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Abstract

Rodent self-grooming is an important, evolutionarily conserved behavior, highly sensitive to
pharmacological and genetic manipulations. Mice with aberrant grooming phenotypes are
currently used to model various human disorders. Therefore, it is critical to understand the biology
of grooming behavior, and to assess its translational validity to humans. The present in-silico
study used publicly available gene expression and behavioral data obtained from several inbred
mouse strains in the open-field, light-dark box, elevated plus- and elevated zero-maze tests. As
grooming duration differed between strains, our analysis revealed several candidate genes with
significant correlations between gene expression in the brain and grooming duration. The Allen
Brain Atlas, STRING, GoMiner and Mouse Genome Informatics databases were used to
functionally map and analyze these candidate mouse genes against their human orthologs,
assessing the strain ranking of their expression and the regional distribution of expression in the
mouse brain. This allowed us to identify an interconnected network of candidate genes (which
have expression levels that correlate with grooming behavior), display altered patterns of
expression in key brain areas related to grooming, and underlie important functions in the brain.
Collectively, our results demonstrate the utility of large-scale, high-throughput data-mining and
in-silico modeling for linking genomic and behavioral data, as well as their potential to identify
novel neural targets for complex neurobehavioral phenotypes, including grooming.
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1. Introduction

Large scale, high-throughput data-mining and data integration are rapidly becoming key
methods for scientific discovery (Tabakoff et al., 2009, Xuan et al., 2010), emphasizing the
importance of sharing biological data (Akil et al., 2011, Sears et al., 2006). Integration of
behavioral phenotypes with neural and genomic data, such as phenomics and ‘genetical
genomics’, is emerging as a promising strategy for the dissection of complex gene-behavior
interactions (Bennett et al., 2011, Bhave et al., 2007, Tabakoff et al., 2007). Among the
behavioral phenotypes, self-grooming is especially important, because it represents an
evolutionarily ancient behavior with multiple biological functions (from hygiene to stress
reduction) and a complex, patterned nature (Chen et al., 2010, Fentress, 1988, File et al.,
1988, Sachs, 1988, Spruijt et al., 1992). In rodents, grooming is one of the most frequently
occurring behaviors, often correlating with the levels of arousal (Fentress, 1968, 1977, 1988)
and various anxiety-like behaviors (Denmark et al., 2010, Kalueff and Tuohimaa, 20053, c,
Kyzar et al., 2011). Mounting evidence shows the value of analyzing grooming as a
behavioral endpoint following genetic or pharmacological manipulations in experimental
models of various brain disorders (Audet et al., 2006, Chen, Tvrdik, 2010, Estanislau, 2012,
Greer and Capecchi, 2002, Kalueff et al., 2004, Kalueff and Tuohimaa, 2005c).

While mouse self-grooming is an important behavioral domain, little is known about its
genetic architectonics or genomic correlates (Bergner et al., 2010). Established in 2000, the
Mouse Phenome Database (MPD) is a publicly available platform, providing phenotypic
data on different mouse strains (Grubb et al., 2009). While the MPD initially lacked mouse
grooming data, it now contains reports on grooming frequency in A/J, C57BL/6J, consomic
(Lake et al., 2005) and wild-derived strains (Koide and Takahashi, 2006), as well as
grooming duration from multiple inbred strains in several anxiety tests (Brown et al., 2004).
Comparison of these data with other behaviors using the MPD online tools has revealed
correlations with anxiety-sensitive behaviors, reflecting the importance of measuring
grooming in animal anxiety paradigms (Crawley, 2007, Hart et al., 2010, Kalueff and
Tuohimaa, 2005b).

The present study aimed to examine the potential link between mouse grooming behavior
and the expression of selected genes within the brain. This study also demonstrates the
utility of large-scale data-mining and in-silico (computer-based) modeling for linking
genomic and behavioral data, and its potential to identify new neural targets for specific
phenotypes of interest. Using mouse grooming as a representative phenotype, this proof-of-
concept study can be applied in future research to other mammalian behavioral and
physiological phenotypes.
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2. Methods and Results

2.1. General

2.2. Phase l.

overview

To achieve the goals of this study, we utilized the MPD data containing behavioral
phenotypes (Brown, Gunn, 2004) and whole-brain genomic microarray results (Tabakoff,
Bhave, 2007); see (Bennett, Saba, 2011, Stewart et al., 2011) for the conceptual framework.
We first used the MPD tools to identify significant correlations for grooming and gene
expression data across four widely used behavioral paradigms (open-field test, elevated
plus-maze, elevated zero-maze and light-dark box); Fig. 1. We next ranked these candidate
genes in terms of the strength of their correlations with grooming behaviors, identifying a
sub-group of genes whose expression within the brain most strongly correlated with
grooming phenotypes. We then used the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) (Szklarczyk et al., 2011) and Cytoscape tools to create interactome
networks for both the selected genes and their human orthologs. Based on the overlap
between these networks, we identified 31 candidate genes with translational potential, and
determined their associated biological roles within the brain using GoMiner and Mouse
Genome Informatics tools (Shaw, 2009). Following identification of candidate genes, we
completed in-silico validation of this approach by comparing patterns of expression in the
candidate genes to neutral ‘control’ genes (chosen by selecting probes at random).
Compared to the control genes, the candidate genes were more strongly correlated with
grooming behavior, and showed altered expression levels in key brain regions involved in
grooming using the Allen Brain Atlas (ABA) (Lein et al., 2007, Ng et al., 2009). These
candidate genes also produced more nodes per gene within interactome networks, thus
demonstrating the usefulness of this in-silico phenotype-genomic methodology.

