs exclusively in the cytoplasm, which is due to a deletion mutation of the major NES

[65]. Mutations of exon 12 of the nucleophosmin-1 gene are frequently identified in acute

myeloid leukemia (AML) [66]. Nucleophosmin-1 mutations create a NES motif and disrupt

tryptophans at the NPM1 C-terminus, resulting in cytoplasmic accumulation of this protein

in leukemic cells [67, 68]. In addition, almost all solid pseudopapillary tumors of the

pancreas contain a mutation in the β-catenin gene, which may account for the nuclear

localization of β-catenin in these tumors [69].

5.2 Dysregulation of transporter machinery

NLS and NES are recognized by nuclear–cytoplasmic transport receptors, which belong

mostly to the family of β-karyopherins. These receptors are called importins or exportins,

depending on their mode of action [70]. Mutations of NLS and NES are relatively rare in

cancer. In contrast, the dysregulation of importins and exportins seems to be a universal

mechanism for protein mislocalization. For example, CRM1/exportin 1 mediates the nuclear

export of many tumor suppressor proteins, including retinoblastoma, APC, p53, BRAC1,

and FOXO. High levels of CRM1 protein expression have been reported for various cancers,

including AML, ovarian cancer, pancreatic cancer, osteosarcoma, glioma, and cervical

cancer [44, 47, 71, 72]. CRM1 overexpression in these cancers may account for the

cytoplasmic accumulation of retinoblastoma, APC, p53, β-catenin, BRAC1, FOXO, INI1/

hSNF5, galectin-3, Bok, nucleophosmin, RASSF2, Merlin, p21CIP, p27KIP1, N-WASP/

FAK, estradiol receptor, Tob, topoisomerases I and IIα, BCR-ABL, and Hsp90 [71]. In

addition, the expression of Karyopherin α2, a member of the karyopherin α (importin α)

family, has been found to be higher in a variety of malignancies compared with

physiologically normal cells and to correlate with a poor prognosis irrespective of the cancer

type [73]. Karyopherin α2 promotes tumorigenesis through the translocation of cancer-

associated cargo proteins, which include the cell-cycle regulator Chk2, BRCA1, E2F1,

NBS1, androgen receptor, p53, and c-Myc [73].

5.3 ER retention of misfolded proteins

Protein folding occurs at the endoplasmic reticulum (ER). The folding is orchestrated by

various chaperone proteins. Protein misfolding and aberrant aggregation not only lead to the

diminished or altered function of the protein from its normal place of action and but also
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induce ER stress. The accumulation of unfolded proteins and protein aggregates triggers

unfolded protein responses such as inducing expression of the Hsp70 family of chaperone.

Hsp90 overexpression is observed in the majority of human tumors [74]. Many tumorigenic

p53 mutants are folding defective. Hsp90 interacts with p53 mutants and MDM2, increasing

the stability of and cytoplasmic and nuclear localization of p53/MDM2 in tumor cells

[75,76]. Furthermore, ER stress causes the retention of wild-type p53 in cytoplasm and

blocks the nuclear localization and function of p53 [77]. Cytoplasmic retention of p53 is

mediated by a pathway involving ER stress-induced activation of GSK-3β, which in turn

phosphorylates p53 and prevents its nuclear translocation [77]. Several in-depth reviews of

targeting protein misfolding and ER stress for cancer therapy have been published elsewhere

[78, 79].

5.4 Aberrant endocytosis and vesicular trafficking

Membrane receptors are internalized via endocytosis. Recycling receptors are subsequently

transported from early endosomes to the endosomal recycling compartment and then

returned to the plasma membrane. Receptor tyrosine kinases (RTKs) such as EGFR have

important tumorigenic function. Endocytic vesicles may serve as carriers to shuttle RTKs

into the cell nucleus [80, 81]. Aberrant endocytosis and vesicle trafficking of EGFR mutants

have been identified in non-small cell lung cancer lines and contribute to the nuclear

localization of EGFR [82]. Intracellular trafficking of MUC1 is mediated by clathrin-coated

pits and regulated by dynamin and Rab5, all of which are important for endocytosis and

receptor recycling [83]. Many cancers exhibit overexpression or mutations of small GTPases

(e.g., Rab25 overexpression in ovarian cancer and colon cancer [84]) or their regulators

(e.g., Rab-coupling protein gene amplification in breast cancer [85]). As a consequence,

protein mislocalization and dysfunction may occur. More information regarding endosome

trafficking of EGFR to the nucleus can be found in a recent review published by Wang et al.

