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Abstract Mechanobiological processes are rooted in
mechanics and chemistry, and such processes may be mod-
eled in a framework that couples their governing equa-
tions starting from fundamental principles. In many bio-
logical applications, the reactants and products of chemi-
cal reactions may be electrically charged, and these charge
effects may produce driving forces and constraints that sig-
nificantly influence outcomes. In this study, a novel for-
mulation and computational implementation are presented
for modeling chemical reactions in biological tissues that
involve charged solutes and solid-bound molecules within a
deformable porous hydrated solid matrix, coupling mechan-
ics with chemistry while accounting for electric charges. The
deposition or removal of solid-bound molecules contributes
to the growth and remodeling of the solid matrix; in partic-
ular, volumetric growth may be driven by Donnan osmotic
swelling, resulting from charged molecular species fixed to
the solid matrix. This formulation incorporates the state of
strain as a state variable in the production rate of chemi-
cal reactions, explicitly tying chemistry with mechanics for
the purpose of modeling mechanobiology. To achieve these
objectives, this treatment identifies the specific theoretical
and computational challenges faced in modeling complex
systems of interacting neutral and charged constituents while
accommodating any number of simultaneous reactions where
reactants and products may be modeled explicitly or implic-
itly. Several finite element verification problems are shown to
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agree with closed-form analytical solutions. An illustrative
tissue engineering analysis demonstrates tissue growth and
swelling resulting from the deposition of chondroitin sulfate,
a charged solid-bound molecular species. This implementa-
tion is released in the open-source program FEBio (www.
febio.org). The availability of this framework may be par-
ticularly beneficial to optimizing tissue engineering culture
systems by examining the influence of nutrient availability
on the evolution of inhomogeneous tissue composition and
mechanical properties, the evolution of construct dimensions
with growth, the influence of solute and solid matrix electric
charge on the transport of cytokines, the influence of bind-
ing kinetics on transport, the influence of loading on binding
kinetics, and the differential growth response to dynamically
loaded versus free-swelling culture conditions.

Keywords Chemical reactions · Charged reactants and
products · Growth and remodeling · Mechanobiology ·
Finite element modeling

1 Introduction

Most biological processes are driven by chemical reactions,
and in many cases, these reactions involve charged molecu-
lar species that are either soluble or bound to a solid matrix
such as the extracellular matrix of a tissue or the intracellular
cytoskeletal network. A framework for modeling such chem-
ical reactions in a system that also accounts for mechanics
of matrix deformation and transport in biological tissues and
cells provides opportunities to examine important phenom-
ena such as mechanotransduction, growth and remodeling,
and tissue engineering. A computational implementation of
such a framework has not been previously available in the
public domain.
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The incorporation of chemical reactions in models of bio-
logical tissues has been demonstrated in a number of prior
studies, especially in the field of tissue engineering (Martin
et al. 1999; Obradovic et al. 2000; DiMicco and Sah 2003;
Sengers et al. 2004a,b, 2005; Radisic et al. 2005) and tissue
growth (Garikipati et al. 2004), but also in the investigation
of the transport and binding of molecular species with the
extracellular matrix of biological tissues (Garcia et al. 2003;
Albro et al. 2013). These models typically employ classical
relations of chemical kinetics that account for diffusion of
soluble species, producing standard diffusion–reaction sys-
tems. Generally, they do not account for the electrical charges
that may be carried by the soluble constituents and solid-
bound molecular species, preempting the analysis of prob-
lems where charge effects play a significant role. Yet, in
biological tissues and cells, most proteins and nucleic acids
and many polysaccharides are electrically charged such that
charge-to-charge attraction or repulsion may significantly
influence reactions and transport.

The analysis of non-reactive charged hydrated biological
tissues was first presented in the triphasic theory of Lai et
al. (1991), who modeled tissues using mixture theory with a
charged porous hydrated solid matrix and an interstitial fluid
consisting of a solvent (water) and two monovalent counteri-
ons. The resulting nonlinear equations have proved challeng-
ing to solve with analytical methods, necessitating the for-
mulation of computational frameworks to produce solutions
to boundary and initial-value problems for triphasic analy-
ses (Sun et al. 1999; van Loon et al. 2003; Yao and Gu 2007;
Ateshian and Weiss 2013). The generalization of the triphasic
theory to a multiphasic framework accommodating any num-
ber of charged soluble species whose charge number may
exceed unity was proposed by Gu et al. (1998), and a com-
putational framework encompassing this multiphasic theory
was recently presented by Ateshian et al. (2013). Major chal-
lenges in this computational formulation included the neces-
sity to satisfy the electroneutrality condition while simulta-
neously enforcing the corollary divergence-free current con-
dition, regardless of the number and charge of solutes, and
also accommodating finite solid deformation and material
and transport properties that may depend on strain and solute
concentrations.

A theoretical framework for modeling reactive mixtures of
neutral or charged soluble constituents (Ateshian 2007), for-
mulated based on the classical theory of mixtures (Truesdell
and Toupin 1960; Eringen and Ingram 1965; Bowen 1968,
1976), has provided the necessary foundation for the com-
putational approach presented in this study. That theoreti-
cal framework has had a number of ramifications in rela-
tion to growth mechanics that were investigated in a recent
series of reports. It reinforced the existing paradigm (Hsu
1968; Cowin and Hegedus 1976) that growth is primarily
modeled by including a source term in the mass balance

relation for the solid matrix (Ateshian 2011). By incorpo-
rating solutes in a growth framework, it demonstrated that
growth may be driven by osmotic effects, as occurs in cell
growth or in the deposition of charged solid matrix con-
stituents (Ateshian et al. 2009). By including multiple solid
constituents in a constrained solid mixture (Humphrey and
Rajagopal 2002), it demonstrated that residual stresses may
be described by explicitly associating a different reference
configuration for each generation of deposited solid matrix in
a multigenerational growth framework (Ateshian and Ricken
2010). By incorporating the referential mass density of solid
constituents as state variables in the constitutive relations for
solid mass supply and stress functions (Myers and Ateshian
2013), it recapitulated the classical stress or strain-driven
remodeling theories developed in the bone mechanics liter-
ature (Cowin and Hegedus 1976; Huiskes et al. 1987; Carter
et al. 1987, 1989; Weinans et al. 1992; Mullender et al.
1994). However, none of these prior studies explicitly incor-
porated chemical reactions with charged solutes and solid-
bound molecular species.

Therefore, the objective of this study was to formulate a
novel computational framework for chemical reactions that
may involve electrically charged species while maintaining
electroneutrality, where reactants and products may consist
of solutes and solid-bound molecules such that the depo-
sition or removal of solid-bound molecules contributes to
the growth and remodeling of the solid matrix. The result-
ing finite element code has been incorporated into the open-
source FEBio program (www.febio.org, Maas et al. 2012).

2 Governing equations

Section 2.1 reviews governing equations of reactive mixtures,
showing how classical treatments of continuum mechanics
and chemical kinetics may be unified into a single framework
that couples mechanics and chemistry. Though individual
aspects of these equations have been reported in the prior lit-
erature, the presentation that follows combines all essential
elements, using a consistent notation, as needed for a prac-
tical computational implementation. Section 2.2 extends the
classical treatment of chemical kinetics to incorporate the
solid matrix strain as a state variable in the constitutive rela-
tion for the molar production rate.