Figure 1 outlines the overall methodological approach used in this study, summarizing its
phases and steps. The rationale of Phase | is using correlational analyses from two MPD
projects for a step-by-step dissection and identification of potential candidate genes and
creating an integrated ‘translational’ molecular network for these genes. Phase 1l of this
projects aims to provide an in-silico validation for Phase I, assessing known functions of the
selected candidate genes, their expression in relation to regional distribution in the brain, and
correlation with grooming behavior. Collectively, this approach allowed us to identify an
interconnected network of candidate genes (which have expression levels that correlate with
grooming behavior, display altered patterns of expression in key brain areas related to
grooming and underlie important functions in the brain) which are therefore likely to
represent potential neural targets for mouse grooming behavior.

The search for candidate genes

General approach and generation of candidate genes (Step 1)—The Brown
laboratory’s 2004 study (Brown1 project in MPD) contains grooming duration data for male
and female mice of the 10 weeks-old 129S1/SvimJ, A/J, AKR/J, BALB/cByJ, BALBI/cJ,
C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, MOLF/EiJ and SJL/J strains (Brown,
Gunn, 2004). Only male mouse data were used in the present experiment, to eliminate
potential confounds associated with using mixed-sex cohorts (Table 1). There were marked
strain differences in grooming duration in the four behavioral tests, with C57BL/6J mice
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showing the longest, and MOLF/EiJ, BALB/cJ, BALBc/ByJ and FVB/NJ strains showing
lower grooming. Since strain differences in grooming behavior were not the main focus of
this analysis, this aspect will not be discussed here. Note, however, that the MPD enables a
fast comparison of all grooming scores in the Brown et al. 2004 study (Brown, Gunn, 2004),
and is publicly available for further evaluation. The reliability of these grooming data was
first assessed using the MPD toolbox, to determine whether the strain means for duration of
grooming in the open field, elevated plus-maze, elevated zero-maze and light-dark box tests
of anxiety were significantly correlated. Briefly, from grooming phenotypical data (Brownl
MPD project) for each of the four tests we chose “Other tools/toolbox”, and used
“Correlations and relationships between phenotypes” option to “Search all MPD for
correlated phenotypes”, selecting the Brown1 project from the drop-down menu. Tables 1
and 2 show the correlations for male mouse grooming duration in 12 inbred strains in the
four different behavioral tests. Completed globally for all strains and separately within each
strain and using strain means, these results generally show positive correlations between
grooming duration data in different novelty-based anxiety tests.

Gene expression data from microarray studies from the Tabakoff laboratory, also available
on the MPD (Tabakoffl project), used an Affymetrix GeneChip Mouse Genome 430 2.0
containing 39,985 probesets to analyze whole-brain mRNA expression in multiple inbred
strains of male mice (Tabakoff, Bhave, 2007) of the same age (10 weeks) as in Brown et al.
(2004) study. For each strain, 4-6 replications were performed in order to minimize random
variation between subjects, and the Robust Microchip Average expression measure was used
to normalize the values for each gene for a given mouse strain (see (Irizarry et al., 2003) for
details). To parallel grooming behavior with gene expression, the strain means for grooming
data (Brown, Gunn, 2004) on each behavioral test were correlated with the mean whole-
brain mMRNA expression data (Tabakoff, Bhave, 2007) for male mice of the same strains
using the MPD correlational toolbox. Briefly, from grooming phenotypical data (Brown 1
project) we chose “Other tools/toolbox™, and used its “Correlations and relationships
between phenotypes and genotype or gene expression” option to “Find correlated gene
expression probesets” in the “brain_Tabakoff1” project (selected from the drop-down
menu). Note, however, that the MPD user interface undergoes regular modifications, and its
future online versions and menu options may differ from those used in this 2012 study. A
stringent level of significance (P<0.005) was used for this procedure, yielding significant
correlations between 1028 mMRNA probesets and grooming duration, of which 881 were
located in known gene areas, in total accounting for 844 different mouse genes.

Analysis of candidate genes (Steps 2-5)—After identifying genes whose expression
strongly correlated with grooming duration (P<0.005), we ranked these genes based on the
number of behavioral paradigms in which they significantly correlated with grooming. All
genes significantly correlating with grooming in more than one behavioral test (e.qg.,
Tubgcp4, Ttl, Ptger3, Hoxb4, Pdgfb, Ptpra, Faah) were first included in our analysis as
independently reconfirmed in several different behavioral models. Next, we ranked the
remaining genes as potential candidate genes based on the absolute size of the Pearson
correlation coefficient between grooming duration and mRNA expression (R nearest 1 or -1
in one of the four tests). In order to obtain a manageable number of genes for network
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analysis, we limited our search to the first 40 genes, allowing us to ensure adequate
statistical power and avoid false positives. Due to the translational nature of our study, we
further focused on the 31 candidate genes which were present in both mice and humans (Fig.
1).

