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Abstract

Exposure to early life stress dramatically impacts adult behavior, physiology, and neuroendocrine

function. Using rats bred for novelty-seeking differences and known to display divergent anxiety,

depression, and stress vulnerability, we examined the interaction between early life adversity and

genetic predisposition for high- versus low-emotional reactivity. Thus, bred Low Novelty

Responder (bLR) rats, which naturally exhibit high anxiety- and depression-like behavior, and

bred High Novelty Responder (bHR) rats, which show low anxiety/depression together with

elevated aggression, impulsivity, and addictive behavior, were subjected to daily 3 h maternal

separation (MS) stress postnatal days 1–14. We hypothesized that MS stress would differentially

impact adult bHR/bLR behavior, physiology (stress-induced defecation), and neuroendocrine

reactivity. While MS stress did not impact bHR and bLR anxiety-like behavior in the open field

test and elevated plus maze, it exacerbated bLRs’ already high physiological response to stress –

stress-induced defecation. In both tests, MS bLR adult offspring showed exaggerated stress-

induced defecation compared to bLR controls while bHR offspring were unaffected. MS also

selectively impacted bLRs’ (but not bHRs’) neuroendocrine stress reactivity, producing an

exaggerated corticosterone acute stress response in MS bLR versus control bLR rats. These

findings highlight how genetic predisposition shapes individuals’ response to early life stress.

Future work will explore neural mechanisms underlying the distinct behavioral and

neuroendocrine consequences of MS in bHR/bLR animals.
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1. INTRODUCTION

Evidence in humans and animals shows that early life adversity negatively impacts

neurodevelopment and produces lifelong changes in stress reactivity, emotional behavior,
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and vulnerability to psychopathology (Ladd et al., 2000, Heim et al., 2004). The deleterious

effects of early life stress are particularly pronounced in individuals genetically predisposed

to psychiatric illness (Caspi et al., 2003, Caspi et al., 2002), although there is much to learn

about how gene-environment interactions shape brain development, emotional behavior, and

vulnerability to disease.

Animal models offer useful tools to examine how early life adversity impacts brain and

behavior. One popular neonatal stress paradigm is the rodent maternal separation (MS)

stress model, where pups are deprived of maternal contact for 3-h periods during the first

weeks of life (Lehmann et al., 2000, Sanchez et al., 2001). MS elicits myriad negative

effects, including increased anxiety (Roth et al., 2009, Huot et al., 2001), depression-like

behavior (Franklin et al., 2010, Aisa et al., 2009, Ladd et al., 2000), and exaggerated

hypothalamic-pituitary adrenal (HPA) axis stress responses (Holmes et al., 2005, Plotsky

and Meaney, 1993, Plotsky et al., 1998, Ladd et al., 2000). The MS literature is somewhat

inconsistent, with certain studies unable to confirm such behavioral and neuroendocrine

findings; however, the conflicting results likely stem from a host of factors, including varied

experimental procedures, gender, and rat strain (Lehmann and Feldon, 2000, Hulshof et al.,

2011, Sterley et al., 2011). Importantly, rodents, like humans, exhibit a range of early life

stress vulnerability, with some individuals particularly susceptible to its effects and others

resilient (Lehmann and Feldon, 2000).

In recent years, our laboratory developed bred lines of Sprague-Dawley rats that display

differences in novelty exploration and a host of emotional behaviors (Stead et al., 2006).

Rats bred for high response to novelty (bred High Responders, bHRs) exhibit increased

aggression (Kerman et al., 2011), impulsivity (Flagel et al., 2010), and proclivity to

addictive behavior (Cummings et al., 2011, Davis et al., 2008, Flagel et al., 2010) compared

to low novelty reactive rats (bred Low Responders, bLRs), which show high levels of

anxiety- and depressive-like behavior (Stedenfeld et al., 2011, Stead et al., 2006, Perez et al.,

2009, Clinton et al., 2011b, Clinton et al., 2008). The distinct bHR/bLR phenotypes are

likely driven by several factors, including distinct ontogeny of hippocampal circuits (Clinton

et al., 2011b), HPA axis reactivity (Clinton et al., 2008, Kerman et al., 2012), and the

Fibroblast Growth Factor (FGF) system (Perez et al., 2009, Turner et al., 2011). The

bHR/bLR phenotyopes are highly heritable (Stead et al., 2006), although some traits are

influenced by environmental factors such as maternal style (Clinton et al., 2007, Kristiansen

et al., 2007) and chronic stress (Clinton et al., 2008, Stedenfeld et al., 2011).

