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Abstract

What is the nature of the vascular architecture in the cortex that allows the brain to meet the

energy demands of neuronal computations? We used high-throughput histology to reconstruct the

complete angioarchitecture and the positions of all neuronal somata of multiple cubic millimeter

regions of vibrissa primary sensory cortex in mouse. Vascular networks were derived from the

reconstruction. In contrast with the standard model of cortical columns that are tightly linked with

the vascular network, graph-theoretical analyses revealed that the subsurface microvasculature

formed interconnected loops with a topology that was invariant to the position and boundary of

columns. Furthermore, the calculated patterns of blood flow in the networks were unrelated to

location of columns. Rather, blood sourced by penetrating arterioles was effectively drained by the

penetrating venules to limit lateral perfusion. This analysis provides the underpinning to

understand functional imaging and the effect of penetrating vessels strokes on brain viability.

Neuronal computation in the mammalian brain is energetically costly, and the brain has

limited reserves of energy1,2. A solution to this dilemma calls for a vascular system that

functions as a reliable, pervasive supply chain. With regard to the cortical mantle, this

system begins with the great cerebral arteries that emanate from the circle of Willis and

source a planar network of highly interconnected pial arterioles that span the surface of the

mantle3. The inherent multitude of paths for flow to any given branch allows the surface

network to distribute blood in a manner that is relatively insensitive to blockages in one or a

few of the branches of the network4,5. Furthermore, the distribution can be dynamically
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shifted toward regions of heightened electrical activity and concurrent metabolic load6,7.

The surface network is connected to an underlying, three-dimensional network of

microvessels by radially directed penetrating arterioles. The micro-vascular network is

drained by penetrating venules that return blood to the surface of cortex, where it empties

into the central sinus to complete the supply chain. Although the microvascular network

brokers the bulk of the exchange of metabolites and gases between brain cells and the blood

stream, the morphometry of microvessels and the topology of this network remain largely

uncharted. Yet this information is fundamental to an understanding of neurovascular

coupling in normal and diseased states8–10 and to the interpretation of functional brain

images11,12.

What ideas guide the discussion of brain microvasculature? The concept of the

neurovascular module emerged from functional imaging studies, where sensory input that

activates a region of cortex leads to a concomitant increase in the flow of blood in an

overlapping volume13. In the case of the rodent vibrissa system, neuronal activity in vibrissa

primary sensory (vS1) cortex forms an array of clusters, denoted as cortical columns or

barrels, in which each column receives afferent input primarily from a specific vibrissa on

the face of the animal14. Thus, cortical columns and neurovascular modules might be

expected to be synonymous in vS1 cortex. In fact, it has been suggested that neurovascular

modules may be arranged as largely autonomous modules, each sourced by one or more

penetrating arterioles and drained by one or more penetrating venules15. Support for this

view comes from experiments in which flow through an individual penetrating arteriole is

blocked5,16,17, leading to the cessation of blood flow in a roughly cylindrical region of

surrounding microvessels18.

We challenged the notion of a neurovascular module. We exploited the overarching

columnar features of vS1 cortex and used large-scale automated histology to acquire and

vectorize data from tissue in which all vessels and all neuronal and non-neuronal nuclei

were labeled19,20. We asked the following questions. What is the form of the short-range

interconnectivity among microvessels? Can the loci of cortical columns be predicted from

the topology of the cortical vasculature, the calculated patterns of flow in the vessels or the

spatial location of penetrating vessels that source and sink blood? Is the spatial dependence

of functional signals, based on changes in blood oxygenation, consistent with the observed

vascular anatomy? Are calculated regions of flow predictive of the pathologies observed

with microinfarctions to the vascular supply? If so, how do these calculated regions compare

with those measured in response to single vessel occlusions16,17,21,22?

RESULTS

Two forms of data sets were obtained. The first were sets that encompass 12–46 cortical

columns, span the full depth of vS1 cortex and extend into the white matter (n = 4 mice, 2–3

mm3 in volume; Fig. 1a–c). All vessels were labeled with a fluorescent gel under conditions

that preserved the size of the vessels, all nuclei were labeled with a DNA stain and neuronal

nuclei were further labeled with antibody to NeuN, a pan-neuronal marker (Online

Methods). The second form of data set encompasses all of vS1 cortex as well as the

representation of microvibrissa, typically 60 to 70 columns, and spans from the pia to
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approximately layer 5a of vS1 cortex (n = 4 mice; Fig. 1d). We used intrinsic optical

imaging23,24 through a transcranial window18 to map the responses for 20–30 vibrissa

before histology (Online Methods). All vessels and all nuclei were labeled as above, and we

imaged the full extent of vS1 cortex, albeit over a limited depth. Additional mice (n = 4)

provided auxillary data.

Vessels were automatically identified and vectorized as center points, of degree 2 or 3, that

were connected with centerlines that had a length and an associated radius19,25,26 (Fig. 1d).

Two exceptions were that the centerlines of some surface vessels were traced by hand and

the labeling of all penetrating vessels was visually confirmed. Consecutive centerlines were

joined together to form the vectorized substantiation of individual vessels that preserved the

tortuosity of the brain vasculature. The vectorized vessel was abstracted as an edge, whose

length is the total length of the vessel and whose radius is the median radius associated with

all centerlines (Emn; Fig. 1e). Different edges predominantly meet as vertices of degree 3;

that is, a fraction of 0.93 triads and <0.07 crosses (Vm; Fig. 1e). All vectorized vessels of the

data set of one mouse formed a weighted graph27 of edges and vertices, which we refer to as

an angiome.

In addition to vessels, we vectorized the location of all cell nuclei19. The boundaries of

cortical columns were based on the increased density of neuronal nuclei at the level of layer

4 (Fig. 1a,c), and, for purposes of analysis, columns are taken to exist only across layer 4

(Online Methods).