GoMiner software (Zeeberg et al., 2003) was used to analyze the function of the candidate
genes and determine any known role of these genes in brain function and neurobehavioral
disorders. To complement these analyses, the Mouse Genome Informatics (MGI) database
(Shaw, 2009) provided aberrant phenotypes of genetically modified mice (relevant for each
of the candidate genes), allowing additional insight into gene-behavior interactions for the
group of candidate genes identified in our study (Table 3). Protein-specific BLAST searches
enabled further comparison of the homology between candidate mouse gene products and
their human orthologs (Table 3), and the Ontological Discovery Environment (ODE) (Baker
et al., 2009) and Drug Related Gene Database (DRG) (Gardner et al., 2008) were used to
further search published gene expression studies linking candidate genes to mouse neural
phenotypes. As shown in Table 3, bioinformatics-based analysis of the 31 genes present in
both mice and humans revealed several interesting patterns, including 4 genes that encode
tubulin-associated proteins (Tubgcp4, Ttl, Racgap and Maprel), and 5 genes related to either
actin or myosin (Pdgfb, Myolb, Cdhl, Myo7a and Parvg). Finally, the Protein database
(Pruitt et al., 2007) and sequence analysis using Hum-mPLoc (Shen and Chou, 2007) were
also used in this study to characterize cellular location of protein products of the selected
candidate gene (Fig. 3E).

2.3. Phase Il. In-silico validation

Selection of control genes (Step 6)—To examine the validity of the procedure used to
select candidate genes in Phase I, we used a random approach to select a group of control
genes (see similar methods of selecting control genes to link gene activity to behavioral
phenotype used in published literature (Mignogna and Viggiano, 2010)). For the present
study, using the list of probes contained on the Affymetrix GeneChip Mouse Genome 430
2.0 microarray, we selected every 500t probe (e.g., 500, 1000, 1500), which resulted in 31
control probes that targeted a gene-coding area, which were present in both mice and
humans, and were not part of the 844 ‘putative’ candidate genes correlated with grooming
duration in the previous step (Fig. 1). The control genes selected for this study included
Cdkn2d, Trpm7, Sult2bl, Tnfaipl, N6amt2, Bmp7, Thcldl, Tspan8, Chrnad, Rpstkb2, Lipe,
Csnk1g2, Rhbddl, Sc27a4, Lpxn, Map2k7, Srekl, Fmnl, Txndcl, Nfaml, Syt11, Alkbh4,
Ppplrl4c, Wwox, Sf3a3, Ppmll, Cotl1, Gpr183, Erbb2ip, Lpp and Zfp879 (based on ABA
data, all these genes are expressed in the mouse brain, and therefore were appropriate to use
as control for this study).

Correlation of strain rankings of grooming duration and gene expression
(Steps 5 and 7)—In order to validate the selection criteria used to generate candidate
genes, the grooming duration measurements for each strain were compared with the gene
expression of each strain. The Brown et al. data provided grooming duration for 12 strains
which we ranked from 1 to 12, based on their results in 4 separate behavioral paradigms (the
C3H/HeJ mice were not tested in the elevated zero maze in the Brown et al. study, and their
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strain rank for grooming was calculated based on 3 other behavioral tests). The four ranks
for each strain/test were then averaged across all tests, enabling us to organize the 12 mouse
strains according to their overall grooming duration rank ranging from 1 to 12 (Fig. 2A).

The Tabakoff laboratory’s microarray data provided expression values for our candidate and
control genes in each of the 12 mouse strains (genes with multiple probes targeting the same
gene were averaged to obtain a single value per gene). The expression values for each gene
were ranked from 1 (lowest) to 12 (highest), to match with the number of mouse strains used
in this study. At this point, based on their initial ‘strain” Pearson correlation coefficients, as
explained in Phase I, the candidate genes were divided into positively correlating with
mouse grooming (17 genes) or negatively correlating with mouse grooming (14 genes), in
addition to 31 control genes. For each mouse strain, we then calculated the total rank of
expression of genes from each group separately, i.e., positively correlating (range: 17-204),
negatively correlating (range: 14-168) and control genes (range = 31-372). Once the strain
ranking for grooming and gene expression were calculated, we applied Spearman correlation
coefficient to further analyze these data. As the strains were ranked from highest to lowest
grooming duration, we graphed the gene expression data for each strain (Fig. 2A). The genes
positively correlating with grooming trended downward (i.e., the lower the grooming
duration of a given strain, the weaker the gene expression; Spearman R = 0.53; P<0.05). The
genes which negatively correlated with grooming showed the opposite pattern (Fig. 2A;
Spearman R = —0.92; P<0.00001). In contrast, as shown in Fig. 2A, the control genes
showed no significant correlation between strain gene expression and strain grooming
duration (Spearman R = 0.19; P<0.5, NS).

