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Abstract

We have developed new applications of the pseudocolor plot for the analysis of LC/MS data.

These applications include spectral averaging, analysis of variance, differential comparison of

spectra, and qualitative filtering by compound class. These applications have been motivated by

the need to better understand LC/ MS data generated from analysis of human biofluids. The

examples presented use data generated to profile steroid hormones in urine extracts from a

Cushing’s disease patient relative to a healthy control, but are general to any discovery-based

scanning mass spectrometry technique. In addition to new visualization techniques, we introduce a

new metric of variance: the relative maximum difference from the mean. We also introduce the

concept of substructure-dependent analysis of steroid hormones using precursor ion scans. These

new analytical techniques provide an alternative approach to traditional untargeted metabolomics

workflow. We present an approach to discovery using MS that essentially eliminates alignment or

preprocessing of spectra. Moreover, we demonstrate the concept that untargeted metabolomics can

be achieved using low mass resolution instrumentation.

Keywords

Data visualization; Steroid analysis; APCI; Quantification; Characteristic fragmentation; Precursor
ion scan

Introduction

Untargeted analysis of LC/MS data is difficult if not impossible without the use of software

designed for this purpose. Numerous software packages have been developed to facilitate

these analyses [1–17], and these have all been reviewed recently [18]. Moreover, software

provided by manufacturers when an instrument is purchased often enables similar analyses.

However, the majority of this type of software requires the user to make a priori decisions

concerning which aspects of the data should be considered. While frequently useful, such
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approaches have a potential for over-processing and filtering and, thus, risk obfuscation of

important spectral features. In this work, we demonstrate the value of visualizing all mass

spectral intensity data as they relate to one another in chromatographic space with

essentially no preprocessing of the data. Spectral profile visualization has been examined in

the intensity dimension in other pieces of software [1–5], but to date has apparently been

done only for single replicates. Our approach differs in that we evaluate a number of spectra

simultaneously. This enables us to examine qualitatively different aspects of spectral

profiles: arithmetic mean intensity of replicates, the coefficient of variation of intensities,

relative intensity differences of spectral profiles of patients and controls, etc. This results in

a convenient framework to evaluate both data quality and their significance. Moreover, it

allows the investigator to directly interrogate spectral features by appreciating spectral

details such as in-source fragmentation and isotope clusters. The minimal use of

preprocessing preserves these details and presents the data in a way that they may be

interrogated seamlessly in regions of interest.

Experimental

Materials

Urine was collected from a matched patient and healthy control under National Institute of

Child Health and Human Development (NICHD) Institutional Review Board protocols 02-

CH-0119, 00-CH-0160, 97-CH-0076, and 95-CH-0059. We generated water using a

Millipore Simplicity UV water purification apparatus (Springfield, VA, USA). LC-MS

grade 2-propanol and formic acid were purchased from Sigma Aldrich (St. Louis, MO,

USA). All steroid standards were purchased from Steraloids (Newport, RI, USA) and used

without further purification.

Sample Preparation

We performed solid phase extraction using Waters Oasis HLB (150 mg/6 cc) cartridges

(Milford, MA, USA). To a 5 mL aliquot of 24 h urines we added 6 deuterium-labeled

internal standards (1 nmol each of cortisol-D3, estradiol-D4, estriol-D3, 17α-

hydroxyprogesterone-D8, testosterone-D3, and progester-one-D9) as internal standards. The

SPE cartridge was conditioned with 5 mL 2-propanol/5 mL H2O. Following the loading of a

specimen the cartridge was washed with 5 mL H2O. We eluted with 3 mL 2-propanol

followed by 6 mL hexane. After elution a sixth deuterium labeled standard (1 nmol estrone-

D4) was added to evaluate recovery. The eluate was then dried under nitrogen and

resuspended in 200 µL 2-propanol. Targeted MRM experiments estimated internal standard

recoveries >85 % (data not shown).

