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Abstract

Background—The negative effects of X-ray exposure, such as inducing genetic and cancerous

diseases, has arisen more attentions.

Objective—This paper aims to investigate a penalized re-weighted least-square (PRWLS)

strategy for low-mAs X-ray computed tomography image reconstruction by incorporating an

adaptive weighted total variation (AwTV) penalty term and a noise variance model of projection

data.

Methods—An AwTV penalty is introduced in the objective function by considering both

piecewise constant property and local nearby intensity similarity of the desired image.

Furthermore, the weight of data fidelity term in the objective function is determined by our recent

study on modeling variance estimation of projection data in the presence of electronic background

noise.

Results—The presented AwTV-PRWLS algorithm can achieve the highest full-width-at-half-

maximum (FWHM) measurement, for data conditions of (1) full-view 10mA acquisition and (2)

sparse-view 80mA acquisition. In comparison between the AwTV/TV-PRWLS strategies and the

previous reported AwTV/TV-projection onto convex sets (AwTV/TV-POCS) approaches, the

former can gain in terms of FWHM for data condition (1), but cannot gain for the data condition

(2).

Conclusions—In the case of full-view 10mA projection data, the presented AwTV-PRWLS

shows potential improvement. However, in the case of sparse-view 80mA projection data, the

AwTV/TV-POCS shows advantage over the PRWLS strategies.
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I. Introduction

X-ray computed tomography (CT) has demonstrated dramatic impact on medical imaging

over the last several decades. However, due to the thousands of projection views in normal

scan, high X-ray radiation exposure in clinic has caused potential cancer risks to the patients

[1]. Therefore, minimizing the radiation risks is strongly desirable in the CT field. Up to

now, besides hardware-based optimal data-acquisition protocols [2–4], two types of data

acquisition for reducing the radiation dose have been widely explored, i.e., (1) reducing the

number of projection views [5, 6] and (2) reducing the milliampere-seconds (mAs) or the

kilovoltage-peak (kVp) values [7–9].

Reducing the number of projection views per rotation around the body, which is called

sparse-view scanning nowadays, can directly reduce the radiation dosage, but the associated

image reconstruction is ill-posed for the well-known Feldkamp–Davis–Kress (FDK) method

[10] due to the insufficient measurements. Recently, compressed sensing (CS) theory has

proved that an image can be uniquely reconstructed from far less measurements than the

required data of Nyquist sampling theorem if the transform coefficients of the data are

sparse enough [11]. Meanwhile, due to the property of CT projection data, it is difficult to

adopt the CS theory directly for CT image reconstruction [12]. Inspired by the preliminary

idea of CS, the total variation-projection onto convex sets (TV-POCS) [5, 6] method and its

generalized case: adaptive-weighted total variation-projection onto convex sets (AwTV-

POCS) [12] method, have been proposed for solving the CT image reconstruction from

sparse-view measurements. In our previous study on AwTV-POCS method, we observed

gains at the edges of the reconstructed image compared to the conventional TV model [12].

In addition, to further reduce the number of projection views without corrupting the image

quality, a prior image constrained compressed sensing (PICCS) strategy has been proposed

[13]. A drawback to all these TV-based methods mentioned above is that they do not fully

consider the statistical property of the projection data. More reasonable data fidelity metric

between the measured and desired projection data is demanded to make the feasible region

small enough. Otherwise, it may be difficult to find an optimal solution close enough to the

true one. Hence, in the construction of objective function of the TV-based methods,

considering the statistical property of projection data would significantly improve the

associated performances.

Reducing the X-ray exposure (i.e., lowering the mAs or kVp values) to the patients is

another direct strategy for lower the radiation dose [8]. However, the image quality in this

case would be significantly degraded due to excessive quantum noise if no noise controlling

[14, 15]. Efforts have been devoted to restore the ideal line integrals or sinogram data (i.e.,

projection data after log-transformation) from the acquired low-mAs projection data for the

purpose of improving the image quality via either statistics based sinogram restoration [7–9]

or statistics based iterative image reconstruction [16–19]. For yielding a successful solution,
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the AwTV penalty [12] is introduced in the objective function by considering both piecewise

constant property and local nearby intensity similarity of the desired image, which is one of

motivations for this present study. The differences between the two penalties (i.e., AwTV

and TV) will be discussed in this paper. In addition, previous statistical model in the image

reconstruction algorithms does not consider the electronic background noise. As far as we

know, there are two principle sources of causing the CT noise, i.e., photon counting statistics

and the electronic background noise [19]. Thus, more accurate model with consideration of

the electronic noise is desired for statistical image reconstruction (SIR), which is the other

motivation of this present study. It is worth to note that the penalty term and the explored

statistical model in this study differentiate the ones from the previous reports on TV-PWLS

(penalized weighted least squares) [20–24].