[81].

5.5 Dysregulation of signal transduction and protein post-translational modification

Differences in phosphorylation and signal transduction are constantly observed in various

tumors and play key roles in all aspects of neoplasia, including proliferation, invasion,

angiogenesis and metastasis. One of the action modes of perturbed kinase activation is the

altering of protein trafficking and subcellular localization of cancer regulators. The

PI3K/AKT pathway is activated in many human cancers and plays a key role in cell

proliferation and survival. The AKT1 (E17K) mutation has been reported in breast,

colorectal, ovarian, and lung cancers and in endometrial carcinoma [86]. The E17K

mutation, which occurs in the pleckstrin homology domain of AKT1, results in its

constitutive phosphorylation and membrane localization. Six non-hotspot AKT1 pleckstrin

homology domain mutants have also been identified in large-scale breast cancer sequencing

studies [87]. Three of these mutants cause constitutive activation of AKT1 and confer

constitutive membrane localization of Akt1. In addition, these three AKT mutants showed

oncogenic activity in a cellular transformation assay [87]. The increased PI3K/AKT

signaling promotes the nuclear export of GSK3β, thereby restricting its access to nuclear

substrates such as c-myc and β-catenin. PI3K/AKT can also regulate MDM2 activity, which

in turn influences the nuclear export of p53. As another example, alterations of the O-glycan
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structure of MUC1 have been observed in cancer cells, which promotes MUC1 endocytosis

and intracellular sequestration [6].

5.6 Alteration of protein–protein interactions

Point mutation, deletion, and hypermethylation of p14ARF have been widely documented in

various cancers. A consequence of these genetic or epigenetic changes is that p14ARF is

loss of interaction with MDM2 and subsequent retention of MDM2 in the nucleus [88]. The

cytoplasm translocation of p53 can be mediated by the interactions of p53 with cytoskeletal

proteins such as actin and vimentin and with microtubules [89]. Cytoplasmic accumulation

of p53 has been correlated with the presence of vimentin in rat glioma cells, and nuclear p53

has been found in vimentin-negative rat glioma cells [90]. In another study, STAT3

mutations were found in 40% of (31 of 77) patients with large granular lymphocytic

leukemia. All mutations were located in exon 21, which encodes the SH2 domain. The

mutations resulted in an association between the phosphorylation of STAT3 and its

localization in the nucleus [91].

5.7 Cross-regulation of cancer-related proteins

The cooperation and antagonization of oncoproteins and tumor suppressors are necessary for

tumorigenesis. This effect can be mediated by changing the subcellular localization of their

interacting proteins. For example, MDM2 binds to nuclear p53 and helps export it to the

cytosol, where p53 is sequestered and targeted for degradation. Overexpression of MDM2 in

human leukemia could explain the cytosolic accumulation of p53 in these diseases [92, 93].

Another example is EGFR nuclear localization, which is regulated by trafficking of other

oncoproteins and tumor suppressors (Figure 1). EGFR is associated with MUC1 on the

plasma membrane; constitutive internalization of MUC1 results in EGFR being endocytosed

[19, 94]. Galectin-3 mediates EGFR and MUC1 interaction, which favors the endocytosis of

MUC1-C and EGFR [94]. The EGFR/MUC1-C/Galectin-3 protein complex undergoes

retrograde trafficking through the endoplasmic reticulum, where they are released to cytosol

via the Sec61 translocon and further imported into the nucleus through importin β1 [80, 95].

The interaction of MUC1-C with EGFR promotes the nuclear accumulation of EGFR, which

binds to chromatin and colocalizes with transcriptional initiation elements on the targeted

genes, inducing gene expression [19]. The constitutive nuclear import of EGFR can occur in

the absence of MUC1-C [19]. This import is assisted by the Sec61 translocon and is

mediated by the direct interaction of EGFR tripartite NLS with importin β1 [80, 95, 96].

However, in the absence of MUC1-C, nuclear EGFR is unable to bind to chromatin and be

ready to export to cytosol for degradation [19]. Therefore, MUC1-C is important for

increasing the nuclear localization and transcriptional activity of EGFR, thereby promoting

cancer cell growth and proliferation.