High-Performance Liquid Chromatography (HPLC)

HPLC was performed using an Agilent 1200 series system (Santa Clara, CA, USA)

equipped with a vacuum degasser, binary pump, temperature controlled autosampler, and

temperature controlled column compartment. The column used was an Agilent Zorbax

Eclipse XDB-C18 (4.6×50 mm, 1.8 µm particle size). Gradient elution consisted of mobile

phase A: water with 0.1 % formic acid and mobile phase B: 0.1 % formic acid in 2-

propanol. The elution flow rate was 500 µL/min and column temperature set to 60 °C.
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Following a 2 µL urine extract injection, the column was washed for 2 min at 0 % B

followed by a ramp to 20 % B in 5 min, 25 % in 10 min, 55 % in 15 min, 100 % in 1 min

(flow rate increased to 1000 µL/min) for wash, held for 5 min, and brought down to 0 %

(and 500 µL/min flow rate) for equilibrium over 1 min and held for 6 min.

Mass Spectrometry

LC-MS and MS/MS were performed using an Agilent Model 6460 triple quadrupole mass

filter equipped with an Agilent G1917B APCI source. The source parameters were: gas

temperature set to 350 °C, vaporizer set to 500 °C, gas flow set to 8 L/min, nebulizer

pressure set to 60 psi, capillary voltage set to 4500 V, and corona current set to 5 µA.

Nitrogen was used both as a sheath gas (generated by Peak NM32LA nitrogen generator

[Billerica, MA, USA]) and collision gas (99.9993 % ultra high purity carrier grade [Airgas,

Radnor, PA, USA]). Acquisition parameters were as follows: scan range=225–525m/z; step

size00.1 Da; scan time0500 ms, i.e., 6 steps/ms; fragmentor voltage0100 V; cell acceleration

voltage07 V; time filter 0 off.

Computational Methods

All data files were exported in mzData format using MassHunter Qualitative Analysis ver.

B.04.00 software (Agilent, Santa Clara, CA, USA) in profile mode with no intensity

filtering. These files were imported into R ver. 2.14.0 [19] using the “mzR” package [20] to

generate data matrices of m/z, retention time (RT), and intensity for each data file. In

addition to base R functions the “reshape” package was used to manipulate data structures

[21]. Color palettes were implemented using ColorBrewer specifications [22]. Molecular

structures were drawn using ChemSketch [23]. In addition to coefficient of variation (CV),

we employ a second metric of variance that is introduced in this work, the relative maximum

difference from the mean (RMDM):

The RMDM for a given element of the m/z versus RT window (MRW) was devised to

summarize the overall variance in a particular LC/MS experiment. The RMDM has a unique

advantage over the CV because it is more sensitive to outliers than the CV. Additionally, the

RMDM, by virtue of its being a difference, is a signed quantity. Thus, plotting the RMDM

over the MRW allows one to visualize if extremely deviating intensity values are negatively

or positively biased versus the mean.

The corresponding code used to generate the pseudocolor plots is available upon request.

Results and Discussion

Our approach to the analysis of spectral profiles of urine extracts leverages the inherent

quality of the MS and chromatographic methods that we have developed. The output is a

visual map with retention time as the x-axis, m/z as the y-axis, and the parameter

interrogated as a pseudocolor z-axis. In the work presented, the only parameters that change
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are on the z-axis. The m/z (340–375) and retention time (9–14 min) MRW was chosen for its

inclusion of cortisol, a known metabolite elevated in Cushing’s disease. However, the

software as presented enables the visualization of an arbitrarily sized MRW.