The remainder of this paper is organized as follows. In Section II, the proposed penalized re-

weighted least squares (PRWLS) image reconstruction strategy based on a new accurate

noise model of projection data and the AwTV penalty are first described, and then a

modified Gauss-Seidel iterative update strategy is introduced for solving the objective

function of AwTV-PRWLS. Additionally, a brief outline of experimental design is

illustrated to validate the present algorithm using cone-beam CT (CBCT) measurements

from the CatPhan® 600 and anthropomorphic head phantoms. In Section III, experimental

results from two phantoms are reported. Finally, discussions and conclusions are given in

Section IV.

II. Methods and Materials

II.A. AwTV prior

Borrowing the mathematical descriptions presented in the reference [12], the three-

dimensional (3D) AwTV prior of can be written as:

(1)

(2)

where s and t are the indices of the location of the attenuation coefficients along in-plane

domain (slice), z is the indices of the attenuation coefficients along axial direction, δ in the

weights is a scale factor which controls the strength of the diffusion during each iteration.

Intuitively, the AwTV model of Eq. (1) approaches to the conventional TV prior model as

the weight goes to 1, thus the TV prior model may be considered as a special case of the
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AwTV model when δ → ∞. Extensive experiments have shown that the effectiveness of the

AwTV prior model in sparse-views CT image reconstruction [12].

II.B. PRWLS image reconstruction

According to our knowledge, Compound Poisson model [25] can accurately describe the

noise property of the detected photon numbers in CT scanners based on the energy spectrum

of the X-ray quanta. However, it is numerically difficult to directly implement this model for

data noise simulation. Several reports have discussed approximation of this model by the

Poisson model [9, 16, 23, 25, 26]. Practically, the measured transmission data I can be

assumed to statistically follow the Poisson distribution upon a Gaussian distributed

electronic background noise [19]:

(3)

where λ is the mean of Poisson distribution, me and  are the mean and variance of the

Gaussian distribution from the electronic background noise. In reality, the mean me of the

electronic noise is often calibrated to be zero (i.e., ‘dark current correction’) and the

associative variance slightly changes due to different settings of tube current, voltage and

durations in a same CT scanner [19]. Hence, in a single scan, the variance of electronic

background noise can be considered as uniform distribution. Based on this measurement

model, a new formula of the mean-variance relationship in CT projection domain by

considering the effect of the Gaussian distributed electronic background noise has been

reported as follows [19]:

(4)

where  represents the estimated variance of measuring projection datum pi, Ii0 is the mean

number of incident photons along projection path i, p̄i denotes the mean of the log-

transformed ideal projection datum pi along path i,  is the variance of the electronic noise

associated with the measurement on projection datum pi, which can be obtained from the

mAs levels versus variance of the electronic noise curve [19].

From Eq. (4), it can be observed that a larger pī value, indicating less X-ray photons being

detected in the detector, will have a larger variance. Thus, a smaller signal-to-noise ratio

(SNR) is expected due to the Poisson noise nature of the detected photons. On the contrary,

a smaller p̄i value will result in a higher SNR. Due to this property, the inverse of the  in

Eq. (4) shall be used as the weights for the weighted least squares (WLS) term, i.e., a lower

SNR shall contribute less for the estimate of the ideal projection and a higher SNR will

contribute more for the estimation. This expectation is proved mathematically by Taylor

expansion on the signal model (3) [19]. In reality, the images are reconstructed from only

one scan and the mean line integral p̄i are not available (actually it is to be estimated).

Therefore, a one-step-later reweighted strategy was implemented to estimate  from the

measured projection data [18]. This strategy makes sense that the re-projection operations
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from the reconstructed image are much closer to the mean of the ideal log-transformed

projection.

For CT image reconstruction, using the terminologies described in the previous study [8],

the associated cost function of PRWLS can mathematically be written as:

(5)

where p̂ is the acquired projection data and A represents the system transfer matrix, which

depends on the projection geometry, and its elements of ai,j can be calculated as the length

of the intersection of projection ray i with voxel j, μ is the vector of ideal attenuation

coefficients. The first term on the right hand side is named as the data fidelity term described

as a re-weighted least-squares or RWLS measurement wherein the matrix Σ, which is a

diagonal matrix and whose i-th element denotes the variance of the projection datum at

detector i as defined by Eq. (4). Directly minimizing the RWLS measure, similar to the

maximum-likelihood (ML) approach, usually leads to unacceptable results [9]. Thus, a

penalty R(μ) (the second term in the right hand side of Eq. (3)) is often desired for a

successful solution. The hyper-parameter β > 0 is designed to control the strength of the

penalty term R(μ) in Eq. (5). Consequently, the desired image can be yielded by solving the

following objective function:

(6)

As for the selection of penalty term R(μ), many forms have been explored as an a priori

constraint to regularize the RWLS solution, such as the isotropic quadratic prior [8] and

anisotropic quadratic prior [18], by attempting to adapt different weighting coefficients

under the framework of Markov Random Field (MRF). Recently, based on the hypothesis of

the piecewise constant property of the to-be-estimated image, several TV-based prior

models [5, 6, 21] were proposed for CT image reconstruction. However, these models often

suffer over-smooth in the cases of the desired images containing low-contrast edges. To

address the drawback of TV-based prior models, an AwTV prior model was introduced by

our group recently [12] for sparse-views CT image reconstruction with significant gains than

the conventional TV model in terms of edge details preservation. In this study, the AwTV

prior model as described in last section was used for CT image reconstruction. For

simplicity, the present CT image reconstruction strategy is named as the AwTV-PRWLS.