Considering bLRs’ anxious/depressive-like phenotype coupled with their chronic stress

vulnerability, we hypothesized that bLRs would be susceptible to the effects of MS stress,

while bHRs would be resilient. Thus, the present study subjected bHR/bLR pups to daily 3 h

MS (or raised under normal conditions) during the first two postnatal weeks. Anxiety- and

depression-like behavior and neuroendocrine stress responsivity were assessed in adult

offspring.
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2. MATERIALS & METHODS

2.1 Animals

Animals were acquired from the University of Michigan in-house bHR/bLR colony. We

previously published our breeding strategy and initial behavioral characterization of the

bHR/bLR lines (Stead et al., 2006), and continue to examine the bHR-bLR behavioral

phenotypes (Flagel et al., 2010, Kerman et al., 2011, Stedenfeld et al., 2011). Animals for

the present experiments were taken from the 10th generation of the colony.

Males to be used for mating as well as male offspring used for later experiments were kept

on a 12:12 light-dark cycle (lights on at 6 a.m.) with food and water available ad libitum.

Female rats (as well as male-female mating pairs) were housed in a separate room kept on a

14:10 light-dark cycle to promote regular estrous cycles and fertility (Everett and Sawyer,

1949, Ying et al., 1973). The animal housing rooms and testing facilities are kept at 21–23

°C at 50–55% humidity. Litters were weaned on postnatal day 21 (P21). Only weaned male

offspring were housed 3–4 per cage and kept for subsequent experiments. Procedures were

conducted in accordance with the principles and procedures outlined in the National

Institutes of Health guidelines for the care and use of animals and approved by the

University of Michigan University Committee on the Use and Care of Animals.

2.2 Separation Procedure

Male and female rats (N=10 bHR male/female pairs, and N=10 bLR male/female pairs)

were housed together for 14 days; male partners were then removed and females remained

singly housed until giving birth. All litters were born within 4 days of one another, and all

pups within a litter were treated in similarly (that is, all pups within a ‘maternal separation’

experimental litter were removed from the mother daily 3-h per day from P1–14 and all pups

from a control litter remained with their mother P1–14). At birth (P0), bHR/bLR litters were

culled to 12 pups (6 males/6 females). Litters remained with their biological mothers and

were randomly assigned to experimental groups: (a) MS stress or (b) non-separated control

(n=5 litters per bHR/bLR phenotype per stress treatment group). The following day, we

initiated a MS stress procedure modeled after Plotsky and Meaney (Plotsky and Meaney,

1993) and Card et al (Card et al., 2005). Non-separated control litters remained with their

biological mothers continuously except for once weekly cage changes. Beginning on P1

(and continuing through P14), MS litters were separated from their dam for 3 h. An entire

litter was moved with a handful of home bedding to a small box on a heating pad. The

temperature of the nest was around 37 °C when the litter was transferred to the cage over the

heating pad. The separation cages remained in the same room approximately 1.2 m from the

home cage, where the dam remained. Littermates remained in close contact with one another

throughout the MS period; at the conclusion of the MS period, pups and bedding were

returned to the home cage. Pups were weaned on P21 and only males were chosen for

subsequent tests performed in adulthood (75+ days). Each experimental group (n=12/

phenotype/treatment) consisted of no more than 3 littermates.
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2.3 Behavioral Analyses MS and control bHR/bLR Offspring

When MS and control bHR/bLR male offspring reached adulthood (P75), they were

subjected to a test battery to assess novelty-induced locomotion, anxiety- and depression-

like behaviors (n=12/phenotype/treatment as noted above). The order of the behavioral tests

was as follows: 1) the locomotor response to novelty test; 2) the Open Field Test; 3) the

Light-Dark Box Test; 4) the Elevated Plus Maze Test; and 5) the Forced Swim Test. Rats

were given 2–3 days rest between each test to minimize the carry-over effect on behavior

from test to test. Prior experiments with the Selectively-Bred bLR/bHR animals used a

similar strategy, assessing bLR and bHR rats in multiple tests over a period of days to

weeks. These prior studies demonstrated that bLR/bHR rats (a) exhibit reliable behavioral

differences across several behavior tests and (b) behave consistently on a particular test

(such as the Light-Dark Box) whether they are exposed only to that single test, or subjected

to it after completing a series of other behavior tests over time (Supplementary Figure 1). It

took approximately 10 days to complete this test battery, so rats were P85 on the final test

day.