The microvasculature forms a highly interconnected network

We focused first on the statistical properties of the microvasculature. These vessels had a

broad distribution of lengths between 10 and 200 μm, with a median length of 50 μm, and

both median and mean radii near 2 μm (Fig. 2a). We observed no edges that spanned

hundreds of micrometers between cortical columns or the nearly 1-mm depth of cortex

(101,992 edges across 4 brains). The radii, which have the greatest effect on flow, were

essentially constant as a function of depth into cortex (Fig. 2b). Consistent with past data for

mice19, monkeys12 and humans28, there was a broad variation in the density of the

vasculature as a function of depth into cortex (Fig. 2c) that differed from the sharper

variation in neuronal density (Fig. 2c).

We then examined the network properties of the microvasculature. These formed a

multitude of loops, with an average of eight edges across the compact loops (Fig. 2d). The

prevalence of closed paths was consistent with a rebalancing of flow observed after

blockage of a single microvessel29. For comparison, the pial vasculature, which is confined

to two dimensions, forms loops with an average of four edges5, in which analogous

rebalancing of flow occurs after an occlusion of a single surface vessel4,30.

How does the interconnectivity reveal itself? If we assign a fluid resistance to each edge and

view the microvasculature as a three-dimensional resistive network, we would expect that

the resistance across pairs of vertices in the network should asymptote to a constant value as

we span pairs that are progressively further apart31. In contrast, this resistance should

increase linearly for one-dimensional networks and logarithmically for two-dimensional
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networks31. We used a previously described empirical model32 (Fig. 2a,e), which corrects

the Hagen-Poiseuille law for the granular nature of blood, to assign resistances on the basis

of measured radius and length of each vessels (Online Methods). We then calculated the

network resistance across pairs of vertices33 (Fig. 2f) and found that resistance asymptoted

as a function of the Euclidean separation distance (Fig. 2g). This implies that the

microvasculature forms a highly interconnected irregular lattice in all directions. An

asymptotic network resistance of 0.4 P μm−3 was reached by ~150 μm (Fig. 2g), which

corresponds to thrice the median length of the microvessels (Fig. 2a). Numerically, the

asymptotic resistance is consistent with a network that has the same topology and identical

resistance values of 1.6 P μm−3 at each edge. For comparison, the average resistances from

the surface to the depth of layer 4 were 0.1 and 0.2 P μm−3 for penetrating arterioles and

venules, respectively.

Connectivity does not covary with columnar boundaries

A highly interconnected network may have systematic variations in connectivity. We asked

whether such variations clustered in the boundaries of individual cortical columns, and

addressed this issue with a previously described graph-theoretic analysis34 (Online

Methods). This analysis seeks to form communities of vertices in which the connections in a

community are relatively more frequent than chance, but the connections between different

communities occur at a level less than chance.

Qualitatively, the communities derived for our angiomes had no clear relation with the

location and spatial extent of cortical columns (Fig. 3a–d). They were distributed along the

entire depth of cortex with a density that peaked outside of layer 4 (Fig. 3e). What is the

strength of these communities? We plotted the number of connections between communities

versus connections in the community (Fig. 3f). A network with strong communities would

be expected to have interconnections that scale as the surface-to-volume ratio, with a power

law exponent of 2/3, down to an exponent of zero for the extreme case of near-isolated

communities (Fig. 3f). In contrast, a network with weak communities would have

interconnections that scale with a power law exponent between 2/3 and 1, where the latter

value corresponds to a fully connected network (Fig. 3f). Our angiomes yielded a power law

with an exponent of 0.83 (Fig. 3f), which is statistically greater than 2/3 (P < 10−5, n = 311

communities). This implies that vertices in a given spatial region make extensive

connections with neighboring communities. We conclude that the connectivity of

microvessels is sufficiently uniform to negate the existence of strong communities (Fig. 3f).

A network with even weakly defined communities may still form as association between

select communities and cortical columns. To test this possibility, we examined the number

of communities that passed through each column as a function of the physical volume of the

column. We found that the number of communities increased monotonically with volume,

with a slope significantly greater than zero (P < 10−4, n = 98 columns), and that no

individual community provided the dominant number of branches (Fig. 3g). Furthermore,

we considered the fractional contribution to each column by the community that contributed

the largest extent of vasculature to the column. This fraction would be close to 1 if a given

vascular community was confined to a single column. In practice, we observed a much
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smaller contribution, with a median fractional value of 0.06 (98 columns in 4 brains; Fig.
3g). We conclude that vascular topology and geometry do not conform to cortical columnar

boundaries.

Flow domains of penetrating vessels do not match columns

A lack of spatial modularity of the microvessels does not, per se, preclude the possibility of

domains of flow that result from precise balances of pressures in the penetrating vessels.

This led us to calculate the fraction of blood that every subsurface microvessel received

from each penetrating vessel. We made use of Kirchhoff's law for current conservation at

each vertex, together with the values of the resistance for each edge (Fig. 2e) and the

constant pressure difference of 50 torr (ref. 35) between the open ends of the surface

arterioles and venules. There were no free parameters. As the first of three checks on self-

consistency, the computed median speed of blood through the microvessels in the upper 400

μm of cortex was found to match the observed value of 0.4 mm s−1 (ref. 21) for rat.

A result of the flow calculation for a given angiome is the domain of vessels that is

predominantly sourced by a given penetrating vessel (Fig. 4a–c). These regions may be

compared with the cortical columns (Fig. 4d). Qualitatively, there was no relation of

perfusion domains with columns. We examined the number of domains that passed through

each cortical column as a function of the physical volume of the column. The number of

domains increased monotonically with the volume, with a slope significantly greater than

zero (P < 10−4, n = 98 columns), and no individual domain provided the dominant flux (Fig.
4e). Thus, we conclude that there is no modularity in the perfusion of microvessels in

relation to cortical columns.