II.C. Implementation of the AwTV-PRWLS method

By incorporating the AwTV prior in Eq. (5), the objective function of the AwTV-PRWLS

method for CT image reconstruction can be written as:

(7)
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Generally, to yield a unique convergence solution, the convexity of the objective function in

Eq. (7) should be considered. It can be easily observed that the data fidelity term in Eq. (7)

has a convex quadratic form while the associated AwTV prior term is not convex due to the

nonlinear distribution about the local intensity of the image. Hence, it is difficult to get a

global optimal solution from Eq. (7) directly. Meanwhile, inspired by the optimization

strategy as described in the previous works [18, 27], the weights can be pre-calculated

separately before each iteration step and given the pre-calculated weights the convex of

AwTV prior term can be well achieved. As a result, through a traditional optimization

algorithm performing on the objective function in Eq. (7), at least one local convergence

solution can be generated. Practically, the estimated image after several iterations would

convergence to a stable one with only minor changes of intensity, which means that the

weights almost unchanged after several iterations. In other words, a converged solution

always can be yielded by the optimization method as described in the previous works [18,

27]. In this study, based on the previous works in SIR [18, 22, 28], a modified Gaussian

Seidel (GS) update strategy was performed on the optimization of the objective function in

Eq. (7). It should be mentioned, because the weights are pre-calculated before each iteration

and are considered as constants in each iteration, the minimizing of AwTV penalized cost

function should have similar property as the TV penalized cost function [22]. To summarize,

the pseudo-code of the present algorithm about the AwTV-PRWLS can be listed as follows:

1: Initialization:

2:  μ̂ = FDK {p̂};

3:  r̂ = p̂ Aμ̂;

4:

  , i =1, 2,… M;

5:

  , ∀j;

6:

  , m ∈ Nj;

7: For each iteration:

8:  For each pixel j ={s, t, z}:

9:   For each neighbor m ∈ Nj

10:    if m ∈ M = {s−1, t, z} ∪ {s, t−1, z}∪{s, t, z−1}

11:

    ;

12:    if m ={s+1, t, z},

13:
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14:     else if m ={s, t+1, z},

15:

    ;

16:    else if m ={s, t, z+1},

17:

    ;

18:    end if

19:

    ;

20:

    ;

21:

    ;

22:

    ;

23:   end for

24:  end for

25:

 update , m ∈ Nj;

26:

 update , i =1, 2,…M, where p̃ = Aμ̂;

27: end if stop criterion is satisfied.

where aj denotes the column vector of the system matrix A,  are the weights for the

neighboring voxels m, which are updated in each iteration, ε is a relax parameter introduced

to avoid the denominator going to zero, M is the total projection ray numbers. In line 2, an

initial estimate of the to-be-reconstructed image is set to be the result of FDK. The initial

estimation of the variances of measuring projection data  for i=1…M are calculated from

the acquired projection data. And according to the result of FDK, the anisotropic weights are

initialized in line 6. From line 8 to line 24, each pixel is updated continuously by the GS

strategy. By incorporating the weights or the neighboring voxels, an updating equation is

performed at line 20. Then the anisotropic weights are updated based on new estimated

intensities of voxels after one iteration at line 25. The variances of measuring projection data

are also updated based on the re-projected measurements from the new intensities at line 26.

It is worth to note that by setting the anisotropic weight to 1, the above pseudo-code for the

present AwTV-PRWLS algorithm corresponds to the TV-PRWLS algorithm [22]. The final

results will be obtained as the stop criterion condition is met as indicated at line 27.

Liu et al. Page 7

J Xray Sci Technol. Author manuscript; available in PMC 2014 August 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Specifically, in this study, the value of mean square error (MSE) between the results from

the current iteration and the previous iteration is used as the stop criterion. The convergence

analysis of the present AwTV-PRWLS algorithm would be shown in Section III.A.3.

II.D. Data acquisition

To calculate the variance of the projection data, the mean number of incident photons along

projection path i should be estimated according to Eq. (4). It is known that the incident

photon number is mainly determined by the protocols of the tube current and the duration of

X-ray pulse. Ideally, the incident photons should be uniformly distributed across the field of

view (FOV). However, considering the concavity of the human body, a bow-tie attenuation

filter is often installed between the human body and the X-ray source [29], which makes the

incident photons across the FOV no longer uniform. To accurately estimate the incident

intensity over the FOV at a specific mAs level, an air scan was first performed at the same

mAs level. Figure 1 shows an example of the incident X-ray intensity in low-mAs case

acquired by ExactArms (kV source/detector arms) of a Trilogy™ treatment system (Varian

Medical Systems, Palo Alto, CA) [29] by averaging the projections of one circle rotation.