6. Relevance of protein subcellular localization to cancer diagnosis and

prognosis

Examples of clinical application of our knowledge of protein subcellular localization to

cancer diagnosis and prognosis are shown in Table 2. For some proteins, subcellular

localization may be different between cancer cells and normal cells; immunohistochemical
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staining of these proteins can be implemented for diagnostic purposes. For example, positive

nuclear staining of E-cadherin and β-catenin occurs in 100% of solid pseudopapillary tumors

of the pancreas and is of diagnostic use as a biomarker [97]. In addition, a study of 102

tumor specimens from breast cancer patients revealed that breast cancer cells stain strongly

for serotonin receptor 1A (5-HTR1A) on the membrane, whereas non-malignant cells stain

positively in only the cytoplasm. Furthermore, 5-HTR1B is predominantly expressed in the

cytoplasm of breast cancer cells but stains weakly in the cytoplasm of nonmalignant

epithelial cells. Thus, 5-HTR1A and 5-HTR1B could be used as diagnostic markers for

breast cancer [98].

On the other hand, the localization of some proteins differs by cancer type and thus might be

used for differential diagnosis. For example, staining of nuclear vascular epithelial growth

factor 2 is positive in invasive lobular breast carcinomas but negative in invasive ductal

breast carcinomas [99]. As another example, the detection of subcellular localization of

MUC1 is useful in differentiating between invasive micropapillary carcinoma (IMPC) of the

breast and conventional invasive ductal carcinoma showing an IMPC-like pattern due to

artifact (pseudo-IMPC) [100].

Although the expression level and subcellular localization of a specific protein may be

highly associated with some tumor types, they may not necessarily indicate cancer. Rather, a

combination of markers can provide values for difficult-to-diagnose cancers. For example,

the results of immunohistochemical staining of β-catenin and E-cadherin are useful for

differentiating a solid pseudopapillary neoplasm from a pancreatic endocrine neoplasm or

adenocarcinoma [101]. Kim et al. found that 94% of solid pseudopapillary neoplasm cases

were positive for nuclear β-catenin and none was positive for nuclear E-cadherin, whereas

96% of pancreatic adenocarcinoma or endocrine neoplasm cases were positive for nuclear

E-cadherin and none was positive for nuclear expression of β-catenin [101]. Molecular

morphologic techniques may achieve a more objective and reproducible diagnosis of

difficult-to-diagnose cancers. For example, three experts who evaluated results from

immunohistochemical analysis of HMB-45, Ki67, cyclin D1, E-cadherin, and p16 and

fluorescence in situ hybridization for melanoma developed a “consensus diagnosis” for 13

melanocytic skin neoplasms that provided an objective and reproducible result [102].

For many cancers, clinical staging and histological grading of biopsy or surgical tumor

samples are recognized as “gold standards” for predicting the prognosis and planning

adjuvant therapy. Immunohistochemical staining of the expression and subcellular

localization of some biomarkers alone or in combination provides additional prognostic

information. In a study of E-cadherin and EGFR expression in lung adenocarcinoma or

squamous cell carcinoma tissues from 131 patients, both negative and cytoplasmic staining

of E-cadherin correlated with shorter patient survival [84]. Patients with lung

adenocarcinoma or squamous cell carcinoma with negative E-cadherin expression and

positive EGFR expression had a worse disease outcome [103]. Similarly,

immunohistochemical analysis of E-cadherin and EGFR in 143 surgical specimens of head

and neck squamous cell carcinoma revealed that the expression or membrane localization

(or both) of these proteins was useful in predicting lymph node metastasis, patient survival,

and response to EGFR-targeted therapy [104]. Furthermore, double staining of MUC1 and
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β-catenin in colorectal carcinoma tissues can provide prognostic value: the combination of

MUC1 expression and low membranous β-catenin expression distinguishes a subgroup of

patients with a worse prognosis [105].

7. Targeting protein subcellular localization for cancer therapy

The translocation of many potential oncoproteins, tumor suppressors, and other cancer-

related proteins plays critical roles in cancer progression, metastasis, and drug resistance.

Thus, blocking protein translocation is a strategy for cancer treatment. Depending on the

cancer type and the translocation mechanism, small molecule inhibitors or analogs that

directly interfere with the protein trafficking, interactions, or signaling required for protein

translocation could be used.