Our initial analysis evaluates a set of spectral profiles acquired from a single urine extract

from a patient with Cushing’s disease. Figure 1 shows the spectral profile in the context of

intensity. Figure 1a displays the intensity for a single replicate and Figure 1b is the

arithmetic mean intensity of technical triplicates. From a cursory investigation, the spectral

profiles look relatively identical. However, further inspection of the two shows that

averaging triplicates reduces the background of the intensity plot. The isotopic cluster for

cortisol (m/z=63.2, RT=11.2 min) can be discerned. Moreover, the in-source fragmentation

product of Cortisol that results in [M − H2O + H]+ =345.2 at RT=11.2 min can also be seen

within this mass window. Since steroids are known to undergo dehydration in the ionization

process, the prominent dehydration signal is not unexpected. Furthermore, examination of

the plot for dehydration events is a useful strategy for identifying steroids with hydroxyl/

oxo moieties.

Using the three spectral profiles in Figure 1b, we were able to evaluate the quality of the

replicate data. We examine the data quality in Figure 2 in two contexts: in Figure 2a we

show the coefficient of variation of intensity values in the spectral profiles and in Figure 2b

we show the RMDM. For these three replicates, regions of high signal (i.e., when analytes

elute) generally have low variance (CV <0.2). Since these data are typically used without

any preprocessing (e.g, de-isotoping, centroiding, or smoothing), they contain regions of

high variance that would appear as halos around the elution of an analyte at the beginning of

an isotope cluster as seen in Figure S1. A spectrum of such a region can be seen in Figure

S2. This phenomenon is largely attributed to an artifact in the acquisition of signals near a

high intensity ion. As a result of this artifact, we have chosen to “floor” the intensities of all

signals for the figures in the main body of this text to an intensity of 30 counts; Figure S3

demonstrates how this value relates to the distribution of intensities in a single spectral

profile. Following this correction, the “halo” region of high variance, Figure S1, transforms

to a discrete area of 0.1m/z width where the intensity of the isotope cluster starts 0.1m/z

earlier in a replicate relative to the other replicates, as seen in Figure 2b. To make this effect

more apparent, we have included in Figure S1 subplots with higher floor values of 60 and

120 counts.

Further evaluation of Figure 2b demonstrates a uniform spatial distribution of RMDM over

the entire MRW except for those regions containing obvious peaks. These regions where

peaks elute show minimal variation by virtue of their lack of color. Thus, RMDM is a

convenient metric to evaluate data quality because it elucidates regions of high variation that

may be skewed in the direction of their variance (i.e., heteroskedastic). The

heteroskedasticity of mass spectral data highlights the utility of RMDM compared with CV;

CV is not a signed quantity so it will be distributed around some value that cannot be

known. Thus, while CV demonstrates variance, it cannot provide a metric for evaluating the

fidelity of the data after a transformation such as flooring. In contrast, the RMDM is a

signed quantity and should be centered on zero unless the data are floored improperly. In

other words, this metric enables the analyst to assess regions of intensity that may have been
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recorded as spuriously high or spuriously low in a single replicate compared to other

replicates. This could easily occur in a large randomized work list where one replicate

injection has carryover from the previous injection whereas the other two replicates do not.

This would result in locally high RMDM in the m/z region where the contaminant is

observed, or broadly low RMDM in the circumstance of transient ion suppression.

To demonstrate the importance of the floor value in data processing, we demonstrate the

adverse effect of an excessively high value—60 counts compared with 30 counts—the value

derived from the analysis of signal distribution in the data. The values of RMDM are plotted

against a sorted intensity index in Figure 3a. Our conservative floor of 30 counts only alters

~3 % of the data, maintains both positive and negative RMDM values over the full range of

intensities, and preserves the qualitative shape of the distribution seen in the unfloored data.