For the low-mAs case, the X-ray tube current was set at 10mA and the duration of the X-ray

pulse at each projection view was set to be 10 ms. For the corresponding normal-mAs case,

the tube current was set at 80mA and the duration of the X-ray pulse at each projection view

was 12 ms. In this study, the tube voltage was all set to be 125 kVp for all the cases.

The CBCT projection data acquired by the same CT system from two physical phantoms

(i.e., the CatPhan® 600 and anthropomorphic head phantoms) were used to evaluate the

performance of the above presented AwTV-PRWLS algorithm in this study. A total of 634

projection views were acquired for a fully 360-degree rotation on a circular orbit. The

dimension of each projection image is 1024×768 pixels. To reduce computational time, the

projection data were down-sampled by a factor of 2. Only 8 out of 768 slices from the

projection image were selected for image reconstruction. The source-to-isocenter distance is

100 cm and the source-to-detector distance is 150 cm. The array size of the reconstructed

image is 350×350×8 and the associative voxel size is 0.776×0.776×0.776 mm3. Sparse-view

projection data are extracted evenly over 360 degrees from full projection views for further

analysis.

II.E. Image quality measures

One of the most important merits for medical image evaluation is the resolution. The high

resolution image delivers clear messages to the physicians for diagnoses; the low resolution

image loses some small features, which is more dangerous for clinical image. However,

mitigating the artifacts from noise or missing data due to the reduction of X-ray exposure

while maintaining good structure information is more challenging for the general CT image

reconstruction methods. To quantitatively describe the resolution level of the reconstructed

image, the full-width-at-half-maximum (FWHM) is always calculated for evaluation

purpose. In order to obtain an FWHM value, a Gaussian-like function is used to fit the edge

spread function (ESF) or an impulse response in the reconstructed image. Through those

fitted curves, it can be observed the high-resolution image will often have a higher peak

value and low-resolution image often has a lower peak value. To quantize this observation,
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the FWHM values of the fitted Gaussian broadening kernel are calculated by 2.35σR, where

σR is the standard deviation of the Gaussian broadening kernel [12]. Then, high resolution

image will have a smaller FWHM value and low contrast image will have a larger FWHM

value.

Beside the merit of FWHM value, another merit – the noise level of the desired image is

also very important for diagnosis. The physicians are hardly to locate the polyp from a noisy

image. To quantitatively describe the noise level of the image, a uniform area (i.e., region-

of-interest (ROI)) is always been selected to calculate the standard deviation. The smaller

standard deviation indicates the image has a low-level noise, and a higher standard deviation

indicates a noisy image is obtained. Then, if we combine the resolution (i.e., FWHM value)

with the noise level merit, we can draw a curve to describe the trade-off between them,

which will indicate the performance of image reconstruction algorithms. We call this curve

as resolution-noise trade-off curve. The curve of an outstanding algorithms will very close to

the original point, which indicates a high resolution and low noise level result image sill be

generated.

Besides those two merits, the convergence analysis for an image reconstruction algorithm is

necessary. A stable algorithm will always ensure the results converge to a global minimum.

In the following section of results, we will focus our study on these three merits.

III. Results

In this study, two physical phantoms (i.e., CatPhan® 600 phantom and Anthropomorphic

Head phantom) were utilized for evaluation. For each physical phantom, three type of data:

(1) full-view 10mA projection data; (2) sparse-view 80mA projection data; and (3) sparse-

view 10mA projection data were studied. Table I shows the methods as used in this section.

To compare the impact of the priori model (i.e., penalty term), the AwTV-PRWLS were

compared to TV-PRWLS for different parameters. To compare the influence of the variance

estimation model of projection on the PRWLS method, the proposed AwTV/TV-PRWLS

were compared to the AwTV/TV penalized uniform weighted least-squares strategy

(AwTV/TV-PUWLS), which uses uniform weights in the statistical part (i.e., Σ was equal to

identity matrix in Eq. (7)). In addition, to validate the statistical model, the proposed

AwTV/TV-PRWLS were compared to the AwTV/TV-POCS methods.