Notably, the C57BL/6J mice had the highest grooming duration in the behavioral tests,
consistent with earlier observation of robust grooming behavior in this common inbred
mouse strain (Kalueff and Tuohimaa, 2004). In this strain, the genes which positively
correlated with grooming were highly expressed in the brain while the genes with negative
correlation were expressed at low levels, thereby supporting the genes’ selection criteria
described above, and the suitability of this strain for further analyses and validation.

Regional expression analysis using the Allen Brain Atlas (Step 8)—Since the
microarray data used here (Tabakoff, Bhave, 2007) provided only whole-brain expression
data, the regional expression of candidate and control genes was assessed using the ABA
expression data for the C57BL/6J strain (Lein, Hawrylycz, 2007). Notably, of the 12 strains
investigated in this analysis, the C57BL/6J mice displayed the longest grooming duration,
supporting the use of this strain in dissecting the expression patterns of our candidate genes.
The ABA contains RNA expression values from 12 different regions and multiple genes
across the entire genome (Lein, Hawrylycz, 2007). If the ABA gene expression data
contained multiple experiments for the same gene, data were averaged across experiments to
obtain a single value per gene for each brain region. Expression data were unavailable for 3
candidate genes (Gosrl, Tm2d2, Racgapl) and 2 control genes (Srekl, Tnfaipl). Because
some genes are expressed at high levels across the brain while other genes have uniformly
lower expression, we converted each raw expression score into a rank from 1 to 12, giving
each gene equal weighting, regardless of their raw expression levels. This strategy was first
applied to a cohort of randomly selected control genes, reflecting the expression patterns of
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the entire genome. Next, the candidate genes were divided into two groups (as described
previously), including genes positively or negatively correlating with grooming duration.
The brain structures where candidate and control genes were expressed differently provided
us with potential regions of importance for mouse grooming. Analyzing the average
expression for each brain area, the highest deviation in expression between control and
candidate genes occurred in the medulla, but not in the areas usually not implicated in the
grooming phenotypes of mice, such as the olfactory cortex and pons (Fig. 2B). Overall, the
candidate genes that positively correlated with grooming differed significantly (by U-test)
from the control cohort in 6 regions (medulla, cerebellum, midbrain, thalamus, striatum and
hypothalamus), while the negatively correlated candidate genes differed from the control
genes in these same 6 regions (Fig. 2B). Interestingly, the positively and negatively
correlated candidate genes showed similar trends in expression across different brain
regions, implicating these genes in grooming in a striking contrast to randomly selected
control genes (Fig. 2B).

Network analysis using STRING database (Step 9)—Examining the functionality of
the genes in our study, we used the STRING database (Szklarczyk, Franceschini, 2011)
containing known and predicted protein-protein interactions to analyze the protein products
of the 31 candidate genes present in both humans and mice. Several other studies have
already utilized protein-protein interaction networks to make predictions about the role of a
gene and its potential phenotypes (Lage et al., 2007, Wang and Marcotte, 2010). The
STRING database calculated all direct interactions between these 31 candidate protein
products and the rest of the proteome, generating a network of protein-protein interactions.
The confidence that a given protein-protein interaction represents a functional relationship is
reported by the STRING database as an Interaction Confidence ranging from 0 to 1. To
increase the predictive power of this network, we generated a protein-protein interactome for
the 31 candidate protein products using a stringent Interaction Confidence of at least 0.8, a
threshold that is high enough to manage false positives and is commonly used in the
literature (Kim et al., 2010, Rybarczyk-Filho et al., 2011). Cytoscape software (Cline et al.,
2007) was used to visualize these interactions in a web of nodes and edges, organized for
visualization using a layout algorithm (Fig. 3A). Of the 31 candidate mouse gene-products,
9 did not have known interactors exceeding the interaction confidence threshold, while 15
remained connected within a single network. For comparative purposes, a similar network
was also generated for the control genes (Fig. 3B).

The same procedure was next applied to the respective human orthologs of these proteins,
using an interaction confidence of = 0.8 (Fig. 3A). Cytoscape generated and visualized the
interactome of 31 human gene candidates, where 7 did not have known interactors at the
chosen interaction confidence, and 20 remained connected in a single network. We then
used Cytoscape to assess the overlap between the mouse and human interactomes, yielding a
final network of interacting proteins present in both species (Fig. 3A). Ten of the 31 gene
candidates remained interconnected within a single network, representing promising
translational targets to study grooming based on correlation between behavioral phenotypes,
brain gene expression and integration within the larger cross-species protein interactome
(Fig. 3A, Table 3). Finally, in order to assess the differences in connectivity between
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candidate and control genes, we constructed a mouse interactome for our control genes and
performed an unpaired Wilcoxon-Mann-Whitney U-test comparing the number of
connectors per node between the networks of mouse candidate and control genes. Overall,
the networks differed both qualitatively (with control genes appearing less interconnected in
the graphic form) and quantitatively, as the candidate gene networked showed a trend
(P<0.08) to more connectors per node, compared to the respective control gene network
(Fig. 3B).