2.4 Locomotor Response to Novelty

Rats were screened to assess novelty-induced locomotion as previously described (Stead et

al., 2006). Rats were individually placed in standard clear acrylic cages (43 × 21.5 × 25.5

cm high) equipped with infrared photocell emitters mounted 2.3 and 6.5 cm above the floor

to record horizontal and rearing movement, respectively. Test chambers were located in a

room separate from housing quarters, and the rats were exposed to the test room for the first

time on the test day. A computer monitored horizontal and rearing movements in 5-min

intervals over 60-min. Testing was performed between 8 a.m. and 11 a.m. Total locomotor

scores for each rat were calculated by adding the number of horizontal and rearing

movements over the 60-min test period.

2.5 Anxiety Behavior

Rats’ anxiety-like behavior was assessed using three classic rodent behavioral tests: the

Open Field (OF) test, Light-Dark Box (LDB) test, and Elevated Plus Maze (EPM) test. Each

test assessed novelty-induced locomotor activity, time spent in anxiogenic portions of the

test apparatus (center of OF; light compartment in the LDB test, and open arms of the EPM),

and latency to initially enter anxiogenic regions of the test apparatus. All testing was

performed between 8:00–11:30 a.m.

Open field test—The Open field apparatus was a 100 × 100 × 50 cm white Plexiglas box

with black Plexiglas floor, and testing was conducted under dim light (30 lux). Behavior was

recorded using a computerized videotracking system (Noldus Ethovision, Leesburg, VA).

The experiment began by placing the rat into a corner of the open field. The tracking system

recorded the latency to first enter the center of the open field, the amount of time spent in the

center, periphery, or corner of the apparatus, and the total distance traveled during the 5-min

test.

Light-Dark Box test—The test apparatus was a 30 × 60 × 30 cm Plexiglas shuttle-box

divided into two equal-sized compartments by a wall with a 12-cm-wide open door. One
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compartment was white and brightly illuminated (100 lux), and the other compartment was

black and dimly lit (5 lux). The experiment began by placing the rat into the dark

compartment and the door between the two compartments was removed. Rows of photocells

located 2.5 cm above the stainless steel grid floor monitored beam breaks (indicating

locomotor activity) and time spent in each compartment. A microprocessor recorded the

latency to first exit the dark compartment, the number of photocell beam breaks and time

spent in each compartment during the 5-min test.

Elevated Plus Maze test—The apparatus was constructed of black Plexiglas, with four

elevated arms (70 cm from the floor, 45 cm long, and 12 cm wide) arranged in a cross. Two

opposite arms were enclosed by 45-cm-high walls (lighting approximately 3–5 lux) and the

other two arms were open (lighting approximately 30 lux). A central square platform at the

intersection of the open and closed arms provided access to all arms. The test room was

dimly lit (approximately 30 lux), and behavior was monitored using a computerized

videotracking system (Noldus Ethovision, Leesburg, VA). At the beginning of the 5-min

test, each rat was placed in the central square facing a closed arm. The tracking system

recorded latency to first enter the open arm, the amount of time spent in the open arms,

closed arms, or center square, and the total distance traveled over the course of the 5-min

test.

2.6 Depression-like Behavior

Rats’ depression-like behavior was assessed with Porsolt’s Forced Swim Test (FST) using

the procedure described by Cryan et al (Cryan et al., 2005). The water chambers were

Plexiglas cylinders (40cm high×40 cm diameter) containing 30 cm deep water (25°C). On

FST day 1, rats were placed (one rat/cylinder) in the water for 15-min (pretest phase); 24 h

later the rats returned to the water-filled cylinders and videotaped for 5-min (test phase).

Water was changed after every swim session so that every rat was swimming in clean water.

Each rat’s FST day 2 behavior was scored with a computerized program (Noldus Observer

5.0, Leesburg, VA), to assess the duration and frequency of events from the videotape. The

person scoring videotapes was blind to experimental treatments and trained to observe:

swimming, climbing, and immobility/floating during the test phase. Data are presented as

percent time spent immobile, climbing or swimming during the 5-min Day 2 test.