III.A. CatPhan® 600 phantom study

III.A.1. Influence of the priori model on the PRWLS method—To investigate the

effects of the two prior models, i.e., TV and AwTV model, the full-view 10mA data was

utilized for this study. The resolution of the resulting image was calculated from the edge

spread function (ESF) along the horizontal profile as indicated by the yellow dot lines on the

top cold circle shown in Fig. 2. In addition, a small region is selected as indicated by the

yellow dot circle in Fig. 2 to calculate the standard deviation σN. By varying the penalty

parameter β from 20 to 8 × 104, we can obtain two resolution-noise tradeoff curves in the

coordinates (2.35σR, σN) for the TV-PRWLS and AwTV-PRWLS algorithms with δ = 0.006

as shown in Fig. 3.
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From Fig. 3, it can be observed that the result of AwTV-PRWLS algorithm has a higher

resolution compared to the TV-PRWLS algorithm at the same noise level. In addition, a

better balance between the noise and resolution can be observed as β = 140. In order to

further validate the effects of parameter δ in the adaptive weights to the resulting image, a

group of resolution-noise pairs were calculated towards the different δ values from 0.002 to

6 at β = 140 as shown in Fig. 4.

As shown in Fig. 4, the resolution-noise tradeoff curve indicates that the reconstructed

image by the AwTV-PRWLS algorithm has both good resolution and lowest noise level

with δ = 0.006 for the CatPhan® 600 phantom study. Moreover, it should be mentioned that

as the value of δ decreases from 0.006 to 0.002, the noise level (i.e., standard deviation)

increases noticeably from 5.0818 × 10−4 to 1.2 × 10−3, and the associative resolution of the

image decreases a little from 1.6293 to 1.6842. At the same time, as the value of δ increases

from 0.006 to 6, the noise still maintains at a lower level while the resolution drops

noticeably from 1.6293 to 2.2292 and finally locates at a fixed value when δ approaches a

very large one. This result is consistent with our previous comparison study on the AwTV-

POCS and TV-POCS [12] algorithms where the additional adaptive weights in the AwTV

model show good property to preserve edges while mitigating noise of the resulting image.

III.A.2. Influence of the variance estimation model of projection on the PRWLS
method

III.A.2.1 Visualization-based comparison: In this section, 79 projection views are

extracted from the 80mA and 10mA projection data to generate type (2) and type (3) datum.

Thus, the associative dosage can reduce to about 1/9, 1/8, and 1/72 of the dosage of full-

view 80mA data, respectively. As for the comparison with the present AwTV-PRWLS,

other three methods, i.e., the TV-PRWLS, AwTV- and TV-PUWLS were explored in this

study. In the implementations, due to that a standard deviation can reflect the noise level of

the to-be-reconstructed image, a ROI as indicated by the circle in was selected from the

uniform background in the phantom to calculate standard deviation. To mitigate the effects

caused by different parameter selection, different values of β were selected to keep the

resulting images having the same noise level described by a standard deviation. Specifically,

for the AwTV/TV-PRWLS methods, β =140 for all three types of data; for the AwTV/TV-

PUWLS methods, β =5000.

A reconstructed slice of the CatPhan® 600 phantom is shown in Fig. 5. The first row of Fig.

5 is the results reconstructed from type 1 (i.e., full-view 10mA projection) data by the FDK

and AwTV/TV-PRWLS and AwTV/TV-PUWLS methods. The second and third rows of

Fig. 5 are the results reconstructed from type 2 (i.e., 79-view 80mA projection) data and

type 3 (i.e., 79-view 10mA projection) data. It can be seen that the FDK method cannot

produce satisfied results in all the cases. In addition, the AwTV/TV-PRWLS methods

achieve significant gains than the AwTV/TV-PUWLS methods in terms of noise

suppression and resolution preservation. Small differences are also observed between the

results from the AwTV-PRWLS and TV-PRWLS methods due to different penalty term

settings. The related further discussion can be found in the following section.
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III.A.2.2 Profile-based comparison: Figures 6, 7 and 8 show the profiles passing through

the two spots, as indicated by red line in Fig. 2, in the images reconstructed from three types

of data, respectively. A Gaussian like function is used to fit the profiles as indicated in the

figures. From Fig. 6, we can observe that in the case of full-view 10mA projection data, the

peak values of the results from AwTV/TV-PRWLS are much higher than that from

AwTV/TV-PUWLS in both cold and hot spots. We also observe the gains from our AwTV

model compared to the conventional TV model. For the 79-view 80mA projection data case,

the results are shown in Fig. 7. In the 79-view 10mA projection data case, shown in Fig. 8,

although all the images are not acceptable (i.e., inferior results), we still observe some gains

by using the AwTV-PRWLS frame work.

III.A.2.3. FWHM measures: To further quantitatively analyze the gains from the present

PRWLS method than the PUWLS method, the FWHM of the two spots (a cold spot and a

hot spot) are calculated and shown in Table II. The Table II reveals the AwTV/TV-PRWLS

methods can produce smaller values than the AwTV/TV-PUWLS methods on both hot and

cold spots, which is consistent with our observation about the profile comparison. It should

be mentioned that the FWHM values of the cold spots in the results from 79-view 80mA

projection data by AwTV-PUWLS has the smallest value than the other results. This

apparent contradiction, however, is likely due to the curve fitting options which make the

area under curve of the Gaussian-like bell shape are much smaller than others and can be

illuminated by observing the curve fitting results shown in Fig. 7(b).