2.1 Mass balance

Chemical kinetics is concerned with modeling the rate at
which chemical reactions take place. In continuum frame-
works that accommodate mass transport, reaction rates
appear in the statement of mass balance. In the theory of
mixtures (Bowen 1968), the differential form of the state-
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ment of mass balance for any constituent α, in the spatial
frame, is given by

∂ρα

∂t
+ div

(
ραvα

) = ρ̂α , (1)

where vα is the constituent’s velocity, ρα is its apparent den-
sity (mass of α per volume of the mixture in the current
configuration), and ρ̂α is the volume density of mass sup-
ply to α, resulting from chemical reactions with all other
mixture constituents. Since mass must be conserved over all
constituents, mass supply terms are constrained by
∑

α

ρ̂α = 0 . (2)

In a mixture containing a solid constituent (denoted by
α = s), it is convenient to define the mixture domain (and
thus the finite element mesh) on the solid and evaluate mass
fluxes of constituents relative to the solid,

mα = ρα
(
vα − vs) . (3)

Substituting (3) into (1), the differential form of the mass
balance may be rewritten as

Dsραr

Dt
+ J div mα = ρ̂αr , (4)

where Ds(·)/Dt represents the material time derivative in the
spatial frame, following the solid, J = det F where F is the
deformation gradient of the solid matrix; ραr is the apparent
density, and ρ̂αr is the volume density of mass supply of α
normalized to the mixture volume in the reference configu-
ration,

ραr = Jρα , ρ̂αr = J ρ̂α. (5)

Since ραr is the mass of α in the current configuration per vol-
ume of the mixture in the reference configuration (an invari-
ant quantity), this parameter represents a direct measure of
the evolving mass content of α in the mixture, which may
thus be used as a state variable in a framework that accounts
for chemical reactions (Ateshian 2007; Myers and Ateshian
2013). A distinction is now made between solid and solute
species in the mixture, since they are often treated differently
in an analysis.

2.1.1 Solid matrix and solid-bound molecular constituents

For constituents constrained to move with the solid
(Humphrey and Rajagopal 2002), denoted generically by
α = σ and satisfying vσ = vs , ∀ σ , the statement of mass
balance in (4) reduces to the special form

Dsρσr /Dt = ρ̂σr . (6)

This representation makes it easy to see that alterations in
ρσr can occur only as a result of chemical reactions (such

as synthesis, degradation, or binding). In contrast, as seen
in (4), alterations in ραr for solutes or solvent (α �= σ ) may
also occur as a result of mass transport into or out of the
pore space of the solid matrix. Therefore, ρσr is the natural
choice of state variable for describing the content of solid
constituents in a reactive mixture.

When multiple solid species are present, the net solid mass
content may be given by ρs

r = ∑
σ ρ

σ
r , whereas the net mass

supply of solid is ρ̂s
r = ∑

σ ρ̂
σ
r such that Dsρs

r /Dt = ρ̂s
r .

The referential solid volume fraction, ϕs
r , may be evaluated

from

ϕs
r =

∑

σ

ρσr /ρ
σ
T , (7)

where ρσT is the true density of solid constituent σ (mass
of σ per volume of σ ). According to (5), it follows that the
solid volume fraction in the current configuration is given by
ϕs = ϕs

r /J . Note that 0 ≤ ϕs ≤ 1 under all circumstances,
while 0 ≤ ϕs

r ≤ J , implying that ϕs
r may exceed unity

when solid growth occurs (Ateshian et al. 2009). In this study,
it is assumed that all mixture constituents are intrinsically
incompressible, implying that their true density is invariant.1

The various constituents of the solid matrix may be elec-
trically charged. Let zσ be the charge number (equivalent
charge per mole) of solid constituent σ , then the net referen-
tial fixed charge density of the solid matrix (equivalent charge
per fluid volume in the referential configuration) is given by

cF
r = 1

1 − ϕs
r

∑

σ

zσ ρσr
Mσ

, (8)

where Mσ is the molar mass of σ (an invariant quantity) and
1 − ϕs

r represents the referential volume fraction of all fluid
constituents (solvent + solutes) in a saturated mixture. Based
on the kinematics of the continuum, the fixed charge density
in the current configuration is

cF = 1 − ϕs
r

J − ϕs
r

cF
r . (9)

2.1.2 Solutes

Solutes are denoted generically byα = ι. In chemistry, solute
content is often represented in units of molar concentration
(moles per fluid volume). It follows that solute molar con-
centration cι and molar supply ĉι are related to ρι and ρ̂ι

via

cι = ρι

(1 − ϕs)M ι
, ĉι = ρ̂ι

(1 − ϕs)M ι
. (10)

1 However, the porous solid matrix may experience changes in volume
as a result of fluid exchanges with the pore space.
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The molar flux of constituent ι relative to the solid is given
by

jι = (
1 − ϕs) cι

(
vι − vs) , (11)

where it may be noted that mι = M ιjι. Combining these
relations with (4)–(5) produces the desired form of the mass
balance for the solutes,

1

J

Ds
[
J (1 − ϕs) cι

]

Dt
+ div jι = (

1 − ϕs) ĉι. (12)

This form is suitable for implementation in a finite ele-
ment analysis where the mesh is defined on the solid matrix
(Ateshian et al. 2011, 2013).

In the multiphasic mixture framework adopted here, it is
assumed that the electroneutrality condition is satisfied at all
times in the continuum, implying that the mixture cannot act
as an electrical capacitor. Assuming the solvent is neutral
(zw = 0), the electroneutrality condition may be written as

cF +
∑

ι

zιcι = 0. (13)

2.1.3 Mixture with negligible solute volume fraction

The volume fraction of each constituent is given by ϕα =
ρα/ραT . In a saturated mixture these volume fractions sat-
isfy

∑
α ϕ

α = 1. Substituting ρα = ϕαραT into (1), dividing
across by ραT (invariant for intrinsically incompressible con-
stituents), and taking the sum of the resulting expression over
all constituents produces

div

(
∑

α

ϕαvα
)

=
∑

α

ρ̂α/ραT . (14)

This mass balance relation for the mixture expresses the fact
that the mixture volume will change as a result of chemical
reactions where the true density of products is different from
that of reactants.2 We now adopt the assumption that solutes
occupy a negligible volume fraction of the mixture (ϕι � 1),
from which it follows that ϕs + ϕw ≈ 1 and

∑
α ϕ

αvα ≈
vs + w, where w = ϕw (vw − vs) is the volumetrix flux of
solvent relative to the solid. Thus, the mixture mass balance
may be reduced to

div
(
vs + w

) =
∑

α

ρ̂α/ραT . (15)

2.2 Chemical kinetics

Reaction rates are described by constitutive relations which
are functions of the state variables. In a biological mixture

2 Indeed, assuming that ραT is the same for all α would nullify the
right-hand-side of (14) based on (2).

under isothermal conditions, the minimum set of state vari-
ables needed to describe reactive mixtures that include a solid
matrix are: the (uniform) absolute temperature θ , the solid
matrix deformation gradient F (or related strain measures),
and the molar content cα of the various constituents (Ateshian
2007). This set differs from the classical treatment of chem-
ical kinetics in fluid mixtures by the inclusion of F and the
subset of constituents bound to the solid matrix. To maintain
a consistent notation in this section, solid-bound molecu-
lar species are described by their molar concentrations and
molar supplies which may be related to their referential mass
density and referential mass supply according to

cσ = ρσr(
J − ϕs

r

)
Mσ

, ĉσ = ρ̂σr(
J − ϕs

r

)
Mσ

. (16)

Consider a general chemical reaction (Prud’homme 2010),

∑

α

ναREα →
∑

α

ναPEα, (17)

where Eα is the chemical species representing constituent α;
ναR and ναP represent stoichiometric coefficients of the reac-
tants and products, respectively. Since the molar supply of
reactants and products is constrained by stoichiometry, it fol-
lows that all molar supplies ĉα in a specific chemical reaction
may be related to the molar production rate ζ̂ according to

ĉα = ναζ̂ , (18)

where να represents the net stoichiometric coefficient for Eα ,

να = ναP − ναR . (19)

Thus, formulating constitutive relations for ĉα’s is equiva-
lent to providing a single relation for ζ̂ (θ,F, cα). When the
chemical reaction is reversible,
∑

α

ναREα �
∑

α

ναPEα, (20)

the relations of (18)–(19) still apply but the form of ζ̂ would
be different.