2.7 Neuroendocrine Studies

To assess impact of MS on bHR/bLR adult offsprings’ HPA axis, we measured

adrenocorticotrophic hormone (ACTH) and corticosterone (CORT) secretion following the

LDB anxiety test. Baseline blood samples (100 μl) were collected in EDTA-coated tubes via

tail vein nick one day before LDB testing between 8:00–10:00 a.m. Animals were removed

from their home cage, immobilized lightly, and a lateral tail vein was punctured with the

corner of a razor blade to collect blood. Rats were then returned to their home cages. The

next day, blood samples were similarly collected 5-, 20-, and 60-min after the beginning of

the LDB test. Blood samples were separated by centrifugation (1000 × g, 10 min at 4 °C),

and plasma was removed, frozen and stored at −80 °C until assay. Plasma ACTH and CORT

were measured using commercially available radioimmunoassay kits (MP Biomedicals,

Solon, OH) according to package instructions. The sensitivity of the CORT assay was 12.5
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ng/ml and sensitivity of the ACTH assay was 15 pg/ml; intra- and inter-assay coefficients of

variation were less than 5%.

2.8 Statistical analysis

Behavioral data were analyzed with 2-way ANOVA (bHR/bLR phenotype × MS condition

as independent factors). Radioimmunoassay data were analyzed by 3-way ANOVA

(bHR/bLR phenotype × MS group x blood collection timepoint as independent factors).

ANOVAs were followed by Fisher’s post-hoc comparisons when necessary. Data were

analyzed using SPSS for Windows, and for all tests α =0.05.

3. RESULTS

3.1 Early life MS stress does not impact novelty-induced locomotion in bHR/bLR rats

MS did not affect bHR and bLR offsprings’ adult locomotor response to novelty. Control

bHRs (1083± SEM 44 activity counts) and MS bHRs (1263± SEM 42 activity counts) were

dramatically more active in the novel environment compared to both bLR controls (185±

SEM 16 activity counts) and bLR MS rats (252± SEM 13 counts; main effect of phenotype

[F(1,121)=903.36, p<0.0001]). There was no effect of MS, and no MS x phenotype

interaction. We observed the same effect in the other behavioral tests, with bHRs

consistently being more active than bLRs in the OF test (main effect of phenotype

[F(1,153)=132.42, p<0.0001]), and LDB (main effect of phenotype [F(1,90)=113.07,

p<0.0001]; data not shown).

3.2 Early life MS stress does not impact typical bHR/bLR anxiety behavior differences

MS and control bLRs showed typically high levels of anxiety-like behavior across all three

behavior tests – the OF test, the EPM and LDB. In the OF test, bLRs spent less time in the

center of the OF (main effect of phenotype [F(1,153)=23.24, p<0.0001]; Fig. 1A), and

showed greater latency to enter the center (main effect of phenotype [F(1,153)=12.12,

p<0.001]; Fig. 1B) compared to bHRs. In the EPM, bLRs spent less time in the open arms

(main effect of phenotype [F(1,91)=309.37, p<0.001]; Fig. 1C) and showed greater latency to

enter the open arms (main effect of phenotype [F(1,91)=6.32, p<0.05]; Fig. 1D) relative to

bHRs. Likewise, in the LDB test, bLRs spent less time in the light box (main effect of

phenotype [F(1,90)=61.66, p<0.0001]; Fig 1E) and longer latency to enter the light (main

effect of phenotype [F(1,90)=36.14, p<0.0001]; Fig. 1F) compared to bHRs. A history of MS

stress did not impact any of these measures (time spent in the anxiogenic portion of the test

apparatus or the latency to enter that region) in either phenotype (no main effects of MS

stress and no MS x phenotype interactions).

3.3 MS stress leads bLRs to exhibit exaggerated stress-induced defecation in adulthood

As an additional index of anxiety-like behavior, we also counted the number of fecal boli

following each OF and EPM test. Interestingly, this analysis revealed marked differences

between bHR/bLR rats as well as an effect of MS stress (Fig. 2). bLR rats generally

produced more fecal boli than bHRs in both the OF test (main effect of phenotype

[F(1,116)=242.81, p<0.0001]; Fig. 2A) and the EPM (main effect of phenotype

[F(1,116)=41.88, p<0.0001]; Fig. 2B). A history of MS stress also increased defecation in the
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OF and EPM (main effect of MS in the OF ([F(1,116)=4.59, p<0.05]) and a stress x

phenotype interaction in the OF ([F(1,116)=4.26, p<0.05]) and EPM ([F(1,116)=5.46,

p<0.05]). Post hoc analysis showed that MS specifically impacted bLRs, leading MS-bLR

adults to exhibit greater stress-induced defecation compared to control bLRs in the OF and

EPM. MS and control bHR rats showed similarly low levels of stress-induced defecation in

these tests (Fig. 2).