Penetrating vessels are not aligned to cortical columns

Although microvessels appeared to be distributed at random with respect to the location of

cortical columns, the penetrating vessels that source and sink the microvascular network

may in principle respect columnar boundaries (Fig. 5a). Thus, we analyzed the areal density

of penetrating vessels as a function of distance along lines that started at the centroid of a

column, ran through the columnar boundary and ended at the midline contour in the septa

(Fig. 5b). We observed large variations in the density on an mouse-to-mouse basis, but as an

average over columns and mice (n = 262 columns over 8 mice), we found no significant bias

in the distribution of either penetrating arterioles or venules relative to the center of a

column (Kolmogorov-Smirnov test, P = 0.94).

Penetrating veins were more numerous that penetrating arterioles, by a factor of 3.0 ± 0.1

(mean ± s.e.). This is somewhat larger than past estimates of the ratio for rat, reported as 1.8

(ref. 22) and 2.6 (ref. 21) based on counts in cranial windows. A nearest-neighbor analysis

indicates that the relative position of penetrating arterioles and venules are weakly anti-

correlated, such that the distance from an arteriole to the nearest venule, and vice versa, is

greater than the distance for a random distribution of vessel locations by a factor of 1.1 (P <

0.0001).
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Penetrating vessels branch as a function of depth

Penetrating arterioles have a broad range of diameters, with a median value of 11 μm,

although some vessels are not much thicker than microvessels. The primary microvessels

appeared as fine branches that protruded from these vessels (Fig. 5c–e), whose distribution

showed a shallow peak at the level of cortical input layer 4 (Fig. 5e) that is consistent with

the shallow peak in the density of microvessels in the same layer (Fig. 2c). Neither the

density of branching nor the density of vessels matched the sharp peak in the laminar

variation in neuronal density in a cortical column19 (Fig. 2c).

The penetrating venules also had a broad range of diameters, with a median value of 9 μm.

In contrast with the case for arterioles, branching from the penetrating venules peaked near

the surface and monotonically decreased with depth (Fig. 5e).

Intrinsic optical signals follow columnar boundaries

It is generally accepted that changes in the strength of the intrinsic optical signal reflect

changes in neuronal activity on a column-by-column basis. However, past work has focused

on large cortical columns, either in primate vison36, feline vision13,37 or rat vibrissa

somatosensation24, which are sourced by multiple penetrating arterioles. Thus, changes in

signal that appeared to match columns could be a result of changes across multiple

penetrating vessels, even though there is no relation between the location of cortical

columns and penetrating vessels per se (Fig. 5b). To disambiguate these possibilities, we

examined the relation of intrinsic optical signals to the boundaries of the relatively small

columns, which are associated with less than one penetrating arteriole, as compared with

columns associated with multiple penetrating vessels. We worked under conditions for

which the diameter of the vessels was insensitive to neuronal activity, as occurs with

isoflurane anesthetic23, a vasodilator38, so that the change in signal strength reflected only a

change in oxygenation, and tri-phasic vascular dynamics were eliminated39.

We mapped the intrinsic optical signals for 94 vibrissae for which the areas of the associated

cortical columns varied by over an order of magnitude (four mice). Stimulation of a vibrissa

led to a decrease in reflectance of red light, which was indicative of a fractional decrease in

the oxygenation of blood (Fig. 6a). The magnitude of the signal rose for the period of

stimulation and then recovered to baseline without any overshoot (Fig. 6b). A map of the

responses revealed that each centroid of the intrinsic signal appeared to be located near the

centroid of the column (Fig. 6c); note that errors at the lateral edge of vS1 cortex are a result

of the curvature of the brain. The columnar-versus vessel-centric organization was

particularly clear for the optical signal from relatively small columns, where the peak of the

signal lay centered in the respective column and away from the location of shared vessels

(Fig. 6d). As a composite over all data sets, we found that the centroid of the optical signal

peaked near the columnar centroid (P < 10−4, n = 63 columns across four mice; Fig. 6e).

The predominant determinant of the centroid of the optical signal was that of the cortical

column, although there was a slight, yet statistically significant, bias for the centroid to be

close to penetrating arterioles (P = 0.025; Fig. 6f), with no orientational bias. There was no

relation between the centroid and the penetrating venules (Fig. 6g). These results indicate
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that the depletion of oxygen from tissue predominantly follows columnar boundaries, as

opposed to penetrating vessel location. Lastly, the full-width at half-maximum response was

about one column (Fig. 6h). The signal returned to baseline over a distance of about two

columns, similar for that observed for the initial ~0.5 s of the response in awake animals40.

Perfusion domains predict vascular occlusion volumes

We sought to use the angiome to understand the pathology of micros-trokes. A naive

expectation is that the volume of the cyst formed after occlusion of a single penetrating

arteriole18,21 (Fig. 7a) would be on the order of the cortical volume that was predominantly

sourced by that vessel (Fig. 4). To test this hypothesis, we calculated the volume of

microvasculature that received the majority of perfusion from each penetrating arteriole. We

then divided the perfusion volume by the microvascular volume fraction, reported as 0.0074

(ref. 19), to determine the relation of the tissue volume sourced by each penetrating arteriole

and the flux through the vessel (Fig. 7b). This relation was consistent with a linear relation

for over three orders of magnitude of change (P < 10−3, n = 113 domains). Furthermore, the

calculated volumes were consistent with previously described experimental data21 on the

volume of the cyst that is formed after occlusion of vessels with different pre-occlusion

values of flux (Fig. 7b).

Lateral connectivity does not guarantee lateral perfusion

Past studies have found that blockage of a single penetrating vessel, either an arteriole (Fig.
7c,d) or venule (Fig. 7e,f), leads to the acute loss of flow in the neighboring subsurface

microvasculature16,17,22 and, chronically, formation of a cyst18,21 (Fig. 7a). On the one

hand, the loss of perfusion appears to be at odds with the potential for collateral flow

through the highly interconnected microvascular network (Figs. 2f,g, 3 and 4). On the other

hand, drainage through patent penetrating venules may shunt collateral flow (Fig. 5b,c). To

distinguish among these possibilities, we calculated the spatial pattern of flow that occurs in

response to blockage of a single penetrating arteriole or venule. This calculation was similar

to that performed for the flow domains (Online Methods).