Using the relations of (10), (16) and (18), it follows in
general that ρ̂α = (1 − ϕs)Mαναζ̂ , so that the constraint of
(2) is equivalent to enforcing stoichiometry, namely,

∑

α

ναMα = 0. (21)

Thus, properly balancing a chemical reaction satisfies this
constraint.

The mixture mass balance in (15) may now be rewritten
as

div
(
vs + w

) = (
1 − ϕs) ζ̂ V̄, (22)
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where V̄ = ∑
α ν

αVα and Vα = Mα/ραT is the molar volume
of α. Similarly, the solute mass balance in (12) becomes

1

J

Ds
[
J (1 − ϕs) cι

]

Dt
+ div jι = (

1 − ϕs) νιζ̂ . (23)

These mass balance equations reduce to those of non-reactive
mixtures when ζ̂ = 0.

Since the mixture is assumed to satisfy the electroneutral-
ity condition at all times, chemical reactions may not alter
this condition. Thus, the net stoichiometric coefficients must
satisfy

∑
α zανα = 0, with the summation taken over all

mixture constituents. It can be shown that the combination
of this constraint with (13) and the above mass balance rela-
tions produces the divergence-free current condition (a spe-
cialization of one of Maxwell’s equations), div Ie = 0, where
Ie = Fc

∑
ι zιjι is the current density and Fc is Faraday’s

constant.

3 Finite element implementation

This section includes the novel implementation of reactive
mixtures whose constituents may be electrically charged,
building on our recent finite element implementation of non-
reactive mixtures.

3.1 Statement of virtual work

The implementation of non-reactive multiphasic mixtures in
a finite element framework was presented in a recent study
(Ateshian et al. 2013). This implementation may be described
by three general principles: (1) The virtual work integral com-
bines the momentum balance for the mixture, the mass bal-
ance for the mixture, and the mass balances for each of the
solutes. The momentum balance for the mixture under quasi-
static conditions in the absence of external body forces is
div σ = 0, where σ = −pI + σ s is the mixture stress, p is
the interstitial fluid pressure, and σ s is the stress produced by
the solid matrix strain. (2) The nodal variables, which must
be continuous across element boundaries, are the solid dis-
placement, u, the effective fluid pressure, p̃, and the effective
solute concentrations c̃ι. The effective fluid pressure repre-
sents the mechanical contribution to the mechano-chemical
fluid pressure p,

p̃ = p − RθΦ
∑

ι

cι, (24)

where R is the universal gas constant and Φ is the osmotic
coefficient describing the deviation of the fluid chemical
potential from the ideal physico-chemical behavior of very
dilute solutions. The effective solute concentration is related
to cι via

c̃ι = cι/κ̃ ι, (25)

where κ̃ ι = κ̂ ι exp (−zιFcψ/Rθ) is the partition coefficient
of solute ι, κ̂ ι is its effective solubility (Mauck et al. 2003;
Ateshian et al. 2011, 2013) and ψ is the electric potential in
the mixture. Here, � and κ̂ ι are user-defined functions of J ,
ρσr and c̃ι.3 The electric potential is obtained by solving (13)
as explained in Ateshian et al. (2013). (3) The momentum
balance relations for the solvent and solutes provide relations
for the solvent volumetric flux w and solute molar fluxes
jι which are functions of grad p̃ and grad c̃ι (Ateshian and
Weiss 2013; Ateshian et al. 2013).

The statement of virtual work is given by

δW = δG −
∫

b

δv · div σ dv −
∫

b

δ p̃
[
div
(
vs + w

)]
dv

−
∑

ι

∫

b

δc̃ι

⎡

⎣ 1

J

Ds

Dt

((
J − ϕs

r

)
κ̃ ιc̃ι

)

+ div jι +
∑

γ

zγ div jγ

⎤

⎦ dv, (26)

where δv is the virtual solid velocity, δ p̃ is the virtual effec-
tive fluid pressure, δc̃ι is the virtual molar energy of solute ι,
and γ only refers to solutes. This formulation also enforces
the divergence-free current condition. Here, δG is the con-
tribution to the virtual work δW resulting from the supply
terms from chemical reactions,

δG = V̄
∫

b

δ p̃
(
1 − ϕs) ζ̂ dv

+
∑

ι

νι
∫

b

δc̃ι
(
1 − ϕs) ζ̂ dv, (27)

where ζ̂ is a function of the solid matrix strain, the solute
effective concentrations c̃ι and the solid referential densities
ρσr . δG and the incorporation of ρσr to the list of state vari-
ables, together with the incorporation of charged molecular
species in chemical reactions, represent the novel additions
in this finite element formulation. The objective of a finite
element analysis is to solve for the unknown u, p̃ and c̃ι by
satisfying δW = 0. Since the resulting equations are nonlin-
ear, the solution is obtained using a Newton scheme whereby
δW is linearized according to

δW + DδW [�u] + DδW
[
� p̃
]+

∑

γ

DδW
[
�c̃γ

] ≈ 0,

(28)

where the operator DδW [·] represents the directional deriv-
ative of δW at (u, p̃, c̃ι) along an increment in �u, � p̃, or
�c̃γ (Bonet and Wood 1997). The time derivatives in (26)

3 Under ideal physico-chemical conditions it may be assumed thatΦ =
1 and κ̂ ι = 1.
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(including vs = Dsu/Dt) are discretized using the backward
Euler method to produce an implicit solution scheme.

Accordingly, for the contribution δG to δW , it follows that

DδG [�u]

= V̄
∫

b

δ p̃
[
(div�u) ζ̂ + (

J − ϕs
r

)
ζ̂ ε : �ε

]
dv

+
∑

ι

νι
∫

b

δc̃ι
[
(div�u) ζ̂ + (

J − ϕs
r

)
ζ̂ ε : �ε

]
dv,

(29)

where �ε ≡ (
grad�u + gradT �u

)
/2, and

ζ̂ ε ≡ J−1F · ∂ζ̂
∂E

· FT , (30)

where E is the Lagrange strain tensor. Since ζ̂ is not assumed
to depend on the fluid pressure, it follows that,

DδG
[
� p̃
] = 0. (31)

Finally, for the linearization along increments in effective
concentration,

DδG
[
�c̃ι

] = V̄
∫

B

δ p̃
(
1 − ϕs) ∂ζ̂

∂ c̃ι
�c̃ι dv

+
∑

γ

νγ
∫

B

δc̃γ
(
1 − ϕs) ∂ζ̂

∂ c̃ι
�c̃ι dv. (32)

3.2 Implementation details

When modeling multiphasic mixtures, users must provide
master tables of all solutes and solid-bound molecules present
in a particular finite element model. The values of zα , Mα

and ραT must be provided in these master tables, to be used for
example in the evaluation of ϕs

r in (7), cF
r in (8), cσ and ĉσ in

(16), and V̄ . Each multiphasic material in a model must refer-
ence the set (or subset) of solutes and solid-bound molecules
present in that mixture; in the case of solutes, additional mate-
rial functions (such as the diffusivity and solubility) must be
defined within the multiphasic mixture definition.

The discretization of δG and DδG needed for the finite
element implementation is provided in the “Appendix”. The
referential mass concentrations ρσr of solid-bound molecules
are not treated as nodal variables in FEBio since these may
be evaluated from simply integrating (6) with respect to time.
Therefore, ρσr is stored at the integration points of each finite
element. It follows that the incorporation of such solid-bound
molecules produces very little computational burden, in con-
trast to the modeling of solutes which increases the number
of nodal degrees of freedom.