3.4 Early life MS does not impact typical bHR/bLR depression-like behavior differences in
the Forced Swim Test

We used Porsolt’s FST to assess depression-like behavior in bHR/bLR MS and control

offspring. Both MS and control bLRs showed a high level of immobility (main effect of

phenotype [F(1,119)=28.38, p<0.0001]; Fig. 3A), and less climbing (main effect of phenotype

[F(1,119)=18.35, p<0.0001]; Fig. 3B) and swimming (main effect of phenotype

[F(1,119)=8.69, p<0.01]; Fig. 3C) compared to bHRs. There were no effects of MS on any

measure, and no stress x phenotype interactions.

3.5 MS stress produces exaggerated neuroendocrine reactivity in bLR offspring

We examined the effect of MS on HPA axis reactivity in bHR/bLR offspring by measuring

ACTH and CORT secretion following the LDB test. Across all groups, ACTH and CORT

levels sharply increased following the LDB, and then gradually decreased back to near-

baseline by 60-min post-test (main effect of time for ACTH [F(1,108)=24.20, p<0.0001] and

CORT [F(1,108)=43.22, p<0.0001]; Fig. 4). For ACTH levels, there were no main effects of

bHR/bLR phenotype or MS exposure, but there was a timepoint x phenotype x MS exposure

interaction [F(1,108)=5.19, p<0.001]. For CORT levels, there were main effects of bHR/bLR

phenotype [F(1,108)=5.55, p<0.05] and stress group [F(1,108)=6.39, p<0.05] as well as a

timepoint x phenotype x MS exposure interaction [F(1,108)=6.32, p<0.001].

Post hoc analyses showed that bHR controls exhibited exaggerated ACTH and CORT

secretion following the LDB test compared to bLR controls (Fig. 4A-B), which parallels our

previous work in the bred lines (e.g. (Clinton et al., 2008)) and other studies in commercially

purchased HR/LR rats (e.g.(Kabbaj et al., 2000, Rouge-Pont et al., 1998, Piazza et al., 1993,

Piazza et al., 1991). Specifically, bHR controls had greater ACTH levels at the 5-min

timepoint (Fig. 4A) and greater CORT levels at the 20-min timepoint compared to bLR

controls (Fig. 4B; p<0.05 for both).

To illustrate the impact of MS on bHR and bLR neuroendocrine reactivity, we separately

present data for bLR and bHR rats in Fig. 4C-D and Fig 4E-F, respectively. MS markedly

changed bLRs’ HPA axis output, leading to enhanced ACTH secretion at the 5-min

timepoint (p<0.05) and increased CORT secretion at the 20-min timepoint compared to bLR

controls (Fig. 4C-D). On the other hand, bHR’s stress reactivity was only subtly impacted by

MS, with MS-bHR animals showing reduced ACTH secretion at the 5-min timepoint

(p<0.05) (a pattern that was indistinguishable from control bLRs), but no CORT differences

compared to bHR controls (Fig. 4E-F).
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4. DISCUSSION

Early life adversity has well-known deleterious effects on brain development, emotional

behavior, and stress reactivity (Sanchez et al., 2001, Bos et al., 2011, Sheridan et al., 2012),

although certain individuals appear to be particularly vulnerable to these effects (Caspi et al.,

2003, Veenstra-Vanderweele et al., 2004, Petersen et al., 2012). The present study shows

that rats genetically predisposed to a high anxiety/depressive-like phenotype (bLRs) are

vulnerable to early life MS stress, leading to enhanced physiological responses to stress: a)

exaggerated HPA axis stress responsiveness, and b) greater stress-induced defecation. bHR

rats, on the other hand – naturally prone to high novelty-seeking, aggression, impulsivity,

addiction, low anxiety and depression – are largely unaffected by the early-life MS

experience.

4.1 Individual differences in MS stress vulnerability

Our findings support previous reports of bLRs’ vulnerability to chronic stress. A 4-week

chronic mild stress paradigm enhanced bLRs’ anxiety- and depressive-like behavior and

elicited cardiovascular abnormalities reminiscent of those observed in depressed humans

(Stedenfeld et al., 2011). Likewise, prenatal stress exacerbated bLRs’ anxiety-like behavior

and increased their HPA axis responsiveness (Clinton et al., 2008). In both cases, bHRs

were minimally affected by chronic stress. Here we found that early-life MS selectively

impacted physiological parameters in bLR offspring (i.e., increasing stress-induced

defecation and HPA stress axis reactivity) without impacting classic anxiety- and

depression-like behavioral measures. It is important to note that while we examined

bHR/bLR MS and control animals in multiple tests of anxiety-like behavior (i.e. the OF test,

EPM, and LDB), we only examined possible depression-like behavior effects in the FST,

which may have limited our ability to detect effects of MS on depression-like measures.

