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Abstract

Background With the high prevalence of diffuse liver disease

there is a strong clinical need for noninvasive detection and

grading of fibrosis and steatosis as well as detection of

complications.

Methods B-mode ultrasound supplemented by portal system

Doppler and contrast-enhanced ultrasound are the principal

techniques in the assessment of liver parenchyma and portal

venous hypertension and in hepatocellular carcinoma

surveillance.

Results Fibrosis can be detected and staged with reasonable

accuracy using Transient Elastography and Acoustic Radia-

tion Force Imaging. Newer eclastography techniques are

emerging that are undergoing validation and may further

improve accuracy. Ultrasound grading of hepatic steatosis

currently is predominantly qualitative.

Conclusion A summary of methods including B-mode,

Doppler, contrast-enhanced ultrasound and various

clastography techniques, and their current performance in

assessing the liver, is provided.

Teaching Points

* Diffuse liver disease is becoming more prevalent and there is
a strong clinical need for noninvasive detection.

* Portal hypertension can be best diagnosed by demonstrating
portosystemic collateral venous flow.

* B-mode US is the principal US technique supplemented by
portal system Doppler.

* B-mode US is relied upon in HCC surveillance, and CEUS is
useful in the evaluation of possible HCC.
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» Fibrosis can be detected and staged with reasonable
accuracy using TE and ARFI.
 US detection of steatosis is currently reasonably accurate but
grading of severity is of limited accuracy.
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Introduction

Ultrasound (US) has a major role in the diagnosis and manage-
ment of chronic liver diseases by providing diagnostic and
prognostic information as well as detecting complications such
as HCC and portal hypertension. While conventional ultrasound
is valuable in the assessment of liver parenchyma and detection
of liver lesions, a range of other US techniques has been devel-
oped that increases its potential value. Noninvasive methods of
measurements in chronic liver disease are rapidly changing in
performance capabilities and availability. These include labora-
tory tests and imaging studies. An area of intense recent interest
has been elastography because of its ability to provide noninva-
sive information about the stage of liver fibrosis.

The purpose of this review is to summarise the range of US
techniques now available and to provide some perspective on
their current and potential future value, with a particular focus
on elastography, one of the techniques now in mainstream use.

The clinical challenge—{fibrosis and steatosis detection
and grading

Hepatic fibrosis is a response to chronic liver injury and a
process that tends to progress to cirrhosis and end-stage liver
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disease. While alcohol and infection with hepatitis B virus
(HBV) and hepatitis C virus (HCV) are still the leading
causes worldwide, the increasing prevalence of metabolic
syndrome and obesity has resulted in an increasing inci-
dence of cirrhosis secondary to non-alcoholic fatty liver
disease (NAFLD). The prevalence of NAFLD is higher
than previously estimated [1]. If the incidences of obesity
and diabetes continue to rise at the current rate, the preva-
lence of NAFLD in the US is expected to exceed 50 % in
2030, reaching epidemic status [2]. Non-alcoholic
steatohepatitis (NASH), first described in 1980 [3], is a
severe and progressive form of NAFLD and is now
recognised as a major cause of cirrhosis.

Most histological staging systems for fibrosis and cir-
rhosis provide five stages, e¢.g. the METAVIR [4]: stage 0
(FO) = normal connective tissue; stage 1 (F1) = fibrous
portal expansion; stage 2 (F2) = periportal or scanty
porto-portal septa; stage 3 (F3) = fibrous septa with archi-
tectural distortion; stage 4 (F4) = cirrhosis. Stages 2 and 3
are considered significant and severe fibrosis respectively.
Staging liver fibrosis is important for several reasons: in
chronic viral disease, identification of the severity of the
liver damage is necessary in order to allow a timely treat-
ment start to avoid progression to cirrhosis when fibrosis
stage 2 or beyond is present; the monitoring for progression
or regression of liver fibrosis during treatment; and the
commencement of monitoring for complications (HCC,
PHT) in fibrosis stage 3 or cirrhosis.

Macrovesicular steatosis of the liver can be graded S0-S3
based on percent of hepatocytes in the biopsy involved (SO is
none; S1 is up to 33 %; S2 is 33—66 %; S3 is >66 %) [5]. The
grade of steatosis is one parameter in the staging for NASH,
e.g. used in the the NASH CRN scoring system [6]. Very
similar to the grading system proposed by Brunt et al. is the
NASH revised criteria used for histological scoring by Dixon
with grades 0—4 assigned to <5 %, 5-25 % 25-50 %, 50-75 %
and >75 % respectively [7].

With emerging treatments for hepatic fibrosis and
NAFLD there is growing demand for accurate diagnosis,
prognosis and monitoring of the disease. Traditionally, liver
biopsy has been considered the gold standard in fibrosis
assessment [8, 9]. Liver biopsy has a number of disadvan-
tages. As an invasive test, it has a complication rate of
approximately 1 % [10—12]. Liver biopsy has been shown
to have a high rate of sampling error in patients with diffuse
parenchymal liver diseases. A typical specimen volume
taken at core biopsy represents only 1/50,000 of liver vol-
ume [13]; however fibrosis is heterogeneously distributed
in the liver. As an example, in a series of 124 HCV patients,
samples taken from the right and left hepatic lobes differed
in histological grading and staging. As a result of sampling
error, underdiagnosis of cirrhosis occurred in 14.5 % of the
patients [14].
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Ultrasound modalities
B-mode ultrasound
Fatty liver disease