An examination of (26) shows that it is necessary to eval-
uate the time derivatives Dsϕs

r /Dt and Ds κ̃ ι/Dt . In the

absence of solid growth, the first of these derivatives is nor-
mally set to zero; however, in a growth framework, based on
(6)–(7), this derivative becomes

Dsϕs
r

Dt
=
∑

σ

ρ̂σr

ρσT
. (33)

The time derivative of the partition coefficient is more
involved, since κ̃ ι is dependent not only on the solubility
κ̂ ι, but also the electric potential ψ whose value may evolve
with the deposition or removal of neutral or charged solid-
bound molecules. Using the chain rule of differentiation as
well as (6),

Ds κ̃ ι

Dt
= ∂κ̃ι

∂ J

Ds J

Dt
+
∑

σ

∂κ̃ι

∂ρσr
ρ̂σr +

∑

γ

∂κ̃ι

∂ c̃γ
Dsc̃γ

Dt
. (34)

The time derivatives Ds J/Dt and Dsc̃γ /Dt may be eval-
uated directly from the nodal variables. To evaluate the
other derivatives in this expression it is convenient to rewrite
κ̃ ι = κ̂ ιξ zι , where ξ ≡ exp (−Fcψ/Rθ). Based on the state
variables for κ̂ ι, it follows that

∂κ̃ι

∂ J
= ∂κ̂ι

∂ J
ξ zι + zικ̃ ι

1

ξ

∂ξ

∂ J
∂κ̃ι

∂ρσr
= ∂κ̂ι

∂ρσr
ξ zι + zικ̃ ι

1

ξ

∂ξ

∂ρσr

∂κ̃ι

∂ c̃γ
= ∂κ̂ι

∂ c̃γ
ξ zι + zικ̃ ι

1

ξ

∂ξ

∂ c̃γ
.

(35)

The derivatives ∂κ̂ι/∂ J , ∂κ̂ι/∂ρσr and ∂κ̂ι/∂ c̃γ may be eval-
uated from the constitutive model selected for the solubility.
The derivatives of ξ are evaluated by differentiating the elec-
troneutrality condition (13) to produce

1

ξ

∂ξ

∂ J
=

cF

J−ϕs
r

−∑
ι zιξ zι c̃ι ∂κ̂

ι

∂ J
∑
ι (z

ι)2 κ̃ ιc̃ι

1

ξ

∂ξ

∂ρσr
= −

1
J−ϕs

r

(
zσ
Mσ + cF

ρσT

)
+∑

γ zγ ξ zγ ∂κ̂γ
∂ρσr

c̃γ

∑
γ (z

γ )2 κ̃γ c̃γ

1

ξ

∂ξ

∂ c̃γ
= − zγ κ̃γ +∑

ι zιξ zι c̃ι ∂κ̂
ι

∂ c̃γ∑
ι (z

ι)2 κ̃ ιc̃ι
.

(36)

If the constitutive relation for the production rate ζ̂ is
more conveniently expressed as a function of the variables
(θ,F, cσ , cι), a change of variables to the independent set(
θ,F, ρσr , c̃ι

)
is needed to evaluate the derivatives of ζ̂

appearing in (30)–(32). Based on the relations of (16) and
(25), it follows that

ζ̂ ε = J−1F · ∂ζ̂
∂E

∣∣∣
∣∣
cι

· FT

+
⎛

⎝
∑

γ

∂ζ̂

∂cγ
∂κ̃γ

∂ J
c̃γ +

∑

σ

∂ζ̂

∂cσ
∂cσ

∂ J

⎞

⎠ I, (37)
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and

∂ζ̂

∂ c̃ι
= κ̃ ι

∂ζ̂

∂cι
+
∑

γ

∂ζ̂

∂cγ
∂κ̃γ

∂ c̃ι
c̃γ . (38)

In these expressions, ∂κ̃γ/∂ J and ∂κ̃γ/∂ c̃ι are evaluated from
(35)–(36); ∂cσ/∂ J may be derived from (16).

Any number of chemical reactions may be modeled simul-
taneously in a given mixture. Since FEBio is written in C++,
an object-oriented programming environment, a virtual base
class is defined, which provides virtual functions for the eval-
uation of ζ̂ , ζ̂ ε and ∂ζ̂ /∂ c̃ι, respectively. For each chemi-
cal reaction, the user specifies the stoichiometric coefficients
ναR and ναP , as well as a specific constitutive relation for ζ̂
(see examples below). The class for multiphasic mixtures
includes a vector of chemical reaction objects to represent
all these reactions. At each iteration of the analysis, the rates
V̄ ζ̂ in (22) and νιζ for each solute in (23) are evaluated by
summing their respective values over all these reactions.

If the user chooses not to model all reactants and products
of a reaction explicitly, the calculation of V̄ from the partial
list supplied may produce unexpected results, in which case
the user is provided the option to override the automatic cal-
culation from the supplied list. Recall that V̄ = 0 exactly
if all reactants and products have the same true density ραT ,
according to (21). Therefore, V̄ ≈ 0 is an acceptable value as
a first approximation when the explicit list of reactants and
products is incomplete.

Chemical reactions explicitly alter the values ofϕs
r and cF

r .
Therefore, users must be aware that material behaviors that
depend on these parameters will be affected by these changes.
Furthermore, users have the option to define solid materials
whose properties depend explicitly on ρσr , thus allowing the
formulation of constitutive relations for solid remodeling.

4 Examples of chemical reactions

4.1 Law of mass action

At this juncture, any number of constitutive relations may
be proposed for ζ̂ ; however, the most common relation used
in chemical kinetics is the law of mass action. For the for-
ward reaction in (17), this constitutive relation is given by
(Prud’homme 2010)

ζ̂ = k
(
θ,F, ρσr

)∏

α

(
cα
)ναR . (39)

The constitutive function k
(
θ,F, ρσr

)
is known as the spe-

cific reaction rate. In classical chemical kinetics, it is only a
function of θ ; however, due to the presence of a solid matrix
in this framework, F and ρσr are also included as state vari-
ables for this material function. This seemingly innocuous

addition represents a significant advance in the unification
of classical chemical kinetics with mechanobiology within
the continuum mechanics literature, showing that chemical
reactions may be formulated to depend explicitly on the state
of strain, establishing a direct link between mechanics and
chemistry.

For a forward reaction (k �= 0), substituting (39) into (37)
produces

ζ̂ ε = ζ̂

⎡

⎣kε
k

+
⎛

⎝
∑

γ

ν
γ

R

κ̃γ

∂κ̃γ

∂ J
− 1

J − ϕs
r

∑

σ

νσR

⎞

⎠ I

⎤

⎦ ,

(40)

where

kε ≡ J−1F · ∂k

∂E
· FT , (41)

and the dependence of k on E is provided by a user-defined
constitutive relation. Similarly, substituting (39) into (38)
produces

∂ζ̂

∂ c̃ι
= ζ̂

∑

γ

ν
γ

R

(
δγ ι

c̃γ
+ 1

κ̃γ

∂κ̃γ

∂ c̃ι

)
, (42)

where δγ ι is the Kronecker delta. This formula is valid when
c̃ι �= 0, or else there would be no reaction according to (39)
(ζ̂ = 0).

For the reversible chemical reaction in (20), the constitu-
tive relation may be given by (Prud’homme 2010)

ζ̂F = kF
(
θ,F, ρσr

)∏

α

(
cα
)ναR

ζ̂R = kR
(
θ,F, ρσr

)∏

α

(
cα
)ναP

ζ̂ = ζ̂F − ζ̂R = ζ̂F

[

1 − Kc
(
θ,F, ρσr

)∏

α

(
cα
)να
]

,

(43)

where Kc = kR/kF is a function that reduces to the equilib-
rium constant of the reversible reaction at chemical equilib-
rium (when ζ̂ = 0). For this reaction the formulas of (40)–
(42) may be applied similarly to ζ̂F and ζ̂R and the resulting
expressions may be subtracted to produce the resultant rela-
tions for the derivatives of ζ̂ .