7.1 Targeting nuclear exporters or importers

Overexpressed in many cancers, the protein CRM1 is responsible for the nuclear export of

many tumor suppressor proteins, such as p53, APC, BRAC1, and FOXO [44, 47, 71, 72,

106]. Blocking the CRM1-mediated nuclear export of such proteins may restore their tumor

suppressor function. Orally bioavailable small-molecule selective inhibitors of nuclear

exporter (SINE) that can irreversibly bind to CRM1 and block its function have been

developed [107]. In in vitro studies, SINE compounds (KPT-185 and KPT-276) can induce

apoptosis and inhibit proliferation in many cancer cell lines, including renal cell carcinoma,

colon cancer, pancreatic cancer, breast cancer, chronic myeloid leukemia, lymphocytic

leukemia, and AML[107, 108] [109] [109–112]. KPT-185 caused nuclear retention of p53

and p21, suggesting that the mechanism of action of these compounds depends on tumor

suppressor protein localization [108]. KPT-276 has the same CRM1 binding warhead and

specificity as KPT-185 but appears to have superior oral bioavailability and

pharmacokinetics. Thus, KPT-276 was selected for in vivo testing. Oral administration of the

KPT-276 in in various preclinical models showed remarkable anti-tumor efficacy without

any sign of toxicity effect [107–112] (Table 3). These promising results warrant testing in a

clinical trial.

Two peptide inhibitors, bimax1 and bimax2, have been identified as specific blockers of the

classic importin α/β pathway [113]. Bimax1 treatment of HeLa cells impaired nuclear

localization of NAC1, an oncogenic nuclear protein involved in ovarian cancers and cervical

carcinomas [114, 115]. Another cell-permeable SN52 peptide was shown to block nuclear

import of NF-κB family members, p52 and RelB, through competing with p52/RelB for

nuclear import proteins [116]. Importantly, SN52 can sensitize prostate cancer cells to

ionizing radiation at clinically relevant radiation doses with little cytotoxicity to normal

prostate epithelial cells [116]. The usage of these peptide inhibitors in in vivo tumor models

has not been reported yet.

7.2 Targeting protein–protein interactions

The synthesized cell-penetrating peptide inhibitor GO-201 interacts directly with the

MUC1-C subunit at its oligomerization domain. This peptide inhibitor has a potent

antitumor role in various cancer cell lines [8, 117, 118]. Inhibition of the MUC1-C
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oligomerization domain by GO-201 subsequently affects the interactions of MUC1-C with

multiple effectors at the cell membrane, in the cytoplasm, and in the nucleus as well as the

localization of MUC1-C in the nucleus. Treatment with GO-201 suppresses interaction

between MUC1-C and TCF7L2, resulting in the inhibition of Wnt/β-catenin pathway in

breast cancer cells. Furthermore, inhibition of MUC1-C blocks its interaction with STAT3

and RelA, resulting in STAT3 inhibition and NF-κB activation, respectively. On the basis of

these findings and activity identified in other carcinoma models, a second-generation

MUC1-C inhibitor, GO-203, has been developed and is undergoing phase I/II evaluation for

patients with refractory solid tumors and AML [119]. Treatment of chronic myelogenous

leukemia cells and non-small cell lung cancer cells with GO-203 increases these cells'

expression of reactive oxygen species (ROS), resulting in cell cycle arrest and apoptosis

[118, 120]. The induction of ROS by GO-203 decreases protein levels of Bcr-Abl and β-

catenin, which in turn induce terminal myeloid differentiation [118]. How ROS

downregulates Bcr-Abl and β-catenin protein levels remains unclear. ROS may induce the

cleavage and hence dysfunction of Hsp90, an essential chaperone that regulates the folding

and stability of Bcr-Abl and β-catenin [121]. In addition, GO-203 can directly disrupt the

interaction of MUC1-C with Bcr-Abl and β-catenin, which in turn destabilize these

oncogenic proteins [122, 123].Preclinical studies of the anti-tumor efficacy and safety of

MUC1–C inhibitors are summarized in Table 3.

7.3 Targeting signaling pathways that regulate protein localization

Cetuximab is an anti-EGFR antibody that has been used successfully to treat EGFR-

expressing head and neck cancer and colorectal cancer. However, cetuximab resistance has

been observed in patients with various types of cancer [124, 125]. Nuclear localization of

EGFR may be a critical mechanism for cetuximab resistance [126, 127]. The translocation

of EGFR to the nucleus involves different mechanisms, but the phosphorylation and

activation of EGFR by Src family kinases in particular seems to be critical for nuclear entry

of EGFR [126]. Dasatinib, an inhibitor of c-Src kinases, can interfere with the nuclear

localization of EGFR in vitro, thereby enhancing the radiosensitivity of human head and

neck squamous cell carcinomas in vitro [128]. When cetuximab fails, this approach may

provide an alternative therapeutic strategy by targeting EGFR nuclear translocation. This is

supported by the observation that combination of Dasatinib and Cetuximab sensitized KRAS

mutant colorectal tumor, which exhibited minimal response to dasatinib or cetuximab

monotherapy in vivo [129].