3. Discussion

The present study is the first comprehensive in-silico analysis combining behavioral and
genomic data to examine mouse grooming behavior. An increased understanding of this
important phenotype is likely to lead to insights into complex neurobehavioral disorders,
such as autism and obsessive-compulsive disorder, OCD) (Berridge et al., 2005, Bienvenu et
al., 2009, Crawley, 2007, Feusner et al., 2009, Rapoport, 1991, Shmelkov et al., 2010,
Silverman et al., 2010, Swedo et al., 1989, Welch et al., 2007, Yang and Lu, 2011). In
addition, this “proof-of-concept’ approach can easily be adapted to other complex traits in
mice, as well as can be applied to grooming and other complex behaviors in various model
organisms and humans.

As already mentioned, brain expression microarray results initially provided 844 genes with
the expression significantly correlating with mouse grooming behavior. Since these genes
have been selected with a high stringency (P<0.005), we first chose genes with high
significance demonstrated independently in several behavioral tests, then selecting the
remaining candidates based on the strength of the correlation in a single test. By selecting
the top 40 genes, we were able to generate a highly integrated web of candidate genes and
their interactors, revealing easily visualized, potentially novel interactions for mouse
grooming behavior (Fig. 3A). Selecting genes with highly homologous and similarly
interconnected human orthologs further supported the translational potential of the candidate
genes identified in this study (Fig. 3A). To ensure that our candidate genes yielded a robust
and meaningful network, the protein-protein interactions in the mouse and human
interactomes were generated with a stringent Interaction Confidence (Fig. 3A). Since human
and mouse genomes share a high degree of homology (Boguski, 2002), many of the
pathways and interactions in humans are expected to be present in mice.

Representing a prominent phenotype sensitive to various genetic, behavioral and
pharmacological manipulations (Angrini et al., 1998, Greer and Capecchi, 2002, Kalueff et
al., 2005, Kalueff and Tuohimaa, 2005¢), rodent grooming is a complex, highly organized
behavior that can be further dissected for an in-depth analysis of centrally-controlled
neurophenotypes (Kyzar, Gaikwad, 2011). The current study has generated a list of putative
genes for the further study of mouse self-grooming behavior, representing a promising step
in understanding of the genetic control of multifaceted behavioral domains. This information
may help elucidate the relatively unknown neural and molecular mechanisms of self-
grooming and other patterned motor responses, including pathological stereotypic behavior
in OCD, attention deficit/hyperactivity disorder, schizophrenia and autism spectrum disorder
(Chao et al., 2010, Mahone et al., 2004, Nayate et al., 2011).
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In general, as genetic contributions to baseline anxiety/activity levels, motor coordination
and other factors may modulate mouse grooming behavior through multiple mechanisms,
each of the candidate genes may influence baseline grooming activity, or self-grooming in
response to novelty stress. For example, the mammalian phenotype for prostaglandin E
receptor 3 (Ptger3) mutation includes an abnormal body temperature and impaired pain
threshold (Ushikubi et al., 1998), which may produce variation in thermoregulation and
subsequently affect baseline grooming behavior. While myosin VIIA (Myo7a) mutation
primarily leads to vestibular dysfunction, numerous reports reveal comorbidity between
balance disorders and anxiety in both rodents (Kalueff et al., 2008, Shefer et al., 2010) and
humans (Alvord, 1991, Balaban and Thayer, 2001), consistent with altered anxiety
phenotypes in Myo7a mice (Shefer, Gordon, 2010).

Importantly, a number of cytoskeletal genes were associated with grooming behavior in this
study. While cytoskeletal proteins are well-known for their role in cellular organization
(Kellogg et al., 1994, Misteli, 2001), recent evidence has implicated actin- and myosin-
related proteins in more complex phenomena, such as receptor trafficking, dendritic
plasticity and sensorimotor gating (Bosch and Hayashi, 2011, Fradley et al., 2005, Yuen and
Yan, 2009). Certain cytoskeletal genes are likely to be differentially regulated in various
brain areas, leading to increased divergence and specialized functions in neurons. Therefore,
variation in synaptic receptor expression, driven by cytoskeletal mechanisms, may
contribute to the observed strain differences in grooming activity. This mechanism is only
beginning to be recognized by the field, as very few studies have focused on the
multifaceted role of cytoskeletal genes in complex behavioral and physiological domains.
The importance of actin in chromatin remodeling has been well documented (Ferrai et al.,
2009, Obrdlik et al., 2007, Percipalle and Visa, 2006), possibly explaining why the actin-
associated proteins Pdgfb, Myolb, Cdhl, Myo7a and Parvg were implicated by this study
(Table 3). The presence and interconnectedness of the cytoskeletal proteins Tubgcp4, Pdgfb,
Cdhl, Racgapl, Myo7a, Maprel and Parvg in the shared interactome (Fig. 3A) further
suggest their role in various processes related to grooming behavior.