At conventional B-mode ultrasound, diffuse fatty infiltration
results in increased echogenicity of the liver when compared
to other organs such as the renal cortex (Fig. 1). Features
include increased echogenicity of the liver parenchyma, poor
or non-visualisation of the diaphragm, intrahepatic vessels and
posterior part of the right hepatic lobe. Qualitative grading is
conveniently made as mild, moderate or severe, or grade 0-3
with 0 being normal. Grade 1 (mild) is represented by a diffuse
slight increase in fine echoes in the hepatic parenchyma with
normal visualisation of the diaphragm and intrahepatic vessel
borders. Grade 2 (moderate) is represented by a moderate
diffuse increase in fine echoes with slightly impaired visual-
isation of the intrahepatic vessels and diaphragm. Grade 3
(marked) is represented by a marked increase in fine echoes
with poor or no visualisation of the intrahepatic vessel bor-
ders, diaphragm and posterior portion of the right lobe of the
liver [15]. Focal fatty sparing may be seen in grades 2 and 3. A
de facto validation of qualitative grading has occurred in a
meta-analysis that included data from studies comparing US
with histopathological findings. Ultrasound was found to have
acceptable diagnostic accuracy for detecting moderate or se-
vere hepatic steatosis in adults, with pooled sensitivities rang-
ing from 0.857 to 0.991 and pooled specificities ranging from
0.852 t0 0.919 [16]. Cutoff values for grading steatosis varied
across studies included in the meta-analysis but were not less
than 25 % for moderate to severe hepatic steatosis. The
sensitivities and specificities for mild (less than 5 %) steatosis
were 0.733 and 0.844 respectively.

Data in the adolescent population are scarce. In a small
series of 34 overweight Egyptian children with liver biopsy,

Fig. 1 B-mode ultrasound of liver and right kidney. Diftuse fatty infil-
tration. The liver is of markedly increased echo intensity relative to the
renal cortex, indicative of severe steatosis
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qualitative ultrasound scores of 0 or 1 were found to exclude
histological NAFLD [17]. In an earlier prospective study of
104 adolescents, qualitative scores 0-3 for the presence of
fatty infiltration at ultrasound were compared with MR spec-
troscopy results. While negative US results excluded the
presence of severe steatosis with acceptable accuracy, positive
US results in severely obese adolescents could not be used to
accurately predict the presence and severity of hepatic
steatosis [18].

Due to substantial inter- and intraobserver variability [19]
and the reduced sensitivity in low levels of steatosis [16, 20], it
has been suggested that the effectiveness of steatosis detection
can be increased by quantification of liver brightness. The
sonographic hepatorenal index (SHRI) is based on compari-
son between liver and kidney brightness. An image including
both liver and kidney is required, typically showing segment 6
of the liver and the upper pole of the right kidney. Regions of
interest (ROI) of an appropriate size (>400 pixels) are selected
in the liver parenchyma, excluding vessels, and renal cortex at
the same field depth. The mean brightness of each ROI is
determined using numerical values assigned to grey-scale
pixels. Some ultrasound systems allow the placement of ROIs
directly on the screen. Alternatively, a suitable image can be
exported and ROIs placed using proprietary software or public
domain programmes such as Imagel] (National Institutes of
Health, Bethesda, MD, USA). The SHRI is the mean liver
brightness divided by the mean renal cortex brightness
(Fig. 2). Significant correlation between histological steatosis
and the SHRI has been found in several studies. In addition,
point estimates of SHRI for the prediction of steatosis grades
less than moderate or severe appear to be superior to those of
qualitative grading methods. In a series of 101 patients who
underwent liver biopsy, a strong correlation between the SHRI

Fig. 2 Quantification of echo

and percentage of fat was shown (Spearman’s coefficient =
0.71, P<0.001) [21]. In this study, liver biopsy was performed
for a variety of reasons including elevated liver function tests,
HCYV, orthotopic liver transplant and HBV. A SHRI cutoff of
1.28 had a sensitivity of 1 and a specificity of 0.54 for the
diagnosis of steatosis greater than 5 %. The authors reported
that more than 1/3 of biopsies could have been avoided in their
series of 101 patients if the SHRI method had been used
prospectively. In another study of 42 NAFLD patients and
40 healthy controls, the SHRI cutoff for predicting steatosis
was 1.24 with a sensitivity of 0.93 and a specificity of 0.93
[22]. In a series of 111 consecutive patients undergoing liver
biopsy for a variety of indications including HBV, HBC and
abnormal liver enzymes, the SHRIs were determined retro-
spectively. An SHRI cutoff point of 1.49 had a sensitivity of 1
and specificity of 0.91 for the prediction of steatosis >5 %
[20]. In a recent study involving patients attending general
medical centres, SHRI as determined on a standard worksta-
tion without additional software showed strong correlation
(Spearman’s coefficient = 0.89, P<0.001) with 3T MR proton
spectroscopy as a reference to determine the degree of
steatosis [23]. The authors found that SHRI cutoff points of
1.21, 1.28 and 2.15 yielded 100 % sensitivity for the diagno-
ses of steatosis greater than 5 %, 25 % and 50 %, respectively,
with a specificity greater than 70 %. The degrees of steatosis
referred to in this study correspond to those in the Dixon
steatosis grading system [7]. It appears that amongst the
limited number of studies to date, no uniformly agreed SHRI
threshold for cutoffs of degrees of steatosis have been found.

Regarding reproducibility, repeat measurements of the
SHRI in a sample of hospital workers were made several days
apart by one sonographer. An r value of 0.77 for correlation
between the two measurements was achieved. A kappa value
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of 0.86 when applying a cutoff point of 1.49 for the diagnosis
of steatosis indicates very good intraobserver agreement [20].
Interobserver agreement for the SHRI has not been assessed.