On the other hand, the floor of 60 alters ~88 % of the data, removes the low intensity values

that yield a negative RMDM, and distorts the distribution seen in the unfloored data. Figure

3b illustrates a more complete examination of the RMDM distributions under the different

flooring conditions. Because of the small number of values altered, a floor of 30 counts

preserves the distribution of the mass spectrometric signal (P=0.62, based on the

Kolmogorov-Smirnov statistic). Additionally, this floor preserves distribution of variance

regardless of how the values below the floor are treated; the distribution from the curve with

the values removed (light blue) and set to the value of the floor (dark blue) do not differ

significantly (P>0.99). When a floor of 60 counts is used, so much of the signal is altered

that the distribution with values removed (light green) and with the values set at the value of

the floor (dark green) differ significantly from the unfloored data (P<8E-10 and P<0.01,

respectively). Because of the number of points affected by a floor of 60 counts, removing

the intensities below the floor and setting them to the floor value produce different

distributions (P< 6E-5). In short, the RMDM versus intensity index (Figure 3a) enable a

subjective evaluation of how a flooring manipulation affects the shape of the variance;

RMDM histograms (Figure 3b) and the Kolmogorov–Smirnov statistic provide a degree of

objectivity in evaluating the effects of the chosen floor.

In addition to demonstrating a means for visualizing variance in replicates of full data sets,

the approach we present also enables differential evaluation of data from independent

specimens. A comparison of the arithmetic mean of technical triplicates of a Cushing’s

disease urine extract and technical triplicates of a urine extract from a healthy control is

shown in Figure 4. Note that the scale has been Log2 transformed to emphasize the greatest

differences between the diseased and normal test subjects as well as make each break in the

color scale a Log2 unit. The most intense values on the color scale are thus ≥32-fold higher

in intensity. cortisol ([M + H]+ =363.2 and its dehydration product [M − H2O + H]+ =345.2)

can be seen at RT= 11.2 min and appear to have an average intensity ~8-fold increase,

corresponding with elevated free cortisol expected in Cushing’s disease. In addition to

cortisol, there appear to be at least eight other regions of intensity that indicate an increase in

the concentration of unidentified analytes in the patient’s urine. The scope of this work

intends to illustrate these visualization techniques and, as a result, we ultimately only

confirm the identity of a single unknown analyte.
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In the process of evaluating this ratiometric visualization plot it became apparent that we

could leverage specific fragmentation products of steroidal classes to filter out features that

belong to a particular steroidal subclass with the aim of identifying structurally similar

compounds. By doing this, we could evaluate the relative concentrations of spectral features

likely to be steroid hormones, but without necessarily relying on a standard MRM approach

that requires a comprehensive library of chemical standards. We call this approach

substructure-dependent analysis—it leverages the same understanding of gas phase

chemistry of phospholipids [24]—but in the context of steroidal substructure. Those

structural features that appear to most strongly dictate the fragmentation pattern of a steroid

hormone are its A, B, and C ring configurations. Figure 5 shows the base-peak normalized

product ion spectrum of nine steroid hormone standards from three different steroid

hormone substructure classes at a CE of 40 eV. The fragment m/z= 121.1 is the base peak

for all three steroid hormones containing the 4-ene-11-ol-3-one substructure. Conversely,

the 4-ene-3-one and l,3,5(10)-triene-3-ol substructures produce this fragment at <10 % of

the base peak of the product ion spectrum. We use this information to perform a set of

precursor ion scans (m/z=121.1 for 4-ene-11-ol-3-one substructure, m/z=133.1 for 1,3,5(10)-

triene-3-ol substructure, and m/z=109.1 for 4-ene-3-one substructure). The intensity values

generated using this method are then compared with one another to examine when the

diseased patient has a region of parent intensity elevated 4-fold over the control patient. We

filter those regions of intensity by only those precursor ion scan values where the 4-ene-11-

ol-3-one precursor ion scan intensity values are greater than the l,3,5(10)-triene-3-ol-

dependent and 4-ene-3-one-dependent precursor scan intensity values. Application of this

filtering method can be seen in Figure 6, where regions of elevated intensity that are 4-

ene-11-ol-3-one substructure-dependent are colored black. We find it interesting that in

addition to Cortisol, a number of the other elevated regions of intensity appeared to contain

the 4-ene-11-ol-3-one substructure. We chose one of the areas of intensity (m/z=361.2,

RT=10.8 min), denoted as unknown-361-A, to examine more closely. When considering its

similarity to Cortisol in molecular substructure and retention time as well as its calculated

double bond equivalents, we hypothesized that this compound was most likely cortisone.