Example 1 Reversible Receptor-Ligand Binding

Consider the classical receptor–ligand binding reaction,

Er + E l�Ec, (a)

where Er may represent a solid-bound receptor (a binding
site on the tissue solid matrix), E l is the ligand, and Ec is
the receptor-ligand complex. Both Er and Ec are bound to
the solid (σ = r, c), whereas E l is a solute (ι = l). For this
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reaction the stoichiometric coefficients are νr
R = νl

R = νc
P =

1 and νr
P = νl

P = νc
R = 0 so that

ζ̂ = kF

(
cr cl − Kccc

)
. (b)

4.2 Solid remodeling

4.2.1 Implicit soluble constituents

In the classic literature on solid remodeling (Cowin and
Hegedus 1976; Huiskes et al. 1987; Carter et al. 1989;
Weinans et al. 1992), the apparent density of the solid is
allowed to evolve in response to the state of strain (and thus
stress or strain energy). Solid remodeling theories propose
constitutive relations for ρ̂s

r in the mass balance relation of
(6) (Hegedus and Cowin 1976; Weinans et al. 1992).4 Con-
sider the classic bone remodeling framework by Hegedus and
Cowin (1976), where the rate of change of the solid density,
ρ̂s

r , was expressed as a quadratic function of the infinitesimal
strain tensor of the solid. This framework encompasses the
subsequent model proposed by Weinans et al. (1992),

ρ̂s
r = B

(
�r

ρs
r

− ψ0

)
, 0 < ρs

r ≤ ρs
T (44)

where �r is the strain energy density of the solid, ψ0 is the
specific strain energy at homeostasis, and B is a material
constant. This model predicates that solid mass will increase
(ρ̂s

r > 0) when the specific strain energy exceeds ψ0, or
decrease (ρ̂s

r < 0) when it drops below ψ0. In these types of
models, it is assumed that cells, which mediate the remodel-
ing process, and soluble constituents representing nutrients
and waste products are implicitly available.

In their analysis, Weinans et al. assumed that bone behaved
as a linear isotropic elastic material, though we may gener-
alize that formulation to finite deformation by using a com-
pressible neo-Hookean material function (Bonet and Wood
1997),

�r = EY

2 (1 + ν)

[
1

2
(tr C − 3)− ln J + ν

1 − 2ν
(ln J )2

]
,

(45)

where C = FT ·F is the right Cauchy-Green tensor, ν is Pois-
son’s ratio, assumed constant, and EY is Young’s modulus,
assumed to depend on ρs

r according to a power law,

EY = c
(
ρs

r

)γ
, (46)

where c and γ are material constants (Carter and Hayes
1977).

4 In this section, it is assumed that there is only a single solid constituent,
denoted by s, for consistency with the classical literature.

Two essential concepts emerge from this illustrative appli-
cation of solid remodeling: (a) a growth process occurs,
whereby mass is added or removed in response to a mechani-
cal signal, as given in (44)–(45); and (b) a constitutive relation
is needed for the material behavior that relates the material
properties to the composition, as in (46). For this constitutive
model, ζ̂ is obtained by substituting (44) into (16) and (18)
under the assumption that νs = 1, from which it follows that

ζ̂ = B
(
J − ϕs

r

)
Ms

(
�r

ρs
r

− ψ0

)
, (47)

and

ζ̂ ε = 1

J − ϕs
r

(
−ζ̂ I + B

ρs
r Ms

σ s
)
, (48)

where σ s is the Cauchy stress corresponding to the strain
energy density given in (45). Also note that ∂ζ̂ /∂ c̃ι = 0.

In addition, remodeling processes may involve the reori-
entation of the material structure in response to mechanical
signals, as described for example by Baaijens and co-workers
(Driessen et al. 2003, 2005; Baaijens et al. 2010). This latter
type of solid remodeling does not involve the mass balance
equation of (6), though it may be formulated in a similar
rate-type evolutionary relation for a structural tensor or a
fiber direction in response to a specific mechanical signal.
Reorientation of the material structure is not addressed fur-
ther in this treatment, since the focus here is on reactions
modeled in the mass balance equation.

4.2.2 Explicit soluble constituents

For some tissue systems, solid remodeling may be viewed
generically as a pair of reactions whereby cells convert nutri-
ents into solid matrix when the mechanical signal exceeds a
certain threshold, or the solid matrix degrades into waste
products when the signal falls below that threshold,

Ecells + Enutrients → Ecells + E solid

Ecells + E solid → Ecells + Ewaste.
(49)

Applying the law of mass action in (39) to these two reactions
produces the net solid molar supply

ĉsolid = ccells
(

kscnutrients − kdcsolid
)
, (50)

where ks for synthesis and kd for degradation depend on the
mechanical signal and may alternate their on and off states.
No specific constitutive model is proposed here for the depen-
dence of ks and kd on F, since novel formulations would merit
a more detailed analysis. Nevertheless, this generic remod-
eling reaction implies plausibly that both matrix deposition
and degradation depend on the concentration of cells, that
the rate of matrix formation depends on the concentration of
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soluble nutrients and that the rate of degradation attenuates
with decreasing solid content.

Note that even in this generic form, the relation of (49) is
explicitly balanced, with the mass of solutes converted to an
equal mass of solid and vice versa. In FEBio, implementing
this model thus requires two solutes (ι = nutrients, waste)
and two solid-bound molecular species (σ = cells, solid),
although the cell concentration may be assumed constant. A
more explicit list of solutes may also be provided to repre-
sent various nutrients (e.g., glucose and amino acids), growth
factors, or degradative enzymes.

This type of system represents one of the several pos-
sible options; alternatively, in some tissues such as bone,
the cells responsible for matrix synthesis may be different
from those responsible for degradation (e.g., osteoblasts and
osteoclasts). In other systems, matrix degradation may pro-
ceed independently of the activity of cells embedded in that
matrix. The reactions for these various systems may be sim-
ilarly formulated.

5 Verifications

Since the implementation of any number of chemical reac-
tions that can model neutral or charged reactants and prod-
ucts represents a major computational challenge, a number
of verification problems are presented below that establish
the validity of the code implementation, not just for reac-
tions involving charged species but for other general cases
encompassed by this implementation. In each case, an ana-
lytical solution is available that allows direct verification of
the code; therefore, mesh convergence analyses are straight-
forward.