In summary, the SHRI appears to be an appealing tech-
nique for diagnosis and quantification of hepatic steatosis. It
can be performed without new investment, but a standardised
technique and interobserver agreement still need to be
determined.

Lee et al. describe a “dark band at the posterior deep
portion of the liver” [24] on tissue harmonic compound so-
nography (Fig. 3). This becomes especially conspicuous when
the fundamental mode of compound sonography is converted
to the tissue harmonic compound sonography mode for eval-
uation of focal hepatic lesions. We have also observed this
phenomenon. Compound sonography has the advantage of
better sharpness and contrast, and an improved signal-to-noise
ratio. Especially when combined with tissue harmonic imag-
ing, noise is kept to a minimum and some artefacts such as
reverberation are removed, ideal for investigating a focal
lesion [25-27]. As a trade-off, posterior shadowing may be-
come more conspicuous. An explanation of the dark area
could be an abrupt drop in the harmonic signal in deeper
portions due to the effect of fatty infiltration on acoustic
penetration. Termed the “fade-out sign”, this phenomenon
was investigated for its value in diagnosing fatty liver disease
[24]. At this time the fade-out signal appears to be an observed
qualitative feature of hepatic steatosis at harmonic US
imaging.

Echotexture analysis

A feature of ultrasound is the presence of speckle noise.
Within an image, speckle is an intensity pattern formed by
the interference of many scatters and not a direct representa-
tion of the underlying structure. However, the local brightness

Fig. 3 Tissue harmonic compound sonography. Signal drop in the far
field (fade-out sign) indicated severe diffuse fatty infiltration
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of the speckle reflects the corresponding echogenicity of the
underlying scatterers, in the case of liver ultrasound likely the
hepatic lobules.

The speckle pattern changes with both steatosis and fibro-
sis. Microarchitectural changes may be imperceptible to the
naked eye on a conventional B-mode image. Acoustic struc-
ture quantification (ASQ) is one method of quantifying the
statistical deviation of ultrasound signals that occurs in diffuse
pathological processes [28]. In the evaluation of fibrosis and
cirrhosis, ASQ as yet has not been shown to perform as well as
TE [29]. ASQ technology has been proposed for the quanti-
fication of steatosis [30]. Figure 4 shows an example of how
ASQ is displayed.

Fibrosis and cirrhosis

Liver parenchymal texture is a characteristic that is somewhat
subjective and has low sensitivity for the detection of cirrho-
sis. A recent retrospective study on the accuracy of conven-
tional US in the staging of fibrosis found that routine US is not
an accurate predictor for either early or significant fibrosis in
chronic viral hepatitis [31]. However in a series of 103 patients
with chronic liver disease it has been shown that liver paren-
chymal texture (graded as fine echotexture, mildly coarse,
coarse and highly coarse) has a statistically significant corre-
lation (rs=0.8853) with the degree of fibrosis [32]. When
combined with two more features (liver surface nodularity
and liver edge), correlation with the degree of fibrosis in-
creased to rs=0.9524. When compared to echotexture, liver
surface nodularity (Fig. 5) has better accuracy for the presence
of cirrhosis [33-35] reaching both a sensitivity and specificity
of 0.88. In order to provide a fluid-tissue interface, ascites
needs to be present for optimal evaluation. Once ascites is
present, cirrhosis is generally more advanced and less of a
diagnostic challenge.

A different approach is the use of the hepatic vein lumen as
an internal fluid-tissue interface when ascites is absent
(Fig. 6). Assuming that internal nodularity in cirrhosis would
cause architectural distortion, the hepatic vein morphology
would also be altered. In a prospective pilot study comprising
38 patients with cirrhosis and 50 patients without liver disease,
the following features were evaluated: hepatic vein straight-
ness, uniformity of hepatic vein echogenicity and visualisation
of'a 1-cm segment of hepatic vein [36]. Hepatic vein straight-
ness, stratified into three categories (straight, slightly wavy
and very wavy) yielded the highest sensitivity and specificity
0f 0.97 and 0.91 respectively using real-time compound im-
aging (RTCI) with a 5-2 MHz transducer. Uniformity of
hepatic vein wall echogenicity was the next useful feature
with a sensitivity and specificity of 0.88 and 0.86 respectively,
similar to earlier studies on superficial surface nodularity.
With all three features combined, specificity for cirrhosis
reached 0.98 using RTCI; however sensitivity reduced to
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Fig. 4 Speckle pattern analysis
with acoustic structure
quantification (ASQ). Upper
images: Homogeneous normal
liver parenchyma is displayed as
green whereas portal tracts and
other structures with different and
heterogeneous structure are
highlighted in red. Lower images:
Example of quantitative tools
showing the probability density
function (green curve) and
theoretical speckle generated by
Rayleigh distribution (red)

0.65. In this pilot study, the assessment of the hepatic vein
morphology has been shown to be a good indicator of cirrho-
sis with favourable inter- and intraobserver error. While vali-
dation with more rigorous clinicopathological correlation and
larger patient numbers is required, the three hepatic vein
morphology characteristics can easily be evaluated in clinical
practice. The authors now recommend that examination of the
hepatic vein wall should preferably be performed in segment 5
or 6. A peripheral tributary should be selected perpendicular to
the ultrasound beam in order to achieve a good specular
reflection. The peripheral tributary should measure approxi-
mately 3 mm in diameter and at least 15 mm in length;
choosing a peripheral tributary also allows the use of higher
resolution scanning [37].