For the case of penetrating arterioles, we plotted the calculated decrement in flow through

the microvasculature as a function of topological distance, that is, in units of downstream

branch order from the penetrating vessel (Fig. 7c). The median values for the decrement

yielded a smooth variation (Fig. 7d), with a half-recovery at six downstream edges. Full

recovery occurred by ten downstream edges, which corresponds to about half the distance to

the next penetrating arteriole. The scatter in the individual calculated values (Fig. 7d) was a

consequence of the heterogeneity of the vascular geometry and range of the incident flux of

blood through different penetrating vessels. We compared our calculated results with

previous experimental data17 for downstream flow immediately after blockage of an

individual penetrating arteriole in rat neocortex (Fig. 7d). Calculation and experiment was in

good agreement for the half-recovery distance.

A parallel analysis was performed for penetrating venules (Fig. 7e) and leads to a marked

reduction in flow as a function of upstream branches (Fig. 7f). The flow reached the half-

recovery level at four downstream edges and full recovery occurred at six edges, or about
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half the distance to the next penetrating venule. We compared our calculated results with

previously experimental data22 for upstream flow following blockage of an individual

penetrating venule in rat neocortex (Fig. 7f). Calculation and experiment agreed for the half-

and full-recovery distance.

The analysis of the flow in angiomes with occluded penetrating vessels (Fig. 7d,f) provided

second and third tests of self-consistency between the calculated flow and the experimental

data. The correpondence between the calculated flow and that observed for the case of

penetrating arterioles was slightly improved when all microvessels dilated by a small

amount, that is, less than 0.5 μm in diameter. In contrast, the correpondence between the

calculated flow and that observed for the case penetrating venules was slightly improved

when all microvessels constricted. Thus, the angiomes gleamed from this study (Fig. 1a)

and published values of vascular parameters21,32,35, used without alteration, appear to

provide a balanced approximation to the calculation of flow patterns.

The experimental data for both penetrating arterioles and venules showed a complete or near

complete cessation of flow close to the occlusion, whereas our calculated values were small,

but nonzero (Fig. 7d,f). This discrepancy originates from the assumed linear relation of flux

and pressure, which ignores the propensity of red blood cells to stall at low pressure

differences41.

DISCUSSION

We obtained geometrically correct angiomes of the cortical vasculature in mouse for

volumes that spanned the full thickness of cortex and extended tens of cortical columns

across the vibrissa region of primary somatosensory cortex (Fig. 1). We analyzed these data

sets in terms of weighted graphs. Segments of vessels were characterized as edges, with a

fluid conductance that depends on their length and radius (Fig. 2a,e). Edges joined

predominantly as triads. We further obtained the locations of all neuronal and non-neuronal

nuclei, from which the location of individual cortical columns was computed and used to

further annotate the vascular maps (Fig. 1).

Our results build on the use of eroded casts of brain vasculature that were examined by

scanning electron microscopy42, as well as dye-filled brains that were physically26 or

optically43 sectioned. This past work identified the prevalence of closed loops and

determined that microvessels joined only as triads. A recent study44,45 exploited X-ray

tomography to examine relatively large casts and model flow in extended vascular

structures44. However, as neurons were unlabeled in these studies, the potential relation

between microvascular topology and cortical columns remained untested.

Our data and analysis support the notion that the brain cerebral microvascular network is

devoid of subnetworks of microvessels that are fully connected among themselves, but only

connected to the main network with one or a few edges (Fig. 3). This observation is

expected from the fixed number of vessels, or edges, joining at each vertex (Online

Methods). Furthermore, variations in the vascular density do not coincide with the location

of cortical columns (Fig. 3) and the arrangement of the penetrating vessels that source and
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drain blood to the microvasculature (Figs. 3 and 5), as well as the resulting calculated

patterns of flow, bear no correspondence with cortical columns (Figs. 4 and 7a,b). Thus, we

refute the notion of a neurovascular module15 that is tied to the structure of a cortical

column. Rather, we suggest that flow is controlled on the level of microvessels. One

possibility is through constriction or stiffening of contractile proteins in pericytes in

response to the changing environment of neurotransmitter spillover46,47.

The calculated patterns of blood flow for our angiomes show that microvessels do not

provide sufficient collateral flow to perfuse tissue when a penetrating arteriole or venule is

blocked. The spatial and topological extent of the reduction in flow (Fig. 7d,f) is consistent

with previous experimental results5,16,17,21 and numerical calculations44, and therefore

provides a direct link between local ischemia and structural changes in the vascular

network21,48. Physically, the penetrating venules act as sinks that prevent blood in

neighboring penetrating vessels from entering the area previously sourced by the occluded

vessel. The essence of this explanation is captured by a one-dimensional circuit (Fig. 8a)

with alternating penetrating arterioles as ideal sources and penetrating venules as ideal sinks

that are linked by a single resistor that represents the asymptotic resistance of the

microvasculature (Fig. 2g). Blockage of a source corresponds to occlusion of a penetrating

arteriole and isolates a segment of tissue (Fig. 8a).

A rhombic lattice (Fig. 8b), in which the sources and sinks form super-vertices with a 1:2

ratio, effectively models the consequences of blockages to both penetrating arterioles and

venules. Blockage of a source leads to an isolated hexagon of tissue (Fig. 8c,d) whose radius

corresponds to about ten vertices and well approximates observations for a blocked

penetrating arteriole (Fig. 7d). Blockage of a sink leads to a smaller isolated hexagon of

tissue (Fig. 8c,d). Here, the radius corresponds to about five vertices, consistent with

observations for a blocked penetrating venule (Fig. 7d). A random arrangement of

penetrating vessels (Fig. 5), as well as variability in the resistance of vessels, will smooth

the abrupt diminution in flow predicted for the lattice. The essential features of the model

are preserved for other source to sink ratios, including a 2:1 ratio that approximates that of

the human cortex27. From a cognitive perspective, this model highlights why blockage of

any penetrating vessel leads to an infarct and is a catalyst for vascular dementia, consistent

with behavioral data for rat21 and the reevaluation of data for humans49,50. From the

perspective of functional imaging, this model explains why changes in blood oxygenation

can be localized (Fig. 6d,h).