III.A.3. Convergence analysis of the AwTV-PWLS algorithm—The convergence

property of the AwTV-PRWLS algorithm was documented by calculating the value of cost

function Φ for the full-view 80mA projection CatPhan® 600 phantom data. Figure 9 shows

the value of log(Φ) versus the iteration steps for the AwTV-PRWLS algorithm. We can

observe that the value of Φ decreases monotonously as the number of iteration steps

increases. Finally, we found the objective value arrived at a stable value at the 20th iteration

and we believe the algorithm has converged sufficiently and the to-be-estimated image

would only have tiny changes (hardly be observed by human eye) for further iteration.

III.A.4. Comparisons of the AwTV/TV-PRWLS and AwTV/TV-POCS methods

III.A.4.1 Visualization-based comparison: According to our previous study [12], the

AwTV/TV-POCS algorithms show satisfactory results for image reconstruction from sparse-

view 80mA projection data. To further validate the two types of strategy (i.e., the POCS and

PRWLS) for different types of projection data measurements (i.e., low-mAs data or sparse-

view data), the AwTV/TV-PRWLS and AwTV/TV-POCS algorithms were implemented to

reconstruct three types of data as mentioned in previous section. In the AwTV/TV-PRWLS

strategies, the penalty parameter β was selected to be 140 to ensure the backgrounds have

similar noise levels as the full-view 80mA FDK image. For the AwTV/TV-POCS

approaches, five POCS steps and two TV gradient descent steps [5, 6, 12] were executed in

each general loop to achieve the results with similar noise level. The results are shown in

Fig. 10.
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III.A.4.2 Profile-based comparison: To further compare the reconstructed images, the

profiles and FWHM values were calculated as shown in Figs. 11–13. Figure 11 indicates

that the results from AwTV/TV-PRWLS have higher peak values on both spots indicating

better performance on edge preserving for full–view 10mA projection data. Figure 12

indicates that the results from AwTV/TV-POCS have higher peak values on both spots for

79-view 80mA projection data. Obviously, in the 79-view 10mA projection data case, it is

difficult to make any confidential conclusion for the inferior results. Although we observe

the AwTV/TV-POCS shows some improvement to the AwTV/TV-PRWLS, the background

noise is much higher than the results from AwTV/TV-PRWLS.

III.A.4.3. FWHM measures: The FWHM values of those fitted profiles are shown in Table

III, which are consistent with our conclusion for profile comparison. From Table III, we can

observe that for full-views 10mA case, the AwTV-PRWLS method has the smallest value

compared to other three methods on both cold and hot spots. In the case of 79-views 80mA

projection data, the AwTV-POCS has the smallest value which corresponds to the highest

resolution. In the case of 79-views 10mA projection data, all the four methods failed to

reconstruct good results.

III.B. Anthropomorphic head phantom study

III.B.1. Visualization and profile-based comparison—Figure 14 shows the

transverse images of the anthropomorphic head phantom reconstructed by different methods

from the cone-beam projection data acquired with 125 kVp, 80mA and 10mA protocols. For

the cases of sparse-view projection measurements from the 80mA and 10mA, 113 views

from the full views were extracted as sparse-view data for image reconstruction.

The first column of Fig. 14 shows the images reconstructed by the FDK method from the

three types of projection data. It can be observed that the FDK method did not produce

satisfactory results from these three types of data due to the noise and artifacts caused by the

missing data or both. The first row of Fig. 14 shows the images reconstructed by the FDK,

AwTV/TV-PRWLS and AwTV/TV-POCS methods from the full-view 10mA projection

data. It can be observed that, in this case, both the AwTV/TV-PRWLS algorithms can

efficiently suppress noise without losing the bone structures. On the contrary, to keep the

same noise level with the results from AwTV/TV-PRWLS method, the images reconstructed

by the AwTV/TV-POCS methods are softer and over-smoothed to suppress noise. The

second row of Fig. 14 shows the images reconstructed from the 113-view 80mA projection

data. It can be seen that both the AwTV/TV-POCS methods show some advantages

compared to the results of the AwTV/TV-PRWLS methods. The third row of Fig. 14 shows

the images reconstructed from the 113-view 10mA projection data. It can be seen that all the

four strategies mentioned above cannot produce satisfactory results. Furthermore, the

associative horizontal profiles across the 102th to 180th columns at the 180th row are plotted

in Fig. 15. It can be seen that the profile of the results from AwTV-PRWLS is much closer

to the full-view 80mA FDK image in the case of full-views 10mA projection data. In the

both the cases of sparse-views with 80mA and 10mA, the AwTV-POCS shows better

performance than other methods.
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III.B.2. Resolution-noise tradeoff comparison—Figure 16 shows the curve of the

resolution and standard deviation of the background area with different β settings from the

full-view 10mA projection data. The resolutions are calculated from the ESF as indicated in

Fig. 16(a). It can be observed that in the same background noise level, the results of the

AwTV-PRWLS algorithm have higher resolution than the results of the TV-PRWLS

algorithm, which is consistent with the results from the CatPhan® 600 phantom study.