Indeed, inclusion of tests to examine additional depression-like behavioral parameters, such

as learned helplessness, novelty-suppressed feeding, sucrose preference or sexual interest

(Cryan and Leonard, 2010), may have yielded additional findings and should be considered

in future studies.

Our results are also consistent with prior studies evaluating the effects of MS in other rodent

models of a high- or low-anxiety phenotype (Neumann et al., 2005, Sterley et al., 2011). For

example, MS stress had opposing effects on Wistar rats selectively-bred for either high

anxiety behavior (HAB) or low anxiety behavior (LAB) in the EPM. MS stress reduced

HAB rats’ anxiety behavior and neuroendocrine stress responsiveness, but increased anxiety

in LAB rats (Neumann et al., 2005). Another study found that Wistar-Kyoto rats – a

common rat depression model (Pare, 1989, Redei et al., 1994, Dugovic et al., 2000, Pardon

et al., 2002, Braw et al., 2006)) – were susceptible to MS while control animals,

Spontaneously-Hypertensive (SHR) rats, were resistant (Sterley et al., 2011).

As noted above, MS stress selectively impacted bLRs’ physiological responses to stress

while failing to change bLR or bHR behavior. Regardless of MS condition, bHRs

consistently showed high novelty exploration, low anxiety/depression-like behavior relative

to bLR groups. This is not surprising considering the strong genetic underpinning of the

bHR/bLR traits (Stead et al., 2006). Moreover, considering bLR-control animals’ already
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high levels of anxiety-like behavior (i.e. spending little time in the center of the Open Field,

open arms of the EPM or light compartment of the LDB), there may be a floor-effect that

obscures our ability to see a possible exacerbation of bLRs’ anxiety-like behavior following

MS stress exposure (as in (Roth et al., 2009, Huot et al., 2001, Franklin et al., 2010, Aisa et

al., 2009, Ladd et al., 2000)). Modification of our test conditions (or perhaps selection of

another anxiety test) may have offered a milder anxiogenic stimulus that could potentially

enable us to see an effect of MS on bLRs’ behavior. Nevertheless, the fecal boli data from

both the Open Field Test and Elevated Plus maze indicate that MS enhances bLRs’

physiological response to stress above and beyond the already high levels of stress-induced

defecation exhibited by bLR controls.

4.2 MS enhanced stress-induced defecation in bLR offspring

The MS paradigm offers a tool to explore functional interactions between the brain, HPA

axis, and gut, and has therefore become a popular model for gastric disorders like Irritable

Bowel Syndrome (Schmidt et al., 2011). Some previous studies (Daniels et al., 2004,

Georgel et al., 2003), but not all (Young et al., 2005, Savignac et al., 2011), report

exaggerated stress-induced defecation in adult animals subjected to MS. Our findings

support this notion, showing that MS enhances defecation particularly in individuals

genetically predisposed to high anxiety (i.e. bLRs). Indeed – even at baseline, control bLRs

exhibited far greater stress-induced defecation than bHRs, suggesting that relative to bHR,

they already have aberrant gut activity in the absence of MS stress. These findings are

consistent with a fairly robust literature showing that exaggerated stress-induced defecation

is a common feature in animal models of high anxiety/depression (e.g., the Maudsley

Reactive rat (Paterson et al., 2001, Berrettini et al., 1994, Abel et al., 1992, Fournier et al.,

2002); Roman High Avoidance Rat (Ferre et al., 1995); the WKY rat (Broide et al., 2007);

and others (Hashimoto et al., 2009, Beneyto and Meador-Woodruff, 2008, Beneyto et al.,

2007)). Furthermore, this work is further supported by a longstanding theory that defecation

in the OF and other behavioral tests is an important indicator of emotionality, with greater

defecation correlating with higher levels of emotional distress (Archer, 1973, Walsh and

Cummins, 1976). Descending pre-autonomic circuits control visceral motor outflow,

including gastrointestinal responses to stress, and a recent study showed that daily 15-min

MS enhances gastric preautonomic circuits originating in the paraventricular nucleus of the

hypothalamus (PVN) – a key node in the HPA stress axis (Banihashemi and Rinaman 2010).