ONLINE METHODS

Tissue preparation

12 C57/BL6 male mice (22–24 g) were used for primary data in this project. Eight of these

mice were used to calculate the distribution of penetrating vessels relative to columnar

boundaries (Fig. 5b). Although no statistical methods could be used to pre-determine sample

sizes, the numbers used established statistical significance of a null hypothesis for all

samples, with an average deviation from the null of less than 0.07 and a worst case deviation

of 0.12. Our fixation method was designed to minimize the collapse of large surface vessels
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and preserve the structure of the microvasculature. Briefly, following deep anesthesia under

4% isofluorene (vol/vol) in 95% oxygen and 5% nitrogen, mice were killed by peritoneal

injection of Fatal Plus (Vortech Pharmaceuticals) and transcardially perfused with warm

heparinized-saline (40–60 ml of 20 units ml−1 of heparin, no. 1181232; Pfizer Injectables) in

0.9% NaCl (wt/vol), using a peristaltic pump whose flow was set to 1 ml min−1 to mimic

mouse cardiac output. The mouse was then tilted head down in a custom platform and

manually perfused at constant pressure with 20 ml of a 10% fluorescein-conjugated-albumin

gel19 (wt/vol). Curing of the gel was initiated at the end of the perfusion by submerging the

carcass of the perfused mouse in ice-cold water for ~30 min; the head was severed and

equilibrated with to 4% paraformaldehyde (wt/vol) in phosphate-buffer saline (PBS) for 8–

12 h, and the brain was extracted under a fluorescent dissection microscope to avoid damage

to pial vessels and rinsed for 8–12 h in PBS. Surface arterioles versus venules were

identified in whole brains by tracing them to the middle cerebtal artery versus the superior

saggital sinus Rhinal vein. The tissue was then labeled with 4′,6-diamidino-2-phenylindole

(DAPI) dilactate to stain all nuclei and NeuN antibody directly conjugated to with

Alexa-594 to immunolabel neuronal nuclei, as described19. All protocols were approved by

the Institutional Animal Care and Use Committee at University of California, San Diego.

Tissue from mice that were first imaged by intrinsic optical signal imaging were prepared as

described above with the following additional steps to permit imaging of the upper lamina

across all of vS1 cortex. After fixation, surface arterioles versus venules were identified as

above, the cortices were extracted, flattened between glass slides separated by 1.4 mm,

soaked for 8–12 h in 4% paraformaldehyde in PBS, and then removed from the flattening

device, washed and rinsed for 8–12 h in PBS, stained as described above, and progressively

index-matched in 60% sucrose (wt/vol) and 1% Triton X-100 (wt/vol) in PBS as

described19,22. This procedure was relatively fail-proof and fast compared with the large-

scale all-optical histology20 performed on the samples, albeit without the ability to image

deep layers.

Intrinsic optical signal imaging

The bone overlying the barrel field of S1 was thinned 1 d before imaging8. Throughout

imaging sessions, mice were anesthetized with isoflurane at 1.8–2.0% in oxygen, maintained

at a constant body temperature of 37 °C using a temperature control system (no. 40-90-8,

FHC) and continuously infused with 5% glucose (vol/vol) in 0.9% NaCl subcutaneously at a

rate of 10 ml kg−1 h−1 using a syringe pump (no. 780101, Harvard Apparatus).

We followed previously described protocols for imaging13,24. In brief, a telescope imaged a

4- × 4-mm region on the cortical surface onto a 512 × 512 pixel region of a CCD camera

(Pantera TF 1M60, Teledyne Dalsa) at a resolution of 7.87-μm per pixel. Prior to IOS

imaging, a single reference vessel image was taken with illumination at 455 nm (no.

M455L2, ThorLabs). During imaging, the cortical surface was continuously illuminated at

625 nm (no. M625L2, Thorlabs) and frames were acquired as averages over 0.5-s intervals.

For stimulation, an individual vibrissa was trimmed to 20–50% of full length, placed inside

a quartz pipette attached to a piezoelectric element, and displaced 0.5 mm in both rostral and

caudal directions with a 10-Hz sinewave pattern for 4 s at a distance of 10% of the original
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length. 6–25 trials per vibrissa were sufficient to reliably detect an evoked signal. A single

baseline image (Rbase) was created by averaging over eight frames that preceded the

stimulus onset. Signal frames (If) were generated by subtracting and normalizing individual

frames (Rf) by this baseline51 using the formula ΔIf = (Rf − Rbase) / Rbase.

Two-photon automated high-throughput histology

Tissue was imaged throughout its full depth with all-optical histology20, a block-face

technique that combines sequential tiled imaging by two-photon laser scanning

microscopy52 and plasma-assisted ablation mediated by amplified ultra-short laser pulses53

to process fixed tissue. We imaged with a 25 × 0.95 NA Leica dipping objective (no.

11506323, Leica Microsystems) to achieve a 400-μm2 field of view and acquired cubic

voxels that were 1 μm on edge. On each iteration, the surface of the tissue block was imaged

in a tiled fashion, with 50 μm of overlap between tiles, throughout a depth of 150–200 μm.

These dimensions were chosen to ensure an adequate signal-to-noise ratio for subsequent

processing. We then rastered the sample to ablate the top 50–70 μm of tissue in 10-μm wide

and 10-μm deep strips with the use of ~4-μJ per pulse, 200-fs pulses of 800-nm light

delivered at 5 kHz (Libra, Coherent). A circulating bath of PBS removed debris. At the end

of each ablation round, the objective was raised above the sample and its surface was

cleaned from air bubbles with the help of an automated wiper arm. Slabs of index matched

tissue were imaged without ablation. The entire process was automated with the MPScope

software system54.