Comparison of this unknown-361-A’s product ion spectrum with that of cortisone and

cortisol can be seen in Figure S4. We note that the base peak of the product ion spectrum of

cortisone is m/z=163.1. Thus, this mode of analysis can be informative in guiding the

investigator to the molecular substructure, but clearly there are other facets of the product

ion spectrum of an unknown to consider before generating a structure (i.e., that the base

peak of cortisone is 163.1 and not 121.1 suggests the oxidation of the hydroxyl in the C ring

or some other modification in the A, B, and C ring substructure of cortisol).

While the approach we present here offers many attractive possibilities for novel data

analysis, no amount of informatics can compensate for poor experimental design or

performance. That is, the utility of this approach relies on a robust chromatographic method

and a relatively stable signal from the mass spectrometer. On the other hand, evaluating the

quality of data in a dataset this large (>10,000,000 points for a single spectral profile) can be

a challenging exercise. This method demonstrates an approach to evaluating data quality in

any LC/MS experiment that generates a large data set. Moreover, we have provided an

approach to analysis of noise variance across an entire experiment. The greatest advantage
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to evaluating the noise across an entire dataset is the ability to intelligently select an

intensity floor, as shown in Figure S3. The Figure shows a conservative cut-off can be made

based on the inflection point from “zero” counts to the true baseline noise of the data. By

making the cutoff in this way, while we have altered the distribution of ion intensity data,

the fraction of signal points modified is less than 1 % of the total and we can demonstrate

that those data were of no use in the subsequent analysis.

This computational workflow relies solely on the “raw” data to make decisions regarding

spectral regions of interest. This reliance on the data itself rather than upon the extraction of

predetermined features of one kind or another is the main differentiation between this

method and other contemporary methods of profile mass spectrometry data analysis (e.g.,

XCMS, MAVEN, etc.). These other software packages manipulate the data via smoothing,

binning, and retention time alignment, manipulations that are essential for feature list

generation. Unfortunately, the parameters used to perform these manipulations (coarseness

of smoothing, size of bins, tolerance of retention time windows) are difficult to determine

empirically. Users typically gauge the success of the parameter tuning by the number of

features the software detects. In light of the computational complexity other software

packages present, our approach is quite straightforward: define the comparison (cohort of

patients versus control) and the MRW (focusing around the elution of an analyte of known

interest) and look for regions of great intensity. Moreover, our method provides very

straightforward tools for evaluating the quality of the results. Regions of high signal

intensity (e.g., “true” features) should have low variance (as seen in the CV/RMDM plots).

Issues that present complications in other methods of analysis (such as retention time

alignment) will manifest themselves in these quality evaluations.

The method we present here is also qualitatively different than the other approaches

previously developed for 2D visualization of LC-MS data. Namely, our presentation of the

data leverages very specific color palettes that facilitate data analysis. In our presentations,

we use the appropriate class of color palette to enhance the analysis. Intensity and CV are

sequential values and, thus, use sequential color schemes. RMDM and the difference plot in

Figure 4 are datasets that diverge from a central value (0 in both cases) and, thus, they use

diverging color palettes. Lastly, the substructure-dependent plot uses a qualitative color

scheme. As an extreme example of the misuse of color in this application, Figure S5

presents identical data used in Figure 1a, but with a palette swap from a “sequential” green

color palette to a “qualitative” rainbow color palette. Obviously, this misuse of color can

even emphasize regions of noise that would typically be de-emphasized using a rational

color palette.

This approach does not abstract the analysis away from the regime of mass spectrometry

qua mass spectrometry. All spectral features are retained in this approach. Other summary-

based approaches bin commonly encountered fragmentation events such as sodium

adduction and in-source dehydration. These events are easy to recognize in the type of 2D

pseudocolor plot used here and provide, especially in the context of steroid hormone

analysis, a first-pass guide for those spectral features that are of molecular interest.