While hepatic vein wall morphology appears to be a feature
with excellent accuracy for the diagnosis of cirrhosis in the
pilot study [36], a recent study was not able to demonstrate
this high sensitivity and reported liver surface nodularity to be

T

. Liver Surface

Fig. 5 Example of surface nodularity

more sensitive [38]. It is likely that these discrepant findings
are technique related. When applying a meticulous technique
as detailed in Gibson et al. [37], the authors’ experience is that
diagnostic confidence is higher with hepatic vein morphology
than with surface nodularity.

Portal vein diameter is known to increase following a meal,
and the effect can be as much as 50 % [39]. In a small series,
this effect has been shown to be present in normal subjects and
chronic hepatitis patients alike, but in liver cirrhosis mean
calibre, mean flow velocity and mean flow volume remained
largely unchanged after a meal [40]. Absolute portal vein
calibre has been considered a sign of portal venous hyperten-
sion with cutoff values of 13—15 mm [41-43], however with
poor sensitivities of 0.13-0.4. The lack of sensitivity is likely
due to the presence of collateral pathways that decompress the
system. An angiography-based study concurred with the find-
ing that portal vein diameter did not increase along with the
portohepatic gradient in portal venous hypertension [44]. In
our experience, the portal vein diameter may even appear
small in the setting of hepatofugal flow. In our practice little
significance is attached to this parameter as it has low positive
predictive value for portal hypertension and a small percent of
normals have portal vein diameters >13 mm. Portal vein
diameter should therefore be interpreted with caution as a
marker of portal hypertension.

In portal hypertension more relevant than absolute portal
vein diameter may be the absence of normal calibre variations
with respiration [45] with a reported sensitivity of up to 0.79.
It is clear, however, that there is too much variance in absolute
portal vein diameter to be used in the diagnosis of portal
venous hypertension. Further, in our experience ultrasound
access and compliance with breathing directions are often too
poor to obtain reliable and reproducible measurements of
portal vein diameter change.
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Fig. 6 Hepatic vein wall
morphology. Against contrast of
anechoic blood within the hepatic
vein, the wall appears wavy,
concurring with the known
diagnosis of cirrhosis. In the
absence of ascites, surface
nodularity may not be as
conspicuous as in Fig. 5

Doppler ultrasound

Doppler ultrasound can measure hepatic blood flow. In the
past, several investigations of the utility of Doppler ultrasound
as a noninvasive method of assessing the degree of hepatic
fibrosis have been made. The theoretical basis is haemody-
namic change in the liver during progression from hepatitis to
fibrosis and cirrhosis. Reproducibility of Doppler-derived in-
dices, however, has been poor and correlation between indices
and disease stage uncertain. In a well-stratified cohort of 65
patients with biopsy-proven HCV-related liver disease, vari-
ous hepatic vascular indices were investigated prospectively
including the hepatic artery velocity and hepatic artery resis-
tive index, portal vein velocity, portal vein diameter and
circumference, portal vein congestive index and hepatic ar-
tery—portal vein velocity ratio [46]. In less than half of the
patients in this study, reproducible and accurate hepatic artery
traces and derived indices could be obtained, and in less than
one third of patients an accurate portal vein circumference
could be determined. The portal vein velocity could be mea-
sured in 62 patients but mean values were near identical for
different degrees of hepatitis and cirrhosis. Overall there were
no significant differences observed in the Doppler indices
with increasing severity of liver disease. The authors conclude
that Doppler-derived indices are difficult to reproduce reliably
and are therefore of limited clinical value in the assessment of
hepatic fibrosis or inflammation.

Hepatic vein waveforms have been used to predict cirrhosis
with a tendency for the waveform to be biphasic or
monophasic in cirrhosis compared with triphasic in normals.
Recently, hepatic vein waveforms were re-evaluated in a
series of 120 patients with cirrhosis with a broad range of
causes. Flat waveforms occurred in only 3 % of cases; other-
wise waveforms were bi- and triphasic. There was no corre-
lation between liver dysfunction and the pattern of hepatic
vein waveforms [47]. Variability in venous waveforms is
commonly found in clinical practice.
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The main role of Doppler ultrasound is the assessment of
portal venous hypertension as a complication of cirrhosis.
Doppler ultrasound of the ligamentum teres (Fig. 7) showing
hepatofugal venous signal (i.e. a patent paraumbilical vein)
and hepatofugal flow in the portal vein are both specific signs
and have a high positive predictive value for the presence of
portal hypertension [48, 49].

Portal vein velocity as a marker of portal hypertension was
assessed in a study of 118 patients and found to be highly
variable, ranging between 7 and 83 cm/s. Only 2.6 % of
patients in this series had velocities <10 cm/s (a threshold
suggested by Zoli [50]), and 6.1 % had velocities <11 cm/s
[49]. Low portal vein velocity is therefore not a very useful
sign of portal hypertension. The ratio of cross-sectional portal
vein diameter and portal vein velocity, termed the ‘congestion
index’ [51], has been proposed as a marker of portal hyper-
tension based on the tendency for portal vein diameter to
increase and velocity to decrease. As an index it is not widely
used partly because measurement of both parameters of the
index is highly variable [49].