5.1 Salt dissociation

Consider the dissociation of a salt, such as NaCl, into two
counter-ions dissolved in water,

NaCl � Na+ + Cl−. (51)

According to the law of mass action, the reaction rate is ζ̂ =
kF cNaCl −kRcNa+

cCl− . Based on the electroneutrality condi-
tion, the ion concentrations must be equal, cNa+ = cCl− ≡ c.
Furthermore, we may assume that the total concentration of
undissociated compound and dissociated ions is constant,
cNaCl + c ≡ ct . Combining these relations with the reaction
rate, recognizing that ĉ = ζ̂ , and assuming homogeneous
conditions, produces an ordinary nonlinear differential equa-
tion,

dc

dt
= kF (ct − c)− kRc2. (52)

Under the initial condition c (0) = 0, the solution to this
equation is given by

c (t) = Ka

2

[
η tanh

(
1

2
ηkF t + tanh−1 1

η

)
− 1

]
(53)

where Ka ≡ kF/kR is the dissociation constant and η ≡√
1 + 4ct/Ka . At steady state, the ion concentration becomes

c → ηKa/2.
This chemical reaction was modeled in FEBio by includ-

ing all three solutes appearing in (51); the reaction was explic-
itly balanced by ensuring that molar masses in the finite ele-
ment input file satisfied MNaCl = MNa+ + MCl− . Since a
homogeneous response was sought, a single brick element
sufficed to perform this analysis. However, due to the absence
of prescribed boundary conditions for Na+ and Cl−, it was
necessary to provide a method for electrically grounding the
mixture to prevent numerical ill-conditioning of the finite
element analysis, as discussed in our earlier study (Ateshian
et al. 2013). Thus, two additional monovalent counter-ions
were added to the mixture (e.g., A+ and B−) whose ini-
tial concentrations were set to a constant c0, and boundary
conditions were prescribed on one of the element faces such
that c̃A+ = c̃B− = c0, implying thatψ = 0 according to (25)
(when κ̂A+ = κ̂B− = 1). This scheme produced a convergent
solution, verifying agreement between the finite element and
analytical solutions (Fig. 1a). As expected from the uncon-
ditionally stable implicit backward Euler method for time
discretization, the root-mean-square (RMS) error between
the finite element results and analytical solution, evaluated
over all time increments, scaled as O (�t) (Fig. 1b).

This analysis illustrates the modeling of a chemical reac-
tion involving charged constituents.

5.2 Biosynthesis, binding and degradation

In their theoretical study, DiMicco and Sah (2003) examined
the one-dimensional spatial distribution of synthesized car-
tilage matrix products under the following assumptions: (1)
Cells synthesize matrix products in soluble form (ι = u),
at a constant rate (2) The soluble matrix product binds to
the pre-existing solid matrix (σ = b). (3) The bound prod-
uct may subsequently degrade into a soluble waste product
(ι = d). Using the notation of this paper, their analysis may
be represented by three chemical reactions,

Ecells + Enutrients → Ecells + Eu

Eu → Eb

Eb → Ed

(54)

where cells and nutrients are implicit in their analysis. Apply-
ing the law of mass action in (39) to these three reactions
produces ζ̂1 = k1ccellscnutrients ≡ k f , ζ̂2 = kbcu ≡ rb, and
ζ̂3 = kdcb ≡ rd , where symbols k f , kb, kd , rb and rd are con-
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(a)

(b)

Fig. 1 a Time-dependent dissociation of NaCl into Na+ and Cl−. The
ion concentration c(t) was evaluated from a finite element analysis and
from the analytical solution of (53), with ct = 1, kF = 1, and Ka = 10.
b Time discretization error analysis

sistent with the notation used by those authors.5 In the first
reaction, νu = 1, whereas in the second reaction, νu = −1
so that the net molar supply for the soluble matrix product
according to (39) is ĉu = k f − rb. Similarly, it can be shown
that ĉb = rb − rd and ĉd = rd .

For a one-dimensional analysis in the range 0 ≤ x ≤ h,
with symmetry conditions applied at x = 0 and boundary
conditions cu = cd = 0 at x = h to represent a well-stirred
large bath, these authors provided analytical expressions for
the steady-state solution for cu(x), cb(x) and cd (x) in their
Eqs. (17)–(25). A FEBio finite element analysis of this prob-
lem was reproduced by implementing the three chemical
reactions in (54), using the values of h, k f , kb and kd pro-
vided in their Table II, and varying the diffusivities Du of the
soluble matrix product and Dd of the degraded product in the
ranges provided in that same table. Since their approach did
not accommodate changes in tissue volume with matrix accu-
mulation or degradation, V̄ = 0 was assumed for all three
reactions. A neo-Hookean model was adopted for the solid
matrix, using a value for Young’s modulus that far exceeded

5 DiMicco and Sah proposed that rd = kd
(
cb − cb∞

)
, where cb∞ repre-

sents a subpopulation of bound matrix products not allowed to degrade.
This relation is a commonly adopted deviation from the law of mass
action that may be implemented as an alternative constitutive relation
in FEBio. For simplicity, however, cb∞ = 0 is assumed here.

(a)

(b)

Fig. 2 a Comparison of finite element results (thick gray curves)
against analytical solution (thin black curves) for the cartilage matrix
biosynthesis, binding and degradation study by DiMicco and Sah
(2003). The function f (α, x/h) represents the normalized spatial distri-
bution of the soluble matrix product concentration, where cu = k f f/kb,
and bound matrix concentration, where cb = k f f/kd , over the range
0 ≤ x ≤ h, for different values of the non-dimensional parameter α
(see text). b Mesh convergence results for α = 8

the osmotic pressure gradients produced by gradients in
solute concentrations, to ensure negligible solid matrix defor-
mation. A comparison of the steady-state FEBio results to the
analytical solution of DiMicco and Sah (2003) is presented
in Fig. 2a, for different values of the non-dimensional para-
meter α = h

√
kb/Du , verifying that these two approaches

agree. The mesh employed for this analysis had 32 elements,
with a mesh bias along x such that the width of consecutive
elements from 0 to h decreased by a factor of 0.87. Using this
biasing scheme, varying the number of elements confirmed
mesh convergence for this analysis (Fig. 2b).

5.3 Solid remodeling

A closed-form solution may be obtained for a solid remod-
eling analysis based on (44)–(47), for a 1D problem under
infinitesimal strains. Consider a prismatic bar whose domain
is 0 ≤ x ≤ h, constrained at x = 0, and subjected to a normal
traction σ0 at x = h and a uniform body force per volume
f0 along its length. The axial stress for this bar is given by
σ = σ0 + f0 (h − x). Under infinitesimal strains, the strain
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(a)

(b)

(c)

Fig. 3 Spatial distribution of the solid apparent density at steady state,
in a prismatic bar of length h = 10, subjected to an axial traction σ0 =
−10 and body force per volume f0 = −1, over the range 0 ≤ x ≤ h,
with c = 104, γ = 2, and ψ0 = 0.01. The finite element solution is
obtained using B = 1 in (44), with initial condition ρs

r = 1 at t = 0, and
with the analysis performed until t = 200. a Prismatic bar geometry
and spatial distribution of ρs

r at steady state. b Comparison of finite
element analysis and analytical solution of (55) over the entire range
of x . c Mesh convergence results

energy density is �r = σ 2/2EY . Substituting (46) into this
expression and evaluating (44) in the limit of the steady-state
remodeling response (ρ̂s

r = 0) produces the steady-state solid
apparent density,

lim
t→∞ ρ

s
r = γ+1

√
[σ0 + f0 (h − x)]2

2cψ0
. (55)

A comparison of this analytical solution with the FEBio
steady-state response is presented in Fig. 3, for a representa-
tive set of values for h, σ0, f0, c, γ and ψ0, verifying agree-
ment between the finite element and analytical solutions. A
mesh convergence analysis demonstrates that the accuracy
of the finite element solution is independent of the number
of elements in the uniform mesh (Fig. 3c), consistent with
the fact that σ is prescribed and varies linearly with position,

such that the average force acting on each element is equally
accurate for any discretization. The rate of convergence to
the steady-state distribution is also unaffected by the mesh
size. The solution demonstrates that the density is highest at
the fixed end (x = 0), where the stress magnitude is greatest,
and decreases monotonically toward the free end (x = h),
where |σ | is smallest.

5.4 Interstitial solid growth

Consider a 1D analysis of interstitial tissue growth mod-
eled by the reaction Enutrient → E solid, such that V̄ =
Vsolid − Vnutrient �= 0. A closed-form solution may be
obtained if the growth process is limited to the range of infin-
itesimal strains and the nutrient concentration is assumed to
change negligibly over the time frame of the analysis so that
the only remaining unknown is the solid matrix displacement
u (x, t), in the range 0 ≤ x ≤ h.