Our analysis also produced some unexpected results, as several notable genes implicated in
compulsive grooming and OCD-like behavior (Sitrk5 and Sapap3) in rodents (Shmelkov,
Hormigo, 2010, Ting and Feng, 2011, Welch, Lu, 2007, Yang and Lu, 2011) and humans
(Bienvenu, Wang, 2009, Boardman et al., 2011, Zuchner et al., 2009) were not identified
here. This may be due to the detrimental effects arising from the genes’ mutation or
knockout, leading to the disruption of striatal neuronal differentiation and neurotransmission
(Shmelkov, Hormigo, 2010, Welch, Lu, 2007, Yang and Lu, 2011), whereas we focused on
the gene expression of wild-type inbred mice whose brain function has not been disrupted
through genetic modification. While genes identified in genetically modified animals may
not be involved in the normal self-grooming behavior, their disruption affects corticostriatal
circuitry, which can indirectly evoke aberrant grooming. Specifically, the selective over-
activation of the orbitofrontal cortex, abnormalities in striatal anatomy/cell morphology, and
alterations in glutamate receptor composition that accompany a mutation (Shmelkov,
Hormigo, 2010), may disrupt key neural pathways involved in normal grooming behavior.
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Likewise, while our analysis revealed the role of the transcription factor homeobox B4
(Hoxb4) in grooming, we did not observe a correlation of the more widely reported Hoxb8
gene, linked to compulsive grooming and other OCD-like behaviors (Chen, Tvrdik, 2010,
Greer and Capecchi, 2002, Yang and Lu, 2011). The Hox genes are arranged in the genome
in a collinear fashion, with the Hoxb genes clustered together on chromosome 17
(Chambeyron and Bickmore, 2004). Hoxb4 and Hoxb8 are both DNA sequence-specific
transcription factors responsible for various developmental processes, including
hematopoesis. Interestingly, the aberrant grooming in Hoxb8 mutant mice has recently been
linked to defective hemopoietic-derived microglia (Chen, Tvrdik, 2010). Thus, the possible
role of a hematopoietic gene Hoxb4 in mouse grooming in this study is congruent with the
hematopoitic hypothesis of aberrant grooming in mice (Chen, Tvrdik, 2010). Several of our
candidate genes have previously been linked to psychiatric disorders, some of which are
closely related to pathological grooming. For example, Ptpra knockout mice display defects
in neuronal migration, sensorimotor gating and habituation to startle response, thereby
linking Ptpra to schizophrenia (Takahashi et al., 2011). They also show altered anxiety
phenotypes (Skelton et al., 2003), whereas its human ortholog PTPRA resides in the 20p13
region which has repeatedly been linked to psychosis (Fanous et al., 2008, Teltsh et al.,
2008). As already suggested in the literature (Audet, Goulet, 2006, Isingrini et al., 2011,
Papaleo et al., 2011), grooming responses in mice may represent traits highly relevant to
schizophrenia, anxiety and depression, and our results are in line with this notion.

Previous work has implicated abnormal brain development in several complex
neuropsychiatric disorders. For example, aberrant neuronal migration and callosal
hypoplasticity are commonly reported in schizophrenia (Connor et al., 2011, Knochel et al.,
2012), whereas autistic patients show underdevelopment of the cerebellum and migration
defects (Verhoeven et al., 2010). Analysis of the 31 shared genes generated by this study in
mice and humans implicates these genes in brain development (Table 3), including abnormal
cerebellar morphology (Ccnd2), abnormal neuronal migration (Shail), abnormal brain
development (Tceb3, Nr6al) and impaired neuronal differentiation (Ttl). Moreover, genes
selected for the analyses have different numbers of known interactors (Fig. 3A), many of
which form key nodes in our shared interactome (e.g., Tubgcp4, Pdgfb, Cdhl, Gnb5,
Racgapl, Myo7a, Ccnd2, Maprel, Parvg). The genes Tubgcp4, Racgapl and Maprel were
mentioned previously because of their involvement with tubulin, while Cdhl, Myo7a and
Parvg interact with actin and may play a role in chromatin remodeling. Examining public
databases for Ccnd2 revealed its importance in the development of the cerebellum (Table 3),
where Gnb5 is also important, since Gnb5 knockout mice have abnormal cerebellar
development and motor incoordination (Zhang et al., 2011).

Furthermore, there were several limitations in our study. First, while we used correlational
in-silico analyses, more specific studies are needed to investigate the functionality of
identified genes in mouse grooming behaviors. Also, since our study utilized whole-brain
microarray data, this limitation may be further resolved using region-specific gene
expression analyses, empowered by sophisticated databases, such as the ABA (Lein,
Hawrylycz, 2007). Far from providing an expansive and complete list of genes associated
with mouse grooming, the approach described in this study offers a rapid, cost-effective and
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promising way to find new targets for important neurobiological functions (see (Stewart,
Gaikwad, 2011) for review). Furthermore, while our study focused on quantity (duration)
data, mouse grooming is a complex behavior with an important sequential (patterning)
microstructure (Kalueff et al., 2007). Therefore, future studies may elucidate the correlation
between gene expression and sequencing of mouse grooming. Again, because correlations in
biological systems do not necessarily represent functional interrelationships between
different phenomena or processes, future integrative research (currently underway in our
laboratory) will have to assess in-depth the exact causal pathways of aberrant grooming
examined here. Finally, epigenetic factors play an important role in the regulation of activity
of various genes (Fish et al., 2004, Meaney and Szyf, 2005, Rothbart and Posner, 2005,
Sheese et al., 2007, Voelker et al., 2009, Weaver et al., 2007). Therefore, further
characterization of the genes generated by our method, as well as analysis of their epigenetic
regulation and gene x environment interactions, may provide important clues in
understanding the neurobiology of grooming behavior and identifying targets for modulating
complex patterned behavior across a number of model species. While the link between
genes and behavior remains a major challenge in modern biological psychiatry, our study
may offer one of potential large-scale, data-mining approaches to address these aspects.
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Figure 1. Flowchart summarizing the methodology of selecting and analyzing candidate
grooming genes