Portal venous flow pattern assessment is also valuable in
the diagnosis of portal hypertension. Normal portal venous
flow is continuous and hepatopetal on Doppler ultrasound
with minimal variations due to the cardiac cycle and respira-
tion. Reversed (hepatofugal) portal venous blood flow can be
present when the intrahepatic resistance is greater than the
resistance of portosystemic collaterals. Continuous
hepatofugal flow is present in 8.3 % of patients with cirrhosis
[52] and associated with portosystemic shunts [53].

The significance of left gastric vein diameter is unclear.
While some correlation with variceal bleeding has been found
[54], others found that dilation of the left gastric vein is not
necessary for variceal haemorrhage to occur [55].

In a more recent study, a left gastric vein diameter of more
than 6 mm was found in 58 % of patients with recent variceal
bleed and 12 % of patients without a recent variceal bleed;
however this difference was not statistically significant [56].
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Fig. 7 Recanalisation of the
paraumbilical vein as shown by
venous Doppler signal in the
ligamentum teres. This is
sensitive and specific for the
presence of portal venous
hypertension

Contrast-enhanced ultrasound

Contrast-enhanced ultrasound (CEUS) uses microbubbles as
kinetic tracers. CEUS agents have shown to have a good
safety profile with a low incidence of side effects. The safety
of SonoVue® (Bracco S.p.A., Milan, Italy) has been shown in
a retrospective study of 23,188 where only two serious ad-
verse events and no deaths occurred [57]. They are either
blood pool agents or combined blood pool and Kupffer phase
agents. Different agents have differing properties and they
cannot be used interchangeably.

CEUS in diffuse liver disease

By measuring vascular transit times and parenchymal enhance-
ment, the severity of liver disease can be assessed. In patients
with cirrhosis, the transit times of microbubbles are shortened
[58—60]. In addition, it has been shown that using hepatic vein
transit times (HVTT) mild hepatitis can be differentiated from
moderate and severe hepatitis as well as cirrhosis in HCV-
related liver disease [61]. As HVTT shortens with more disease,
this method has been suggested as a marker of response to
antiviral treatment in HCV [62]. Different agents behave dif-
ferently, e.g. hepatic vein transit time has been shown to be
significantly shorter with SonoVue than with the then available
blood pool agent Levovist® (Schering AG, Berlin, Germany)
[63]. While the diagnostic accuracy of transit times appears
good, the technique is complex and exacting with questionable
reproducibility, and the technique is not in mainstream use.

It has been shown that the behaviour of intrahepatic
microbubbles depends on the severity of hepatic fibrosis.
Sonazoid™ (GE Healthcare, Oslo, Norway), using
perfluorobutane as its gas core, is captured in reticuloendo-
thelial tissue. Using this agent in a prospective study of 202
subjects, intrahepatic accumulated microbubbles were used to
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predict the grade of liver fibrosis [64]. There was significant
correlation between the intensity difference and the fibrosis
grade. The sensitivity, specificity and efficiency of the inten-
sity difference were 0.88, 0.72 and 0.81 for marked fibrosis,
0.85, 0.91 and 0.89 for advanced fibrosis and 0.97, 0.9 and
0.91 for cirrhosis respectively. Until recently, the CEUS agent
Sonazoid™ was only available in Japan.

CEUS for lesion characterisation in the setting of chronic
liver disease

CEUS can be used in the diagnosis and management of hepa-
tocellular carcinoma, an end point of cirrhosis. The typical
features of arterial hyperenhancement and washout as seen on
CT or MR can be shown in real time during CEUS. A new
concept is defect reperfusion imaging [65] where a Kupffer
phase agent such as Sonazoid™ is injected first. This facilitates
lesion detection as pathology deficient of Kupffer cells will
stand out as an echopoor defect. With a second injection, these
defects can then be assessed for arterial enhancement.

Elastography

There is a correlation between hepatic parenchymal pathology
and liver stiffness. As a surrogate marker of fibrosis and
cirrhosis, the measurement of liver stiffness forms the basis
of elastography. Stiffness, or the rigidity of an object, is the
extent to which it resists deformation in response to a force
applied. Elasticity is the tendency of solid materials to return
to their original shape after being deformed by a force applied
and removed. In elastography, such force is coupled with a
system that measures the deformities caused by the force.
Ultrasound elastography techniques include transient
elastography (FibroScan®), acoustic radiation force impulse
imaging (ARFI), shear wave mode elastography and strain
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elastography. A recent review by Frulio and Trillaud provides
details on different elastography techniques as well as a brief
discussion on the main serum markers to assess for fibrosis
[66]. A 2013 review by the Japan Society of Ultrasonics in
Medicine discussed fundamental principles of elastography
methods and physics of tissue elastic properties [67].

Transient elastography

This ultrasound method is based on Hooke’s law, which states
that the force required to compress or extend a spring is
proportional to the distance compressed or extended. This
law can be applied to a variety of materials including liver
tissue. Transient elastography (TE) is the technique used with
the FibroScan® ultrasound unit (Echosens S.A.S.U., Paris/
France). In practice, FibroScan® uses a 5 MHz ultrasound
transducer mounted on the axis of a vibrator, placed in a right
intercostal space with the patient lying supine and the right
arm in maximal abduction. A 50-Hz vibration with an ampli-
tude of 2 mm created propagates into the liver as elastic shear
waves. The speed of wave propagation is proportional to the
tissue stiffness and is measured by pulse-echo ultrasound.
This measured speed is then converted to the Young modulus
using a simplified equation and expressed in kiloPascals (kPa)
[68]. Ten successful measurements are to be obtained in any
given patient and the median value in kPa is calculated (Fig. 8).
The stiffer the tissue is, the higher the speed of wave progression.