This suggests that 180-min daily MS may also re-wire brain-gut circuits to elicit gastric

dysfunction (Coutinho et al., 2002, Gareau et al., 2007, Schwetz et al., 2005, Soderholm et

al., 2002). It would be interesting to interrogate these circuits in bHR/bLR rats at baseline

and following 3-h MS stress given that the groups differ in both conditions.

4.3 MS enhanced HPA axis function in bLRs

Numerous studies show that MS stress produces lifelong changes in the HPA axis, including

exaggerated neuroendocrine response to acute stress (Rosenfeld et al., 1992, Plotsky and

Meaney, 1993, Huot et al., 2004, Waterland, 2006, Daniels et al., 2009, Smith et al., 2011,

Bird, 2002), altered CRF and glucocorticoid receptor expression (Bravo et al., 2011, Meaney

et al., 1996), and increased noradrenergic input to the PVN (Wang et al., 2010).

Neuroendocrine responsivity in bHR rats was only subtly affected by MS, with MS-exposed
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bHRs showing diminished ACTH secretion following the LDB test compared to control

bHRs and no differences in CORT secretion. On the other hand, MS-bLRs exhibited HPA

axis abnormalities reminiscent of previously published results, with MS-bLRs showing

exaggerated ACTH and CORT secretion following the LBD test. These disparate findings

are not altogether surprising considering bHR/bLR baseline HPA axis reactivity differences

(Fig. 4A-B; (Clinton et al., 2008, Kabbaj et al., 2000, Rouge-Pont et al., 1998, Piazza et al.,

1993, Piazza et al., 1991)). Compared to bLRs, bHRs exhibit an exaggerated HPA axis

response to acute stress (as in Fig. 4A). Furthermore, earlier work showed that high novelty-

seeking rats find elevated corticosterone levels rewarding, which may contribute to their

“thrill seeking”/risk-taking temperament (Piazza et al., 1993). Several neurobiological

factors likely contribute to these effects, including different expression levels of

glucocorticoid receptors and corticotrophic releasing hormone (CRH) (Kabbaj et al., 2000,

Rouge-Pont et al., 1998), and altered mineralocorticoid/glucocorticoid receptor balance

(Kerman et al., 2012). If bHR/bLR rats exhibit fundamental differences in structure and

function of the HPA axis, it reasonably follows that MS may differentially impact the stress

circuit in each phenotype (Veenstra-VanderWeele and Cook, 2004, Biagini et al., 1998).

4.4 Considering the effect of MS on maternal care in bHR/bLR dams

The quality and quantity of maternal care critically shapes rodent neurodevelopment,

emotional behavior, and hormonal stress responsivity (Caldji et al., 1998, Francis et al.,

1999, Wang et al., 2010, Liu et al., 2000, Liu et al., 1997, Meaney, 2001). Moreover, MS

(like other postnatal manipulations) influences maternal care, suggesting that MS stress

exerts its effect, in part, via subtle behavioral or stress hormone changes in dams when they

reunite with litters (Macri et al., 2011, Huot et al., 2004). We previously reported that bLR

mothers are more maternal (showing more licking, grooming, arched back nursing) with

pups compared to bHR mothers. Although bHR dams exhibited less maternal behavior than

bLRs during the dark/active phase, they were very attentive to pups during the light phase,

spending greater time passive nursing and in pup contact compared to bLR dams

(Kristiansen et al., 2007, Clinton et al., 2007). These findings concur with observed

HAB/LAB maternal differences, where highly anxious HAB mothers attend more to pups

compared to LAB dams (Bosch, 2011, Bosch and Neumann, 2008). One caveat of the

present study was that we did not evaluate bHR/bLR maternal behavior in MS and control

litters. Neumann et. al. reported that HAB/LAB maternal differences persisted throughout

the MS process, and that the two lines acted similarly upon reunion with their litters

(Neumann et al., 2005). It would be quite interesting to know a) whether bHR and bLR

mothers differentially react to the MS procedure; and b) to what extent their reactions may

contribute to MS effects in adult offspring (which could potentially be explored in a cross-

fostering experiment). Future experiments are required to explore these new questions.