Nonetheless, further analysis of the product ion spectrum and consideration of double bond

equivalents should be considered before generating putative structures. We anticipate that
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further examination of a greater number of substructure classes will enable more powerful

molecular substructure discrimination. These approaches combined will provide new insight

into the analysis of discovery-based small molecular mass spectrometry experiments.

Conclusions

Our approach to 2D visualization of mass spectral profiles has enabled us to rapidly and

directly evaluate features of interest without preprocessing. This method not only enables

intensity-based metrics of visualization but also enables the visualization of data quality

(e.g., CV or RMDM). Moreover, it provides the user the ability to filter features of interest

by known substructure; though our experiments leveraged our understanding of steroid

hormone behavior in the gas phase, this approach could also be used to discriminate lipids

by head group. Other structural features could be interrogated by other scanning modes,

such as neutral loss for probing decarboxylation events.

This technique is unique in its ability to enable untargeted analysis using a triple quadrupole

mass spectrometer, which has typically been relegated to targeted analyses. However, this

approach is general and can be applied to any mass spectral data that have not been

preprocessed, including high-resolution data. This tool should see use in cases where experts

want to directly interrogate their data for features that may be missed from traditional

processing/binning methods. It will also see use when non-experts want to enable

collaborators to analyze their data in a gel-like context that is more familiar to biologists

than a spectral trace.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Pseudocolor plots of mass spectral profile intensities of extracted urine from a Cushing’s

disease patient. The plots include the m/z values 340–375 and RT of 9–14 min. Plots are of

(a) the intensity of a single replicate and (b) the arithmetic mean intensity of technical

triplicates of the same extract
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Figure 2.
Quality control pseudocolor plots of mass spectral profile intensities from extracted urine of

a Cushing’s disease patient analyzed in technical triplicate. The plots include the m/z values

340–375 and RT of 9–14 mi. (a) A plot of the coefficient of variation of the intensity values,

(b) A RMDM plot (see text for a description of this quantity)
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Figure 3.
RMDM distributions of spectral profile intensities from a urine extract from a Cushing’s

disease patient analyzed in technical triplicate. The points in black have been plotted with no

flooring. The values in blue have been floored to 30 counts. The values in green have been

floored to 60 counts. The lighter hues are those values unaffected by flooring. These

distributions are displayed both as (a) a scatter plot where the y-axis is RMDM and the x-

axis is an intensity-sorted index and (b) as histograms
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Figure 4.
A pseudocolor plot of the Log2 transformed ratio of the arithmetic mean of intensities from

mass spectral profiling of extracted urine from a Cushing’s disease patient and a healthy

control. Each urine extract was analyzed in technical triplicate. The plot includes the m/z

values 340–375 and RT of 9–14 min
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Figure 5.
Evaluation of the product ion intensity as it relates to steroidal molecular substructure. The

values are base peak normalized intensities of product ion spectra at CE=40 eV of pure

standards. Green values are those m/z values of the product ion spectra that are ≥10 % of the

base peak of the product ion spectrum of an analyte. Note that only those analytes that have

the A, B, and C ring substructure of Cortisol produce a significant product ion at m/z= 121.1

at this collision energy
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Figure 6.
A pseudocolor plot that shows substructure-dependent mass spectral profiling of extracted

urine from a Cushing’s disease patient as it relates to a healthy control. The plot includes the

m/z values 340–375 and RT of 9–14 min. The areas in black are regions where the technical

triplicate arithmetic mean intensity of the Cushing’s disease urine extract is 4-fold greater

than that of a healthy control and that the precursor ion scan intensity of the 4-ene-11-ol-3-

one specific transition is greater than the 1,3,5(10)-triene-3ol or 4-ene-3-one specific

transitions. Unknown-361-A was a mass spectral feature that did not exist in our initial set

of standards and following further analysis was determined to be cortisone
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