For a 1D analysis, the axial normal stress is given by
σ = −p + HA∂u/∂x , where HA is the aggregate modu-
lus of the solid matrix (assumed to change negligibly with
growth) and the relative fluid flux is w = −k∂p/∂x accord-
ing to Darcy’s law, where k is the hydraulic permeability
(also assumed constant). The mixture momentum equation
reduces to ∂σ/∂x = 0; the mixture mass balance equation
in (22) becomes

∂

∂x

(
∂u

∂t
− k

∂p

∂x

)
= (

1 − ϕs
r

)
ζ̂ V̄, (56)

where ϕs
r ≈ ϕs under infinitesimal strains and ζ̂ V̄ is nearly

constant according to the law of mass action, since the nutri-
ent concentration changes negligibly. Given the boundary
conditions of zero displacement and fluid flux at x = 0,
and zero prescribed stress and fluid pressure at x = h, this
analysis reduces to solving the partial differential equation

∂u

∂t
− HAk

∂2u

∂x2 = (
1 − ϕs

r

)
ζ̂ V̄x, (57)

subject to

u (0, t) = 0 ,
∂u

∂x

∣
∣∣∣
x=h

= 0 , u (x, 0) = 0. (58)

The solution is thus given by

u (x, t)

h
= (

1 − ϕs
r

)
ζ̂ V̄τ

[

2π−4
∞∑

n=1

(−1)n
(

n − 1

2

)−4

× sin

[(
n − 1

2

)
π

x

h

](

e
−
(

n− 1
2

)2
π2 t

τ − 1

)]

(59)

where τ = h2/HAk, from which p = HA∂u/∂x may be
evaluated.
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(a)

(b)

Fig. 4 a Surface displacement u (h, t) /hξ for 1D analysis of inter-
stitial solid growth. The analytical solution is based on (59), with
η = (

1 − ϕs
r

)
ζ̂ V̄τ . The finite element solution was obtained using

h = 1, HA = 1, k = 1, and
(
1 − ϕs

r

)
ζ̂ V̄ = 10−3. b Mesh convergence

results

This analysis was implemented in FEBio using a chemi-
cal reaction with an implicit nutrient and a prescribed posi-
tive constant value for V̄ . A comparison of the surface dis-
placement (evaluated from (59) at x = h) between the ana-
lytical and finite element solutions shows agreement, ver-
ifying code accuracy for the inclusion of the source term
in the mass balance relation (22) for the mixture. A phys-
ical interpretation of this result is that continuous inter-
stitial solid deposition decreases the solid matrix porosity
(ϕw ≈ 1 − ϕs) and concomitantly pressurizes the intersti-
tial fluid as it squeezes it out of the decreasing pore volume.
The progressive interstitial pressurization causes the tissue
to swell initially as shown in Fig. 4a, until the fluid pres-
sure achieves a steady-state value that drives fluid out at the
same rate as the pore volume decreases, producing a steady-
state swelling response (u (h) /h → (

1 − ϕs
r

)
ζ̂ V̄τ/3). The

analytical solution remains valid only as long as ϕs changes
negligibly, though the FEBio solution is able to accommo-
date finite changes in ϕs . The mesh employed for this analy-
sis had 32 elements, with a mesh bias along x such that the
width of consecutive elements from 0 to h decreased by a fac-
tor of 0.87. Using this biasing scheme, varying the number
of elements confirmed mesh convergence for this analysis
(Fig. 4b).

6 Illustration

In this section, chemical reactions are used to illustrate car-
tilage tissue engineering when accompanied by significant
construct dimensional changes due to synthesis of charged
proteoglycans. To model this process, consider a mixture
consisting of a porous agarose hydrogel (modeled as a neo-
Hookean porous solid with Young’s modulus set to 12 kPa
and Poisson’s ratio set to zero), seeded with chondrocytes.
The culture bath contains dissociated NaCl at 145 mM and
MgSO4 at 5 mM, as well as glucose at 25 mM. These bath
conditions are assumed to remain constant and are prescribed
as boundary conditions for the dissociated ions.

It is assumed that chondrocytes consume glucose to main-
tain their normal metabolic functions, Ecells + EGlc →
Ecells+Ewaste, a forward reaction modeled by the law of mass
action with k = 4 × 10−5 s−1; cells (whose concentration is
assumed constant) and waste products are treated as implicit
mixture constituents in the finite element model, whereas glu-
cose is modeled as a solute. Chondrocytes also consume glu-
cose and sulfate to synthesize the chondroitin sulfate (CS) of

proteoglycans according to Ecells +EGlc +ESO2−
4 → Ecells +

ECS2−
, a forward reaction modeled by the law of mass action

with k = 1 × 10−7mM−1 s−1; note that this reaction explic-
itly satisfies the electroneutrality condition by exchanging
the charges of soluble sulfate with CS. It is assumed for sim-
plicity that the synthesized CS is immediately bound to the
solid matrix. Also for simplicity, all solute diffusivities are set
to 5 × 10−4 mm2/s within the mixture and 6 × 10−4 mm2/s
in free solution, whereas the hydraulic permeability of the
porous hydrogel is set to 10−7 mm4/µN−1 s−1.

The synthesis of CS increases the tissue fixed charge den-
sity magnitude according to (8), which induces changes in
the interstitial concentrations of Na+, Cl−, Mg2+ and SO2−

4
due to the enforcement of electroneutrality, concomitantly
increasing the interstitial osmotic pressure. An axisymmet-
ric analysis of a cylindrical construct (initial radius of 5 mm
and thickness of 2.2 mm) was performed, using a uniform
mesh with 10 elements along the radial direction × 4 ele-
ments through the thickness. The construct was assumed to
rest on the impermeable bottom of a culture dish. The analysis
spanned a culture duration of 30 days, using time increments
of 10 h.

Glucose consumption by cells via both modeled reactions
resulted in an inhomogeneous distribution, with decreasing
content toward the bottom and center of the construct (Fig. 5).
This inhomogeneous glucose availability produced a simi-
larly inhomogeneous CS deposition, with greatest synthesis
near the construct periphery as seen in the contour map for
cF

r . The swelling produced by the inhomogeneous Donnan
osmotic pressure p, resulting from the negatively charged
CS, altered the construct shape as shown in the figure, with
local swelling ratios ranging from 2.8 at the bottom center
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Fig. 5 Axisymmetric analysis of engineered cartilage growth with glu-
cose consumption and synthesis of negatively charged CS. The tissue
construct, which is initially cylindrical, rests on the impermeable bot-
tom of the culture dish. This cross-sectional view shows an outline of
the construct and contour maps of the glucose concentration, cF

r , p and
ϕs

r at day 30

to 7.8 at the top radial edge, and tissue dimensions increas-
ing to a final radius of 8.4 mm and thickness of 4.0 mm. The
deposition of CS also increased the referential solid volume
fraction ϕs

r from a uniform value of 0.02 at day 0 (agarose
volume fraction) to values shown in the figure.

7 Discussion

This study has presented the analysis and computational
implementation of chemical reactions in a mixture frame-
work involving charged reactants and products that include
solutes and solid-bound molecules in a porous hydrated
deformable solid matrix. Any number of chemical reactions
may be modeled in a mixture, with each reaction described
by user-defined constitutive relations. The theory of reactive
mixtures naturally lends itself to incorporating the effect of
mechanics on chemical reactions by allowing the molar pro-
duction rate ζ̂ to depend on the state of strain (and thus the
state of stress or the strain energy density). This direct link
between mechanics and chemistry is shown explicitly in this
study for the first time and is further characterized by the
need to formulate the tensorial tangent ζ̂ ε of this produc-
tion rate with respect to the strain tensor. The novel compu-
tational implementation of this framework demonstrates its
applicability in practice; its availability in the public domain
addresses a need not met by other commercial or open-source
products.