IV. DISCUSSION AND CONCLUSION

In this paper, we presented a statistical image reconstruction method based on the PRWLS

strategy for CT image reconstruction. There are two motivations triggered this study. Firstly,

we adopted a novel AwTV [12] as a regularization term (i.e., the a priori term) to penalize

the RWLS problem, which can mitigate the over-smoothing or recover more edge details

compared to the conventional TV penalty. Secondly, the variances of the projection data are

estimated with inclusion of the electronic background noise [19], which is considered to

accurately describe the statistical property of the low-mAs projection data. Although the

effect of the electronic background noise is minor for normal-mAs CT projection data due to

the large quantity of photons in the measurement, the detected number of photons in the case

of low-mAs scan is dramatically decreased. Thus, the effects of the electronic background

noise could not be ignored [19]. In this study, by using a new variance estimation of

projection data as weights in the present AwTV-PRWLS strategy, the RWLS term (i.e., the

primary term) is more accurate than the uniform WLS without utilizing the statistical

property. It should be mentioned that in a penalized likelihood image reconstruction, a

widely-used smoothing penalty term can suppress the reconstruction variance dramatically

and, therefore, make the task to see the gain by a more accurate variance description even

challenging. Nevertheless, despite the challenging, it is not reasonable to reject the use of a

more accurate variance description in the penalized likelihood image reconstruction

framework.

Through extensive experiments with quantitative and qualitative measures, we found that

the AwTV/TV-PRWLS strategies can yield more details than the AwTV/TV-PUWLS

strategies in all three types of datasets. For example, as we can see from the resolution-noise

tradeoff curves and the FWHM studies, the advantage of the AwTV term compared to the

conventional TV term is significant noticeable. Furthermore, the AwTV-based strategies

show more efficiency to accurately preserve edge details than the conventional TV term.

In the present study, besides the comparison between the AwTV/TV-PRWLS and

AwTV/TV-PUWLS strategies, we also executed a comparison between the AwTV/TV-

PRWLS strategies and the well-known AwTV/TV-POCS strategies with three types of

datasets. Both the FWHM value and visual comparison via displaying the results of the

AwTV/TV-PRWLS and AwTV/TV-POCS strategies have demonstrated that the

AwTV/TV-PRWLS methods can reconstruct satisfactory image from full-view 10mA

projection data. Compared to the AwTV/TV-PRWLS strategies, the AwTV/TV-POCS

strategies require that the estimated projections data should obey high fidelities to the

observed projection data. Meanwhile, in practice, this condition is really hard to be met in

low-mAs CT measurements. On the other side, the PRWLS model can be mathematically
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proven to follow the concept of maximum a posteriori (MAP) estimation, which fully

utilizes the statistical property of the noise model of the signal. As a result, the AwTV/TV-

PRWLS strategies could converge to a close solution when the number of projections is

enough. As shown in section III.A.4 and III.B, we can conjecture the AwTV/TV-PRWLS

strategies would show some advantages than the AwTV/TV-POCS strategies in full-

projection view case. We may conclude that PRWLS method can obtain a more accurate

solution the other present method in this study.

In the studies using the sparse-view 80mA projection data, both the AwTV/TV-POCS

strategies show more advantages than the AwTV/TV-PRWLS strategies in terms of

achieving smaller FWHM values. Due to the piecewise constant hypothesis and the

knowledge of the high SNR of the observed data, the AwTV/TV-POCS strategies always

aim to find an unique optimal solution having a minimum AwTV/TV value from the

feasible region [30]. However, the AwTV/TV-PRWLS strategies always look for the

solution from an unconstraint minimization problem, which indicated there would be

multiple candidate solutions meet the minimization condition [6]. In addition, there is no

such mechanism to tell us which is the best. Thus, it could be more possible to reconstruct a

satisfactory result from a sparse-view 80mA case by using the AwTV/TV-POCS strategies.

It is worth to note that all AwTV/TV-POCS and AwTV/TV-PRWLS algorithms fail to

produce satisfactory results in the case of the sparse-view 10mA projection data. One

possible reason is that there are always some unsatisfied conditions for using these two types

of strategies (i.e., the low-fidelity of the detected projection data in the POCS strategy and

the low number of observations in the PRWLS strategy).