During Phase I, the Mouse Phenome Database (MPD) brain expression microarray data and
behavioral data were selected from several murine anxiety paradigms and a wide spectrum
of mouse strains. Sep 1 used the MPD toolbox to generate Pearson correlation coefficients
between these two data sets yielding 844 mouse genes that correlated with self-grooming
(P<0.005). In step 2, this list of genes was prioritized by 1) how many sets of grooming data
from different behavioral paradigms a gene was correlated with, and 2) the strength of their
Pearson correlations, yielding a total of 40 candidate genes, 31 of which shared human
orthologs (step 3) and were selected for interactome analyses (step 4). During Phase |1, we
ranked the strains based on their grooming duration data (step 5). We then selected 31
random control genes (step 6) and correlated the grooming data with gene expression of the
31 candidate and randomly selected control genes (step 7). See text for details on the
selection of control genes for this study. Because the expression data from this study were
from the whole brain, the Allen Brain Atlas (ABA) provided further data for the regional
expression patterns of both control and candidate genes (step 8). The STRING database of
protein-protein interactions was used to create an interaction network (interaction
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confidence =0.8) of the protein products of these genes in mice, visualized using Cytoscape.
A similar network was generated using orthologous human proteins and Cytoscape, to
calculate the intersection between the mouse and human interactomes, resulting in a shared
interactome containing only the nodes and edges conserved for both mice and humans (step
9).
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Figure 2. Analysis of strain ranking and regional gene expression
A: Comparison of strain grooming duration with strain gene expression. Raw

behavioral data were used to rank the 12 mouse strains based on their grooming duration in
4 behavioral tests. C57BL/6J mice groomed the most while the MOLF/EiJ strain groomed
the least. Genes were divided into three groups: positively correlating with grooming (17
genes; top panel), negatively correlating with grooming (14 genes; middle panel), and
randomly selected control genes (31 genes; bottom panel). Microarray data allowed the
expression of the genes in these three groups to be summed for each strain, to be used for
correlation analyses (using Spearman correlation) with the strain ranking of grooming
duration.

B: Regional expression analysis of data obtained using the Allen Brain Atlas (ABA) for
C57BL/6J mouse strain. The following brain areas (selected based on ABA pre-defined
brain sectioning) were included in this analysis: HP = hippocampal formation; OC =
olfactory cortex; MD = medulla; 1C = isocortex; CB = cerebellum; CS = cortical subplate;
MB = midbrain; PN = pons; TM = thalamus; ST = striatum; HT = hypothalamus; PD =
pallidus. To investigate the expression patterns of candidate genes in the C57BL/6J mouse
strain (showing robust grooming responses in Brown et al. 2004 behavioral study), we used
the ABA data to establish the raw expression scores for 31 candidate and 31 control genes
across 12 regions of the mouse brain (see Methods for details of selecting control genes).
Based on their Pearson correlations with grooming duration, the candidate genes were again
divided into two groups, positively and negatively correlating with grooming, in order to
investigate whether different brain regions differentially affect expression data. The
expression values for each gene were numbered 1-12 (with 12 indicating the region of
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highest expression for a given gene and 1 the lowest expression) and averaged for each brain
region. Control genes expression ranking score differed significantly from both the
positively correlated and negatively correlated genes in 6 brain regions (P<0.05, U-test vs.
the respective ranking scores of control genes) — medulla, cerebellum, midbrain, thalamus,
striatum and hypothalamus, all strongly implicated in the regulation of mouse grooming
behavior.
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Figure 3. Network-based analysis of mouse candidate genes, their human orthologs and shared
networks (see Fig. 1 for general rationale)

A: Generating mouse grooming interactome using Cytoscape with data from grooming
duration (Brown, Gunn, 2004) and whole brain expression microarray (Tabakoff,
Bhave, 2007). Mouse grooming duration data from 12 strains in four behavioral tests were
correlated using the MPD Pearson R toolkit with whole brain expression microarray data,
generating 844 genes (step 1 in Fig. 1). The 40 most promising genes were selected for
further analysis (step 2). Using the 31 genes present both in mice and humans, the STRING
database generated a list of all proteins known to interact (Interaction Confidence =0.8).
Cytoscape software then allowed these proteins to be displayed graphically in a user-
friendly network (step 3). The 31 candidate gene products are displayed in red, while
interacting proteins are displayed in green and the edges are in black. Twenty-two genes had
interaction data available at an Interaction Confidence =0.8 (while 9 did not), and 15 of the
candidate genes maintained connectivity within a single network.