There are a number of limitations in TE. The major disad-
vantage in comparison with other elastography techniques is
that no ultrasonographic visualisation of the location of the
measurement is possible. It is impossible to perform in pa-
tients with ascites. The liver stiffness measurements may be
influenced by acute liver injury [69-71] indicated by acute
aminotransferase flares, extrahepatic cholestasis [72], central
venous pressure [73], beta-blockers [74] and food intake [75].
TE is difficult to perform in obese patients or those with a
narrow intercostal space. In addition, it is operator dependant.
In an analysis of 13,369 cases, a 15.8 % rate of unreliable and
3.1 % rate of failed TE measurements were reported [76]. This
corresponds to liver stiffness measurements using TE being
uninterpretable in nearly one in five cases. The main reasons
were found to be obesity and limited operator experience. In
addition, patient age >52 years and presence of type 2 diabetes
mellitus were independently associated with measurement
failure and female gender and arterial hypertension were
independently associated with unreliable LS measurements.
In order to mitigate the high rate of unreliable measurements
in obese patients, a lower frequency (2.5 MHz) XL probe has
been developed that has achieved reliable measurements in
61 % of obese patients in whom measurements were unreli-
able using the conventional M probe [77]. The use of an XL
probe in obese patients increased the rate of reliable measure-
ments from less than 50 % (M probe) to approximately 75 %.
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Similarly for patients with smaller build and children, an S
probe with a higher frequency and shallower sampling depth
is being developed [78].

The diagnostic performance of TE has been assessed for a
variety of aetiologies: HCV [79], HIV/HCV [80, 81], HBV
[82], NAFLD [83] and alcoholic liver disease [84]. In a meta-
analysis including 40 studies an overall sensitivity and spec-
ificity of 0.79 and 0.78 for F=2 stage and 0.83 and 0.89 for
cirrhosis were reported [85].

In a meta-analysis comprising 18 studies including 2,772
patients exclusively with HBV, the mean area under the ROC
curve for the diagnosis of F=2 was 0.859, for F=3 0.887 and for
F=40.929. The estimated cutoff for F=2 was 7.9 (range, 6.1—
11.8) kPa, with a sensitivity of 74.3 % and specificity of 78.3 %.
For F=3, the cutoff value was determined to be 8.8 (range, 8.1—
9.7) kPa, with a sensitivity of 74.0 % and specificity of 63.8 %.
The cutoff value for F=4 was 11.7 (range, 7.3—17.5) kPa, with a
sensitivity of 84.6 % and specificity of 81.5 % [86].

The optimal cutoff values for advanced fibrosis and cirrho-
sis differ according to actiology and are subject to debate as
even within one actiology a broad range of cutoff values exist.

In addition to using TE in the assessment of fibrosis and
cirrhosis, a new method has emerged for the quantification of
steatosis. The amplitude of ultrasound waves decreases as
they propagate through the liver. This attenuation is measured
using the Fibroscan M probe and termed the controlled atten-
uation parameter (CAP™). Initially assessed in a pilot study
of 115 patients, CAP™ detected >10 % (S1), >33 % (S2) and
>67 % (S3) steatosis with areas under the ROC curves 0of0.91,
0.95 and 0.89 respectively. The presence of fibrosis did not
affect the CAP™ values [87]. Similar performances were
found in further studies, e.g. with areas under the ROC curves
0f0.84, 0.86 and 0.93 for >10 % (S1), >33 % (S2) and >67 %
(S3) steatosis respectively [88] or with areas under the ROC
curves of 0.79, 0.76 and 0.70 for >5 %, >33 % and >67 %
steatosis respectively [89]. There is evidence that the aetiology
of steatosis does not affect the accuracy of CAP™ [90].

The grades of steatosis used in the above studies correspond
to the original proposal for grading by Brant et al. [S] with the
exception of S1 where the degree of steatosis is <33 %.

Early studies of CAP™ have shown promising results for
quantification of hepatic steatosis, although some have report-
ed limited accuracy in the range of severe disease and high
failure rates. In a large prospective study of 5323 CAP™
examinations the overall failure rate was 7.7 %, and 33 % in
elderly females with diabetes and hypertension [91]. Further
studies are required for validation and refinement of its use.

In summary, TE is the longest established and most vali-
dated technology. It has excellent diagnostic accuracy for
cirrhosis and good accuracy for the detection of early cirrho-
sis. It is user friendly and has a high patient acceptance. There
are a number of limitations and pitfalls, and dedicated non-
imaging ultrasound hardware is required. The main limitations
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are high BMI and ascites, and there is a variable but not
insignificant failure rate.

Acoustic force radiation impulse

Acoustic Force Radiation Impulse (ARFI) technology is a
technique that has been incorporated into an imaging ultra-
sound unit. A 5 mm % 10 mm region of interest (ROI) cursor is
placed during real-time B-mode scanning. The technique was
termed shear wave elastography at a point (pPSWE) given the
small size of the ROI cursor [68].