4.6 Conclusions

We believe that the bLR rat represents a useful new rodent model of co-morbid anxiety- and

depression given their naturally high levels of anxiety- and depressive-like behavior (Kabbaj

et al., 2000, White et al., 2007, Flagel et al., 2010, Clinton et al., 2011a, Perez et al., 2009,

Clinton et al., 2008, Stedenfeld et al., 2011, Garcia-Fuster et al., 2012), diminished

aggression (Kerman et al., 2011) and sexual motivation (McCullumsmith et al., 2007), and
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reduced responsivity to reward (Kabbaj, 2004, Piazza et al., 1989, Flagel et al., 2011, Davis

et al., 2008, Garcia-Fuster et al., 2010, Cummings et al., 2011). The present study together

with our earlier work (Clinton et al., 2008, Stedenfeld et al., 2011) also demonstrates bLRs’

high vulnerability to chronic stress whereas bHRs are fairly resilient. MS during the first two

postnatal weeks appears to exacerbate adult bLRs’ physiological response to stress —

increasing their already high levels of stress-induced defecation and also enhancing HPA

axis responsivity. Our previous studies point to differences in the ontogeny of hippocampal

circuits in bLR versus bHR rats as a possible neurobiological underpinning for their marked

behavioral and neuroendocrine phenotypes (Clinton et al., 2011b). Ongoing studies will

determine whether the deleterious effects of MS on bLR offspring are associated with

changes within the hippocampus and other limbic regions.
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Figure 1. Impact of MS stress on adult offspring’s anxiety-like behavior
Adult bHR and bLR offspring that were maternally separated (MS) or remained undisturbed

(CON) in early life were tested in the Open Field (OF), the Elevated Plus Maze (EPM), and

the Light Dark Box (LDB). bLRs consistently showed greater anxiety compared to bHRs,

spending less time in the center of the OF (A), less time in the open arms of the EPM (C),

and less time in the light compartment in the LDB (E). bLRs also showed greater latency to

initially enter these anxiogenic regions compared to bHRs (B, D, F). A history of MS had no

impact on any of these measures. Groups were compared using a 2-way ANOVA and

Fisher’s post hoc comparisons where necessary; * indicates p<0.05; ***indicates p<0.0001
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Figure 2. Impact of MS on adult offspring’s stress-induced defecation
Anxiety was also assessed via the amount of stress-induced defecation in bHR/bLR

maternally separated (MS) and undisturbed (CON) offspring following the Open Field (OF;

A); and the Elevated Plus Maze (EPM; B) tests. In general, bLRs exhibited far greater

stress-induced defecation compared to bHRs in both tests. Interestingly, this difference was

further magnified by a history of MS, as MS-bLR animals showed greater defecation in both

tests compared to control bLRs. Groups were compared using a 2-way ANOVA and

Fisher’s post hoc comparisons where necessary; ** indicates p<0.01; *** <0.0001
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Figure 3. Impact of MS stress on adult offspring’s depression-like behavior
Adult bHR and bLR offspring that were maternally separated (MS) or remained undisturbed

(CON) in early life were subjected to the Forced Swim Test (FST) to assess depression-like

behavior. bLRs exhibited greater depression-like behavior in the FST compared to bHRs,

showing greater immobility (A), and less climbing (B) and swimming (C) during the 5-min

test. A history of MS had no impact on any of these measures. Groups were compared using

a 2-way ANOVA and Fisher’s post hoc comparisons where necessary; * indicates p<0.05;

***indicates p<0.0001
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Figure 4. Impact of MS stress on novelty-induced adrenocorticotropin (ACTH) and
corticosterone secretion
Basal blood samples were collected 24 h prior to the Light Dark Box (LDB) test, and

additional blood samples were taken 5-, 20-, and 60-min after the beginning of the test.

Black bar indicates the 5-min LDB test period. bLR controls, compared to bHR controls,

exhibited a blunted stress-induced ACTH (A) and corticosterone (B) secretion following the

LDB test. A history of MS shifted animals’ neuroendocrine responsivity, with the most

striking effects in bLR. Maternally separated (MS) bLRs exhibited a distinctly “bHR-like”

neuroendocrine response, showing enhanced ACTH (C) and corticosterone (D) secretion

compared to bLR controls. MS only subtly influenced bHRs’ hormonal stress response,

producing a dampened peak ACTH response (E), with no apparent impact on corticosterone

(F). Groups were compared using a 3-way ANOVA and Fisher’s post hoc comparisons
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where necessary;* indicates p<0.05 a significant difference between experimental groups at

a particular timepoint.
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