The overexpression and hyperactivation of PI3K/AKT/mTOR signaling are consistently

observed in various tumors, such as hepatocellular carcinoma and cancers of the ovaries,

pancreas, stomach, colorectum, prostate, and breast [130, 131]. PI3K/AKT/mTOR signaling

promotes tumor survival, proliferation, and drug resistance via different mechanisms, such

as by regulating the nuclear export and mitochondrial translocation of p53 [132]. Inhibitors

of the PI3K/AKT/mTOR pathway have been intensively evaluated in various preclinical

cancer models, showing promising anti-tumor activity and restoration of drug sensitivity

[133–135]. The evaluation of these agents in early stage clinical trials has reported to be

well tolerated and show moderate clinical benefits in multiple tumor types, which are

reviewed in recent paper published by Rodon et al [136].

Wang and Li Page 12

Biochim Biophys Acta. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



8. Concluding remarks

We have described evidence from the literature that deregulation of protein translocation

plays critical roles in inducing cell transformation, survival, proliferation, apoptosis, and

drug resistance. The differential subcellular localization pattern of potential oncoproteins,

tumor-suppressor proteins, and other cancer-related proteins compared with physiologically

normal proteins provides clues for the clinical diagnosis and prognosis of a variety of human

cancers. Drugs that have been developed to target protein translocation mechanisms have

shown great promise in preclinical and clinical studies.
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Figure 1. The complex role of MUC1 at different subcellular localizations in cancer
MUC1 is cleaved at the SEA domain to generate two subunits, MUC1-N and MUC1-C.

MUC1-N is secreted to extracellular compartments and contributes to the mucous gel.

MUC1-C is a transmembrane subunit. The extracellular portion of MUC1-C is thought to

play anti-adhesive and anti-recognition functions, which may be involved in the immune

evasion. The intracellular portion of MUC1-C can interact with multiple signaling molecules

such as PI3K p85 subunit and GRB2, activating AKT/mTOR and RAS/ERK pathways,

respectively. The activation of these signaling pathways is important for cell survival and

proliferation. MUC1-C constitutively undergoes endocytosis for receptor recycling. MUC1-

C in the ER can be released to cytosol by the Sec61 translocon. The cytoplasmic MUC-C1

can be further imported into nucleus, where it associates with multiple transcriptional factors

or nuclear receptors, such as p53, β-catenin and NF-κB p65, inducing the expression of

targeted genes that are important to tumor cell proliferation or survival in the adverse

microenvironment. Hsp90 can assist the transport of cytoplasmic MUC1-C onto

mitochondria, where it suppresses intrinsic apoptosis. The cytoplasmic MUC1-C can also

bind to proapoptotic protein BAX, antagonizing its function.
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Figure 2. Schematic model of cross-regulation of protein subcellular localization of oncoproteins
and tumor suppressor proteins
EGFR is constitutively associated with MUC1 on the plasma membrane. On binding of

epidermal growth factor, EGFR and MUC1 are endocytosed. Both proteins undergo

retrograde trafficking through the endoplasmic reticulum and are imported into the nucleus

via importin β1. Galectin-3 associates with EGFR to facilitate the nuclear import of MUC1

and EGFR [94]. The interaction of MUC1 and EGFR in the nucleus promotes nuclear EGFR

accumulation and transcriptional activation, which induces the gene expression of cyclin D

and B-Myb and promotes cell proliferation. Nuclear MUC1 also binds to NF-κB p65 and

induces p65-mediated gene expression of Bcl-xL and ZEB1. The nuclear association

between MUC1 and p53 induces transcription of the p53 promoter and expression of p21,

Bax, and MDM2. MDM2 is a negative regulator of p53. It binds to p53 in the nucleus and

assists the nuclear export of MDM2 to the cytosol, where p53 is sequestered and targeted for

degradation. The coordination and antagonization between these oncoproteins and tumor

suppressor proteins result in tumor cell survival, proliferation, and progression.
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