The tissue in the ROI is excited with a short duration (262
us) fixed frequency (2.67 MHz) ultrasound pulse to displace
tissue locally. The resultant shear wave propagates laterally
with a velocity that is proportional to the square root of tissue
elasticity and detected with ultrasound-based correlation
methods. The speed of the shear wave is measured directly
in meters per second and is displayed on the screen (Figs. 9).
Unlike TE, ARFI is not impeded by mild to moderate
perihepatic ascites. As the technology is implemented in an
ultrasound machine, it can be part of any B-mode liver ultra-
sound scan without switch of equipment (e.g. Virtual Touch™
Tissue quantification in Siemens ACUSON S2000, Siemens
Medical Solution, Erlangen, Germany; Elasto Q Philips iU22,
Philips, Best, The Netherlands). In addition, the site of sam-
pling is selectable and known precisely. In practice, ARFI is
often carried out as part of liver ultrasound. Segments V/VI or
VII/VIII are most suited for sampling, with the left liver lobe
best avoided [68, 92, 93]. The two main reasons for better
suitability of the right liver for ARFI sampling are the disrup-
tion of shear waves by excessive tissue motion secondary to
cardiac pulsation affecting the left lobe, and readings in seg-
ments II/III are likely to be taken from tissue closer to the
capsule, an area known to be more fibrous than deeper zones.

The success rate (SR) has been measured by the ratio of
successful acquisitions over the total number of acquisitions
and interquartile range (IQR) interval, defined as the differ-
ence between the 75th and the 25th percentile. These are

4/19/2013

Fig. 8 User interface of Fibroscan. Example of liver stiffness measure-
ment: mean 6.6 kPa falls in the FO or F1 category (absent or mild fibrosis)

Vs=1.14 m/s
Depth=4.3 cm

Fig. 9 Elastography (ARFI). Example of normal liver with ARFI value
Vs=1.14 m/s indicating absent or mild fibrosis (FO or F1), and example of
abnormal liver with ARFI value Vs=3.74 m/s indicating F4=cirrhosis

quality technical parameters that have not been recommended
by the manufacturer (Siemens); however it has been shown
that these values (IQR <30 % of the median velocity and a
SR>60 %) can be used to improve the value of ARFI [94].

Significant inter-observer correlation between ARFI mea-
surements with #=0.874 has been shown [93]. In addition, in a
later study the intra-operator (intra-class correlation coeffi-
cient ICC=0.9) and inter-operator (ICC=0.81) reproducibility
of ARFI was shown to be good [95] in a study consisting of
patients with cirrhosis and fibrosis of various aetiologies and
healthy volunteers alike.

ARFTI was first used and validated in patients with chronic
HCV. In an early pilot study with 86 patients with HCV, the
area under the ROC curve for the diagnosis of F>2 was 0.82
and for the diagnosis of =4 was 0.91 [96]. In a study of 274
patients with HCV areas under the ROC curves to predict F>
2, F>3 and F=4 were 0.893, 0.908 and 0.937 respectively
[97]. A multicentre study from 2012 confirms ARFI as a good
method for predicting cirrhosis in HCV patients [98]; however
a problem area remains with stages FO-F1 where overlap of
measurements persists.

In a pooled meta-analysis assessing the performance of
ARFT in the staging of liver fibrosis due to HCV, HBV and
NASH, patient data were available from eight studies
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including 518 patients, all with biopsy as a reference method.
The mean diagnostic accuracy of ARFI expressed as area
under the ROC curve was 0.87 for the diagnosis of significant
fibrosis (F>2), 0.91 for the diagnosis of severe fibrosis (F>3)
and 0.93 for the diagnosis of cirrhosis [99]. However there
have been differences in the areas under the ROC curves for
HCV vs. HBV with 0.88 vs. 0.79 for £>2, 0.90 vs. 0.83 for
F>3 and 0.92 vs. 0.90 for F=4, respectively. In a further meta-
analysis addressing the efficiency of ARFI for the staging of
liver fibrosis, 36 studies including 3,951 patients were includ-
ed. The mean diagnostic accuracy of ARFI expressed as area
under the ROC curve was 0.84 for the diagnosis of significant
fibrosis (F>2), 0.89 for the diagnosis of severe fibrosis (F>3)
and 0.91 for the diagnosis of liver cirrhosis (F=4) [100].

A number of studies have compared the diagnostic perfor-
mance of ARFI with TE. In a cohort of 139 consecutive
patients with chronic HCV, ARFI has been shown to be more
accurate than TE for both significant and more severe stages
of fibrosis [101]. In prior studies, for the prediction of severe
fibrosis, ARFI and TE appear to have the same diagnostic
performance [96, 102, 103]. In the prediction of F>1 or F>2,
however, TE outperformed ARFI in two studies [102, 103],
while ARFI and TE were equal for all F stages [96]. In a recent
prospective study of 321 consecutive patients undergoing
assessment with ARFI, TE with the Fibroscan M- and XL-
probes, and liver biopsy within 1 month after elastography,
ARFI was shown to be reliable in the assessment of liver
fibrosis, especially in nonobese patients [104]. In this study,
ARFI had a measurement failure rate of 0 %, compared to
2.3 % and 11.2 % for the XL and M probes of Fibroscan
respectively. The M probe slightly outperformed ARFI in the
diagnosis of moderate fibrosis with areas under the ROC
curves of 0.81 and 0.88.

Data on the influence of different confounding factors on
ARFI measurements are limited. Liver stiffness is affected by
both physiological and pathological processes. Like TE, ARFI
values are influenced by acute inflammation [105, 106].
While TE is affected by both moderate and high aminotrans-
ferase levels, ARFI appears to be affected by high levels as
shown in a large multicentre study [106]. It has been shown
that food intake significantly increases ARFI values [107] and
measurements should therefore be performed in a fasting state.
While initially validated for HCV, there is growing evidence
that ARFI is accurate in predicting NAFLD fibrosis. Signifi-
cant correlation between ARFI values and the degree of
fibrosis has been shown [108, 109]. More recently, ARFI
has been investigated as a discriminating method between
NASH and simple steatosis [110, 111]. Significantly higher
ARFI velocities in NASH, and areas under the ROC curves of
0.87-0.9 for the differentiation between NASH and simple
steatosis were found.