B: Generating human interactome based on human orthologs of mouse candidate
genes identified in panel A. Using the 31 genes present in both mice and humans, the
STRING database generated a list of all proteins known to interact (Interaction Confidence
>0.8). Cytoscape software then allowed these proteins to be displayed graphically in a user-
friendly network (Step 3). Interaction data were unavailable for 7 genes at an Interaction
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Confidence = 0.8; the remaining 20 human orthologs remained connected within a single
network (step 3).

C: Generating shared network of candidate genes (Step 4). Using mouse (A) and human
(B) interactomes generated previously in Step 3, Cytoscape calculated the intersection
between them to identify the candidate genes and interactors that were conserved between
the two species (Step 4). This network displays only the nodes and edges that are present in
both networks. Of the 31 genes conserved in both species, 10 remained connected within a
single network. The genes in this network are highly correlated with grooming behavior,
interact within a small network, and are prominent in both mice and humans. Further
analysis for these genes can be found in Table 3 (also see steps 5-8 in Fig. 1).

D: Generating the control gene network. In order to assess the candidate gene network,
the control genes network was generated using the same approach (step 9), showing little
connectivity between the genes, as can be assessed visually by comparing ‘candidate’ mouse
interactome (A) with ‘control’ interactome (this panel). Further analyses of the average
number of interactors per network showed that the mouse interactome of candidate genes
tended to have more nodes per gene, compared to the mouse interactome of candidate genes
(#P<0.08, trend, U-test), suggesting a generally higher functional interconnectedness
compared to the randomly selected control genes.

E: Diagram showing cellular location of protein products of 31 candidate genes (A).
Cellular location of these proteins was established based on protein sequence from Protein
database (Pruitt, Tatusova, 2007) and sequence analysis using Hum-mPLoc (Shen and Chou,
2007).
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Table 1

Mouse Phenome Database-derived correlational analyses (Pearson R) of Brown et al. (2004) grooming
duration data in male mice of multiple inbred strains tested in the open field test (OFT), light-dark box (LDB),
elevated plus-maze (EPM) and elevated zero-maze (EZM) tests.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duasnuely Joyny vd-HIN

Prog Neuropsychopharmacol Biol Psychiatry. Author manuscript; available in PMC 2014 August 22.

Tests | Strains | LDB | EPM | EZM
OFT | 1205UsvimJ | osi#n=12 | —008N=12 | 034N=10
Al 054* N=20 | -011N=19 -0.08N=6
AKRA 059" N=19 | 043#¥N=19 @
BALB/cBy] | 024N=12 | -006N=12 | -0.03N=12
BALB/c) -022N=12 | -023N=14 | -0.18N=10
C3H/Hel 035N=16 | -0.13N=16 $
C57BL/6J oagtN=13 | -003N=13 0.49 N =10
CASTIEi] -004N=10 | 010N=10 @
DBA/2] 011N =13 007N=13 | 0gg"** N=10
FVB/NJ -018N=12 | 014N=12 022N =12
MOLF/EiJ -010N=11 | goa*** N=11 @
SIL/ -038N=12 | 035N=12 @
LDB | 129s1/SvimJ -018N=12 | 074" N=10
Al - -0.28N=20 -021N=6
AKRI 045#N=19 @
BALB/cByJ -0.09N=12 031N=12
BALB/c) 0.70" N =12 0.20 N =10
C3H/HeJ -021N=18 $
C57BL/6J 038N =13 0.018 N = 10
CASTIEi] 025N =12 @
DBA/2] 022N =13 -0.22N=10
FVB/NJ -023N=12 | -023N=12
MOLF/EiJ -0.18N =11 @
SiLi -054%N=12 @
EPM | 12951/Svim] ~0.08 N =10
Al - -025N=6
AKR/J @
BALB/cByJ -0.23N =12
BALB/c] 0.05N =10
C3H/HeJ $
C57BL/6] -0.34N =10
CAST/EiJ @
DBA/2] 0.06 N = 10
FVBINJ 058" N =12
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Tests | Strains LDB EPM EZM
MOLF/EiJ @
SILA @

Correlations were not performed for some strains due to an insufficient sample size (n<3; $) or very low grooming activity (resulting in a lack of
data variability; @).

P<0.05;
P<0.01;
*kk
P<0.001;
Kk ok
P<0.0001,

#P =0.05-0.1 (trend);

NS - not significant (p>0.05).
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Table 2

Correlation (Pearson R) of mean grooming duration across 12 strains of mice, listed in Table 1, between the
elevated plus-maze (EPM) and zero-maze (EZM), light-dark box (LDB) and open field (OFT) tests.

EPM | LDB | EZM

OFT 0.40 0.37 | -0.01

EPM 061* | 028

LDB 0.40

Correlations with the EZM used 11 strains as C3H/HeJ were not tested on the EZM in the Brown et al. project;

*
P<0.05.
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