The modeling of charged species in the chemical reac-
tions also represents a novel contribution that exposed chal-

lenges not necessarily anticipated in the prior literature. Con-
sistent with the triphasic theory of Lai et al. (1991) and sub-
sequent models in the related literature (Huyghe and Janssen
1997; Gu et al. 1998), this study also assumed that elec-
troneutrality is satisfied at every point in the continuum. The
electroneutrality constraint is a modeling assumption akin to
the assumption of incompressibility: It is an idealized con-
straint that approximates the behavior of real materials for
the purpose of introducing some level of simplification. In
the case of electroneutrality it follows that the mixture can-
not allow charge accumulation, as would otherwise occur in
a capacitor. The resulting simplification is that the net electric
charge is no longer variable so that the electric current den-
sity becomes divergence-free. Enforcing electroneutrality in
a chemical reaction is achieved by balancing the charges of
reactants and products according to their net stoichiometric
coefficients. Violating this requirement would otherwise pro-
duce spurious electric currents that would fail to satisfy the
divergence-free condition.

Another novel feature of this implementation is that it
allows modeling of solid-bound molecules that are explicitly
involved in chemical reactions, in addition to the standard
modeling of solutes as reactants and products. This feature
makes it possible to model the growth mechanics of the solid
matrix of a tissue or cell by allowing solid mass to be added
or removed explicitly in response to chemical reactions. The
reactive exchange of mass with the solid matrix leads to the
explicit evolution of the referential solid volume fraction ϕs

r
and the referential fixed charge density cF

r , which must be
taken into account in the computational implementation to
avoid spurious electric currents. The temporal evolution of
ρσr makes it possible to model growth mechanics driven by
(a) osmotic effects where the change in ϕs

r alters the intersti-
tial osmolarity; (b) osmotic effects where the change in cF

r
alters the Donnan osmotic pressure; and (c) changes in the
molar volume of the constituents of the solid matrix as a result
of mass exchanges with soluble species. Furthermore, con-
sistent with prior solid remodeling theories, alterations in ρσr
can be tied to alterations in solid matrix material properties
by providing constitutive relations with explicit dependen-
cies between properties and composition.

In the model of Fig. 5, cells were not modeled explicitly
in the mesh; instead, cellular synthesis was assumed to occur
throughout the continuum representation of the tissue, with
matrix deposition occurring at every point. An alternative
approach might be to model cells explicitly as domains within
the finite element mesh (using either a single element or a
cluster of elements) interspersed in a mesh of elements rep-
resenting the extracellular matrix, as reported in prior studies
(Guilak and Mow 2000; Sengers et al. 2004b; Ateshian et al.
2007). In that case, chemical reactions may be segregated
to specific extracellular and intracellular compartments, and
even within membrane structures.
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Fig. 6 Cartilage construct engineered from chondrocyte-seeded
agarose gels. Side view of construct at right shows an overlay of a day 0
construct over the image of the day 53 construct. The increased bulging
and construct opacity at the outer periphery is qualitatively consistent
with the shape and matrix deposition distribution of the finite element
results in Fig. 5 (Scale bar 1 mm)

Several problems for which analytical solutions are avail-
able were used to verify the finite element code. These prob-
lems were selected to test various features of the implemen-
tation, including the modeling of multiple reactions with
explicit or implicit reactants and products, solid remodeling
in response to a mechanical signal, interstitial solid growth
producing a rate of change of the pore volume, and a reac-
tion involving charged solutes. A cartilage tissue engineering
analysis was also presented to illustrate how the synthesis of
charged molecular species that bind to the solid matrix may
induce finite dimensional changes due to osmotic swelling.

This theoretical framework assumes that each of the mix-
ture constituents is intrinsically incompressible, even though
the mixture (whose boundaries are defined on the solid
matrix) may gain or lose volume due to fluid exchanges with
its environment. Intrinsic incompressibility is an idealization
of the behavior of real materials which is adopted primarily to
simplify the model formulation. Without this assumption, it
becomes necessary to distinguish between the intrinsic com-
pressibility of the constituents and the collapsibility of the
pores of the solid matrix, which together combine to produce
the compressibility of the mixture. Experimentally, the valid-
ity of this modeling assumption may be tested by exposing
the mixture to a physiologically relevant hydrostatic pressure
and examining its volumetric change. These validations have
been reported for articular cartilage by Bachrach et al. (1998)
and osteoblast-like cells by Wilkes and Athanasiou (1996).
It may be reasonable to assume that most biological tissues
and cells, which share similar constituents, can be adequately
modeled under this modeling assumption.

Incorporating chemical reactions in a modeling frame-
work for biological tissues facilitates investigations of
mechanobiology by providing a modeling environment that
can account for a broader range of mechanisms involved
in biology and physiology. This framework may be par-
ticularly beneficial to optimizing tissue engineering culture

systems by examining the influence of nutrient availability
on the evolution of inhomogeneous tissue composition and
mechanical properties, the evolution of construct dimensions
with growth, the influence of solute and solid matrix electric
charge on the transport of cytokines, the influence of bind-
ing kinetics on transport, the influence of loading on binding
kinetics, and the differential growth response to dynamically
loaded versus free-swelling culture conditions. Future devel-
opments of the code may include modeling chemical reac-
tions that drive molecular motors to produce phenomena such
as active solute transport or actin–myosin contraction.
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Appendix

Virtual and nodal variables are interpolated as

δv =
∑

a

Naδva �u =
∑

b

Nb�ub

δ p̃ =
∑

a

Naδ p̃a � p̃ =
∑

b

Nb� p̃b

δc̃γ =
∑

a

Naδc̃
γ
a �c̃ι =

∑

b

Nb�c̃ιb,

(60)

where Na are the interpolation shape functions. Then, δG in
(27) may be discretized as

δG =
∑

a

δ p̃ar p
a +

∑

ι

∑

a

δc̃ιar ιa, (61)

where

r p
a = V̄

∫

b

Na
(
1 − ϕs) ζ̂ dv

rγa = νγ
∫

b

Na
(
1 − ϕs) ζ̂ dv.

(62)

Similarly, the linearization of δG along �u in (29) may be
discretized as

DδG [�u] =
∑

a

δ p̃a

∑

b

kpu
ab ·�ub

+
∑

γ

∑

a

δc̃γa
∑

b

kγ u
ab ·�ub, (63)
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where

kpu
ab = V̄

∫

b

Na

[
ζ̂ I + (

J − ϕs
r

)
ζ̂ ε

]
grad Nb dv

kγ u
ab = νγ

∫

b

Na

[
ζ̂ I + (

J − ϕs
r

)
ζ̂ ε

]
grad Nb dv,

(64)

and the linearization along �c̃ι in (32) becomes

DδG
[
�c̃ι

] =
∑

a

δ p̃a

∑

b

k pι
ab �c̃ιb

+
∑

γ

∑

a

δc̃γa
∑

b

kγ ιab �c̃ιb, (65)

where

k pι
ab = V̄

∫

b

Na Nb
(
1 − ϕs) ∂ζ̂

∂ c̃ι
dv

kγ ιab = νγ
∫

b

Na Nb
(
1 − ϕs) ∂ζ̂

∂ c̃ι
dv.

(66)

Given that δva , δ p̃a and δc̃a are arbitrary, the contribution
from δG to the discretized form of (28) may be summarized
in matrix form as

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

0 0 0 · · · 0

kpu
ab 0 k pγ

ab · · · k pι
ab

kγ u
ab 0 kγ γab · · · kγ ιab
...

...
...

. . .
...

kιuab 0 kιγab · · · kιιab

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

�ub

� p̃b

�c̃γb
...

�c̃ιb

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0

−r p
a

−rγa
...

−r ιa .

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

(67)
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