Stitching

Individual blocks of raw data were stitched to form a single large data. Our process is

derived from a previous study55 and, in brief, involves three steps. First, we estimated the

spatial offset of each pair of neighboring blocks with the use of a mean-normalized three-

dimensional cross-correlation that is calculated for the overlap between blocks. Second, we

searched for a global solution, found through linear analysis55, that positions each block

through the simultaneous minimization of all local interactions. Finally, blocks were placed

on a common coordinate system. The algorithm was used with data sets of over 2,000 blocks

with final volumes of 20 giga-voxels.

Image segmentation and vectorization

These processes converted the stitched data sets into vectors that represent short centerlines

in each vessel (Fig. 1d) as well as the location of all neuronal and nonneuronal nuclei19.

Each centerline was associated with a specific radius, points in 1 of 26 directions, and had

two neighbors everywhere except at branching points, where three adjacent centerlines

overlapped to form a vertex (Fig. 1e). The radii were corrected for the eccentricity induced

by differences in axial versus lateral resolution and for the estimated point spread of the

focus19. We automatically corrected for a small fraction of gaps, ~0.05 of all vessels, in the

data set25. Identification of surface and penetrating vessels as arterioles versus venules was

based on tracing the surface vessels to the middle cerebral artery versus the central sinus or

rhinal vein.
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Cortical columns in mouse vibrissae cortex were clearly defined in layer IV by their

cytoarchitectonic pattern, that is, cell somata organize around the perimeter of the column,

whereas cortical and thalamo-cortical projections occupy the center14. The lateral

boundaries and axial extent of cortical columns were delimited by visual examination of the

reconstructed volume of α-NeuN image data.

Edge resistance

The vectorized data permitted us to estimate the resistance of each edge, denoted ρnm, in

terms of Lnm, and Rnm. Conceptually, this is equivalent to expressing the data in terms of a

weighted graph where the resistance is the weighting function27. We use a modified Hagen-

Poiseuille law to account for the hematocrit of the blood and the interaction of red blood

cells with the vessel wall32, for which

where ηwater is the viscosity of water.

The structure of the vascular graph, that is, the connections between vertices, is stored in the

form of an adjacency matrix. The adjacency matrix, A, contains exactly three nonzero

elements, Anm = Amn, per row and column, that correspond to the tri-partite connection.

Network resistance

The resistance between any two vertices in a finite lattice can be calculated from the

Laplacian matrix L = A – D, where  forms the diagonal matrix D.

Following a previously described proof 33, the eigenvectors, denoted Ψm = (ψm;1,..., ψm;N),

and associated eigenvalues, denoted λk, that satisfy LΨm = λmΨm for m = 1,..., N will

determine the resistance between any two vertices (a, b), where

and we note that λ1 = 0. The penetrating vessels were excluded for the calculation of the

resistance between two vertices in the microvasculature (Fig. 2f,g).

Community partitioning

We use a previously described method34 and maximize a measure, denoted Q, that reflects

the density of edges between vertices inside communities as compared to edges between

vertices in different communities. Following previously described notation56,57, we have
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where  is the sum of all edge weights and cm is the community to which

vertex m is assigned with δ(cm, cn) = 1 if cm = cn and δ(cm, cn) = 0 otherwise. To analyze

large networks (N ~105), we made use of an optimized community detection package

modified for weighted edges that is based on previous work56 and distributed by the authors.

As this heuristic algorithm has a stochastic component, we report a consensus community

vertex labeling out of 1,000 runs. This was done with the help of the Cluster Ensemble

package (http://strehl.com) based on previous work58. This package depends on the METIS

graph-partitioning package (http://people.sc.fsu.edu/~jburkardt/c_src/metis/metis.html).

Fluid flow

Flow is calculated from Kirchhoff's law for the conservation of the current of blood at each

vertex. Thus each of the N vertex equations is of the form

where Pm is the pressure at the mth vertex. An exception occurs for vertices that are directly

connected to a truncated surface vessel. These are used to set inflow pressure through

surface arterioles, that is,

where PA is the mean surface arteriole pressure and ρm is the resistance from the vertex to

the open end, and reflect the zero output pressure though surface venules, that is,

where the mean surface venule pressure is taken as 0. This yields the matrix equation

where L is the previously described Laplacian and the surface terms are expressed as

currents Im;source = PA/ρm. The equation is solved for the Pm values, scaled by the value of

PA. The volume flux in a given edge, with units of volume per unit time, is denoted jmn, and

is found from

The average speed of the blood in the edge is .
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Scaling of local connectivity

The microvascular network appears to be devoid of subnetworks of microvessels that are

fully connected among themselves, but are only connected to the main network with one or

few edges (Fig. 3). Thus, the microvasculature does not form a small world network59.

Graph theory34 provides an elegant proof that links this observation to the finding that the

micro-vessels branch among themselves with a fixed number of vessels, or edges, joining at

each vertex. Our analysis for the case of vertices with a fixed coordination number of three

shows that the fraction of the network that can be isolated scales as (log2N)/N, where N is

the number of vertices. This fraction is negligible with N ~104 per 1 mm3 volume. The

vascular network may be viewed as ‘modestly’ random, that is, it does not support the

inclusion of partially isolated subnetworks, yet is not crystalline.