In conclusion, ARFI is easy to perform with good repro-
ducibility. The technology is incorporated in conventional
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ultrasound systems, and results are available within seconds.
This method has been shown to have good diagnostic accu-
racy for the staging of fibrosis grades F>2 and F>3 and
excellent diagnostic accuracy for /'=4. Drawbacks are a small
pre-determined measurement area, and validation is not as
extensive as for TE as yet.

Two-dimensional shear wave elastography

The shear wave elastography (SWE) Aixplorer™ ultrasound
system (SuperSonic Imagine S.A, Aix-en-Provence, France)
generates shear waves in tissue from the acoustic radiation
force obtained with focussed ultrasound pulses. Hard- and
software are proprietary [68]. Serial pulses create plane shear
waves that propagate transversely. Plane wave imaging is used
to determine the speed of shear waves. Tissue elasticity is
related to shear wave velocity and expressed in kPa. It allows
the generation of a quasi real-time two-dimensional map of
tissue elasticity, which is superimposed in colour on B-mode
images at a low frame rate of approximately 1/s. As in most
SE systems, the range of colours is from red (soft tissue) to
blue (hard tissue). On a frozen image, mean and standard
deviation of tissue stiffness can be displayed within a set
ROI (Fig. 10). A potential advantage of 2D-SWE real-time
information on shear wave speed is the display and measure-
ment in a two-dimensional area as opposed to a point or line
fashion as ARFI or TE does. Only a few studies have been
reported to date. In a study limited to 121 patients with HCV,
SWE was superior to TE in the detection of F>2 [112]. In a
further study limited to 113 patients with HCV, SWE achieved
areas under the ROC curves of 0.95, 0.96 and 0.97 for the
prediction of F>2, F>3 and F=4, respectively, comparing
favourably to TE where areas under the ROC curves of 0.85,
0.86 and 0.94 were achieved for the prediction of F>2, F>3
and F'=4, respectively [113]. In a study comparing the perfor-
mance of SWE to that of TE (M and XL probes), the applica-
bility of SWE in patients with ascites was 86 % (55 % for TE)
[114]. Although these initial results are promising, more stud-
ies are necessary to validate the technique for other aetiol-
ogies, in other centres and for other factors that may influence
measurements such as steatosis and inflammation.

Strain elastography (real-time tissue elastography)

Strain elastography is technically distinct from transient
elastography, using a conventional ultrasound transducer to
collect signals with and without distortion of tissue. This
distortion is achieved by way of external compression, which
may be applied free hand, with the US transducer, or by
endogenous movements (arterial pulsation or cardiac motion).
While initially used for the assessment of focal lesions in the
pancreas, prostate, breast and thyroid, this method is now also
being used for liver fibrosis.
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Fig. 10 Example of grade F3
fibrosis as shown on shear wave
elastography (SWE), a quasi real-
time two-dimensional map of
tissue elasticity superimposed in
colour on B-mode images

B-mode ultrasound is used to select the area of liver to the
sampled. A colour map is then laid over the B-mode image in
real time—hence the term real-time elastography, representing
areas of different tissue deformabilities, which in turn are
related to stiffness. Strain elastography is designed to provide
a qualitative measurement of stiffness. In most systems the
display conventionally ranges from red (soft tissue) to blue
(hard tissue). SE is the only elastographic technique that
works in real time at up to 20 frames/s and on a large field
of view. Attempts at semi-quantitative interpretation have
been made using scoring systems, e.g. by encoding the colour
map and assigning values, e.g. between blue = 0 and red =255
[115], or histogram analysis [116]. Another approach is the
use of a specifically designed software for quantification of
the colour map output [117], achieving area under the ROC
curve values of 0.75 for the diagnosis of F>2, 0.73 for the
diagnosis of severe F>3 and 0.69 for the diagnosis of cirrho-
sis. Studies have predominantly involved patients with chron-
ic HCV [115, 117-120], but also NASH fibrosis and cirrhosis
[121]. The optimal approach of quantifying strain
elastography, as well as standardisation of the stressor modal-
ity are yet to be determined. A recommendation for clinical
use in the liver awaits more evidence and validation.

Conclusion

Conventional B-mode ultrasound remains a valuable tool in
first-line screening of patients with chronic liver disease,
supplemented by portal venous Doppler studies. While
elastographic methods of TE and ARFI have now been vali-
dated for the assessment of fibrosis, other elastographic

SC6-1/ Abdominal / Abdomen
MI14 TI14

+70 kPa

technologies are emerging and are likely to become more
widely applied.

Future perspective

The increasing prevalence of chronic liver disease, including
fatty liver disease, together with the need to minimise invasive
liver biopsies will continue to provide substantial drive for
ultrasound research and development.

Conventional B-mode ultrasound

* Quantification of echointensity in the diagnosis of fatty
liver disease is an area of recent interest. Standardisation
of technique and interobserver reproducibility will need to
be addressed.

* Quantitative and semi-quantitative assessment of
echotexture in the diagnosis of fibrosis and fatty liver
disease is being developed

Doppler ultrasound
* The role of Doppler ultrasound in chronic liver disease is
likely to remain principally in the diagnosis of portal
venous hypertension
Contrast-enhanced ultrasound
+ Kupffer-phase contrast agents can be used in the grad-
ing of fibrosis as well as in the detection of focal lesions,

and it is hoped that these agents will become more
widely available.
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