In summary, the presented AwTV-PRWLS strategy is a more efficient way to accurately

reconstruct the image from low-mAs (i.e., 10mA) full projection data and the AwTV-POCS

strategy is a more efficient way to reconstruct the image from sparse-view normal-mAs (i.e.,

80mA) projection data. As we mentioned at the beginning of this paper, the efficiencies of

the AwTV model compared to other priors are still unknown and shall be investigated

further. Therefore, the comparison between the AwTV prior and other prior terms, such as

the generalized Gaussian Markov random field (GGMRF) prior [31], the reweight TV prior

[32], the TV-stokes prior [33] or the prior information from previous scan [13, 34, 35], will

be one task in our further research. In addition, how to solve the TV/AwTV problem

efficiently and accurately will be another task in our future studies [36, 37]. Another

interesting topic is how to utilize TV-based image reconstruction methods toward different

clinical applications, such as high resolution micro-CT [38] and multiple objects

reconstruction [39], which could be another task in our future work.
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Fig. 1.
Incident X-ray intensity image across the field of view with 10 mA tube current and 10 ms

pulse time in cone-beam geometry.
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Fig. 2.
The reconstructed transverse image of the CatPhan® 600 phantom from full-view normal-

mAs projection data.
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Fig. 3.
The resolution-noise tradeoff curves of the transverse reconstructed images of the CatPhan®

600 phantom by the TV-PRWLS and AwTV-PRWLS algorithms.
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Fig. 4.
The resolution-noise tradeoff curve of the transverse reconstructed images of the CatPhan®

600 phantom by the AwTV-PRWLS algorithm with different δ values from 0.002 to 6.
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Fig. 5.
The reconstructed images of the CatPhan® 600 phantom. The first row shows the images

reconstructed from the full-view 10mA projection data. The second row shows the images

reconstructed from the 79-view 80mA projection data. The third row shows the images

reconstructed from the 79-view 10mA projection data. The display window is [0, 0.03].
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Figure 6.
Horizontal profiles of the CatPhan® 600 phantom images reconstructed by different

algorithms from full-view 10mA projection data. Picture (a) shows the profiles across the

cold spot (146th row, 135th to 155th column). Picture (b) shows the profiles across the hot

spot (139th row, 200th to 220th column).
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Figure 7.
Horizontal profiles of the CatPhan® 600 phantom images reconstructed by different

algorithms from 79-view 80mA projection data. Picture (a) shows the profiles across the

cold spot (146th row, 135th to 155th column). Picture (b) shows the profiles across the hot

spot (139th row, 200th to 220th column).
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Figure 8.
Horizontal profiles of the CatPhan® 600 phantom images reconstructed by different

algorithms from 79-view 10mA projection data. Picture (a) shows the profiles across the

cold spot (146th row, 135th to 155th column). Picture (b) shows the profiles across the hot

spot (139th row, 200th to 220th column).
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Fig. 9.
Convergence analysis: log(Φ) v.s. iteration steps.
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Fig. 10.
The reconstructed images of the CatPhan® 600 phantom. The first row shows the images

reconstructed from the full-view 10mA projection data. The second row shows the images

reconstructed from the 79-view 80mA projection data. The third row shows the images

reconstructed from the 79-view 10mA projection data. The display window is [0, 0.03].
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Figure 11.
Horizontal profiles of the CatPhan® 600 phantom images reconstructed by different

algorithms from full-view 10mA projection data. Picture (a) shows the profiles across the

cold spot (146th row, 135th to 155th column). Picture (b) shows the profiles across the hot

spot (and 139th row, 200th to 220th column).
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Figure 12.
Horizontal profiles of the CatPhan® 600 phantom images reconstructed by different

algorithms from 79-view 80mA projection data. Picture (a) shows the profiles across the

cold spot (146th row, 135th to 155th column). Picture (b) shows the profiles across the hot

spot (and 139th row, 200th to 220th column).
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Figure 13.
Horizontal profiles of the CatPhan® 600 phantom images reconstructed by different

algorithms from 79-view 10mA projection data. Picture (a) shows the profiles across the

cold spot (146th row, 135th to 155th column). Picture (b) shows the profiles across the hot

spot (and 139th row, 200th to 220th column).
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Fig. 14.
Transverse reconstructed images of the anthropomorphic head phantom. The first row shows

the images reconstructed from the full-view 10mA projection data. The second row shows

the images reconstructed from the 113-view 80mA projection data. The third row shows the

images reconstructed from the 113-view 10mA projection data. The display window is [0,

0.03].
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Fig. 15.
The horizontal profiles (102th to 180th columns at 180th row) of the reconstructed images

from: (a) the full-view 10mA projection data; (b) the 113-view 80mA projection data; and

(c) the 113e-view 10mA projection data.
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Fig. 16.
The resolution-noise tradeoff curves: (a) the transverse reconstructed images of the

anthropomorphic head phantom; (b) the resolution-noise trade off curves of the TV-PRWLS

and AwTV-PRWLS algorithms.
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Table I

Description of three methods

Name Formula

AWTV/TV-PRWLS

;

AWTV/TV-PUWLS

;

AWTV/TV-POCS

;
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