To prove the above statement, we consider the case of a network with vertices of

coordination number three only and step through the counting of vertices; for example, see

ref. 60. First, we start at some particular vertex and count its three ‘first’ neighbors. Next, we

note that each of these three first neighbors has two available edges that will connect to a

total of 2 × 3 new vertices, not counting the ones involved in the initial step and not

permitting two edges to connect the same two vertices. After this step, we have counted a

total number 1 + 3 + 2 × 3 = 10 vertices. Continuing in this way, we see that at the (n + 1)th

step we acquire 2 × S(n) new vertices, where S(n) is the number of vertices acquired at nth

step. If the total number of vertices, denoted N, were almost infinite, we need not correct for

the vertices already counted in earlier steps, as they won't appreciably diminish the reservoir

of fresh vertices. Then, S(n + 1) = 2S(n), and the total number of vertices counted after the n

+ 1 steps would be . Almost all the N vertices

will then have been counted in n + 1 steps, so that N ≈ 2n. Thus, after only log2N steps,

almost all N vertices have been counted, which leaves only a fraction (log2N)/N for weakly

connected inclusions in the networks, such as trees.

When N is not infinite, we must correct for previously counted vertices at each step. Thus, at

the mth step, we must allow for the fact that we have already counted the sum of all vertices,

that is, . So the number of vertices counted up to the (n + 1)th step is given by

only . So even if N is finite, the fraction of the network

that can be weakly interconnected is still of order (log2N)/N.
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Figure 1.
Examples of the vectorized data sets. (a,b) Example of data obtained throughout the full

depth of cortex and extending into the white matter. Surface and penetrating arterioles are

colored red, venules blue and the borders of cortical columns are denoted by a golden band.

A selected slice from this data set is shown to illustrate the extent of penetrating vessels (b).

(c) Example of data obtained through the upper half of cortex from mice used for

transcranial imaging of intrinsic optical signals; see Figure 6. (d) Schematic of the make-up

of edges in terms of individual centerlines, each with length , where m and n label the

vertices and k labels the consecutive centerlines between vertices, and radius , computed

as the average between the measured radii at vertices m and n. (e) Schematic of labeling of

edges (Enm) and vertices (Vm) used for topological analyses.
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Figure 2.
Analysis of the local geometry and topology of the microvasculature. (a) Scatter plot as a

function of the total length of each vessel, defined as , and the median radius,

denoted as Rmn. The lines are plots of constant fluid resistance (equation in Edge resistance

of Online Methods). Data are from 101,992 edges across four brains. The line plots are

probability distribution functions (PDFs) for different brains, found by projecting the data

across all lengths (right) or radii (top). (b) Plot of the mean radius across all segments in an

axial slice as a function of depth. (c) Plot of the density of the microvasculature and

neuronal density as a function of depth. The vascular density in an axial slice was defined as

the fractional length of all edges in an axial slice. WM, white matter. (d) PDF of the number

of branches in different microvascular loops. Data are from 59,909 loops across four brains.

The bars denote 1 s.d. For comparison, the distribution of branches in the surface pial

network is reproduced5. The inset is a close up of a section of a vectorized network showing

only the microvascualture. The colored edges highlight a loop that consists of eight

branches, each with a distinct color. (e) Plot of the flow resistance per unit length as a

function of vessel radius; the total resistance is found by multiplying by the length, in

micrometers. Note the marked increase in resistance for radii below ~5 μm, where the
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Hagen-Poiseuille law (dashed line) no longer holds. The concurrent histogram shows the

distribution of vessel radii for all vessels. (f) Schematic of the numerical probe of total

resistance between two vertices in the network. (g) Scatter plot of the resistance between

pairs of vertices (1,000 pairs per brain across four brains) as a function of the Euclidian

distance between the vertices. The asymptote highlights the constant value averaged across

all data sets, indicative of a three dimensional lattice. The slope, (3.0 ± 4.4) × 10−5 (mean ±

95% confidence interval, found with robust linear regression), was not significant.
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Figure 3.
Community analysis of the global topology of the microvasculature. The analysis makes use

of the adjacency matrix for the branches. (a) Views of the complete vectorized vasculature

that show different communities, each labeled by an individual color, as well as columnar

boundaries (golden bands). (b–d) Representative communities. (e) The distribution of

separate communities as a function of depth (362 communities across 4 mice; different

colors represent data from different mice). The boxes highlight the extent of layer 4. The

area of the dot scales as the size of the community relative to that of each angiome. The PDF

on the right was computed by averaging over all examples. (f) Scatter plot of the number of

edges between each pair of communities versus the number of branches in the community.

The gray region is bounded by power law slopes of 2/3 and 1, and the dashed line is a fit of

a power law to the data, with exponent 0.83 ± 0.04 (mean ± 95% confidence interval, found

with robust linear regression). (g) Scatter plot of the number of communities that are either

encompassed or pass through a cortical column as a function of the size of the column. Size

is measured in terms of the number of branches that are either encompassed by or pass

through the column. The horizontal line is the expected result when there is one community

per column and the dashed line is a linear fit to the data, with slope 0.041 ± 0.004 (mean ±

95% confidence interval). The size of the dot is the fraction of the community that has the

largest overlap with a given cortical column.
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Figure 4.
Calculated fluid flow and domains of common input in complete vectorized networks. (a)

Vectorized vasculature in which the blood flow through a given penetrating arteriole is

numerically labeled to determine the vessels that receive at least half of their flow from the

chosen penetrating arteriole. This exercise is repeated for all penetrating arterioles and each

territory is labeled with a different color. (b,c) Examples of different flow domains relative

the cortical columns. (d) Overlap of multiple flow domains with cortical columns in layer 4.

(e) Scatter plot of the number of flow domains that are either encompassed or pass through a

cortical column. The size of the dot is the fraction of the flow domain that has the largest

overlap with a given cortical column. The horizontal line is the expected result when there is

one domain per column and the dashed line is a linear fit to the data, with slope 0.028 ±

0.003 (mean ± 95% confidence interval).
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Figure 5.
Relation of penetrating vessels to cortical columns. (a) Example data set from a flattened

cortex. The location of all penetration arterioles (red squares) and all penetrating venules

(blue squares) are superimposed on an axial projection of the upper 150 μm of cortex. The

cortical columns are based on imaging data taken with a flattened cortex. (b) Summary

statistics on the location of penetrating vessels relative to the centroid of the cortical

columns. The numbers of vessels in each bin, beginning at the center of the column and

heading toward the midline of the septum (insert), were 15, 55, 47, 31 and 36 for the

penetrating arterioles and 30, 84, 102, 63 and 68 for the penetrating venules. The locations

of cortical columns boundaries were deduced from the cell density in layer 4. We plotted the

fraction of pixels covered by arterioles or venues in each of five bins relative to the fraction

expected for uniform coverage. (c) Probability density function for the distance between

pairs of nearest penetrating arterioles (red) and between pairs of nearest venules (blue). The

two distributions were significantly different (Kolmogorov-Smirnov test, P < 0.0001). (d)

Examples of primary branches (green) from penetrating arterioles (red) and venules (blue).

(e) Probability density function of the arteriole (red) and venule (blue) primary branches as a

function of depth below the pia. The two distributions were significantly different

(Kolmogorov-Smirnov test, P < 0.0001); the number of arteriole branches peaked near layer

4, whereas that for venules peaked at the surface.
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Figure 6.
Relation of images of the intrinsic optical signal (IOS) to the centroids of the cortical

columns. A thinned-skull window was prepared above vS1 cortex and individual vibrissae

were deflected at 10 Hz for 4 s. The mice were anesthetized with isoflurane so that only a

net deoxyhemoglobin signal was observed by reflectance of light with a center wavelength

of 625 nm. (a) Selected frames for four different vibrissa from the same mouse. Each frame

is 0.5 s in duration and represents an average over ten trials. M, medial; R, rostral. (b)

Complete time dependence for the spatial location of maximal change for the data in a.

Shaded areas represent s.d. (c) Responses from all columns, normalized in amplitude and

thresholded to avoid spatial overlap, are superimposed on a map of cortical columns

obtained from flattened tissues optically sectioned with two-photon microscopy. Part of the

mismatch at the lateral side results from an incomplete correction for the curvature of the

brain. (d) Example of relatively small cortical columns in which the optical signal is

centered (×) on the columnar centroid (+) as opposed to nearby penetrating arterioles (red

dots) and penetrating venules (blue dots). Smoothed by convolution with a σ = 50 μm

Gaussian filter. (e–g) Amplitude of the optical signal as a function of the distance to the

columnar centroid (e), to the nearest penetrating arteriole (f) and to the nearest penetrating

venule (g). The dashed lines are the null hypotheses, formed from a random distribution of

signal centroids. (h) Lateral extent of the column-centered IOS. Maps of 94 individual

whiskers from four mice were aligned on the spatial location of maximal change and

averaged across time (frames). These column-centered maps were symmetric in all

directions. Shaded areas represent s.d.
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Figure 7.
Calculated loss of lateral flow under numerically imposed pathological conditions in

comparison with experimental observations. (a) Cartoon of local occlusion and

representative necrotic cyst formed after occlusion of a rat penetrating arteriole along with

thin section stained with the pan-neuronal marker αNeuN. Reproduced from ref. 21. (b)

Computed vascular perfusion domains and their estimated parenchymal volume were

consistent with measured cyst volumes formed after single artery occlusion. The vascular

volume of 115 domains in 4 data sets (colored circles) was computed following numerical

dye tracing (Fig. 4) as a function of the perfusion current. The parenchymal volume

perfused by each domain was computed as 1/0.0074 of the vascular volume following

previous measurements19. The linear fit to the data holds for a >98.5% confidence limit. We

further plotted the cyst volumes (yellow and green diamonds), found from targeted

photothrombotic occlusion of rat penetrating arterioles in rat cortex5,21, as a function of the

initial flux in the arteriole. (c) Schematic of the occlusion of an individual penetrating

arteriole with scheme for labeling the order of downstream edges. (d) We simulated the

occlusion of selected, individual penetrating arterioles and calculated redistribution of flow
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in microvessels up to 15 edges downstream from the occlusion site. The reduction in

vascular flux is plotted as a function of each vessel's topological distance, that is, in terms of

vertices, from the occluded plunging arteriole. Shown are the results of 100 simulations per

order of the downstream edge (red circles) along with the median reduction in flux (red

diamonds). We compared these results with the published in vivo data of downstream flux

measurement before and after penetrating arteriole occlusion in rat neocortex (green points

are data from 175 vessels with median values shown as yellow and green diamonds)17. (e)

Schematic of the occlusion of an individual penetrating venule with scheme for labeling

upstream edges. (f) We simulated the occlusion of selected, individual penetrating venules

and calculated redistribution of flow in microvessels up to 15 edges upstream from the

occlusion site. The reduction in vascular flux is plotted as a function of each vessel's

topological distance from the occluded venule. The distribution of vascular responses is

shown for 100 simulations per order of edge (blue circles) along with the median reduction

in flux (blue diamonds). The results were compared with the published in vivo data of

upstream flux measurement before and after penetrating arteriole occlusion (green points are

data from 170 vessels)22.

Blinder et al. Page 26

Nat Neurosci. Author manuscript; available in PMC 2014 August 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 8.
Lattice models of the angiome. The sources are penetrating arterioles (red, PAs), sinks are

penetrating venules (blue, PVs), network resistors represent the asymptotic value of the

microvasculature (Fig. 2e), and the source and sink resistances are about half the value of

the network resistances (Fig. 2e). (a) Linear circuit, the directions of current flow indicated

for normal conditions (top) and after a block of a penetrating arteriole (bottom). (b) Planar

circuit with a rhombic lattice and two penetrating venules for each penetrating arteriole. (c)

Blockage of a penetrating arteriole leads to a region of no flow with an effective radius of

 in units of median spacing between penetrating venules, whereas

blockage of a penetrating venule leads to a region of no flow with an effective radius of

 in the same units. (d) Comparison of the prediction from the lattice

model and data for penetrating arterioles17 and venules22. The number of vertices between a

pair of penetrating venules, which sets the distance scale, was estimated from our analysis

(Figs. 2e and 5c) as  vertices.
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