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All images are highly ambiguous, and to perceive 3-D
scenes, the human visual system relies on assumptions
about what lighting conditions are most probable. Here
we show that human observers’ assumptions about
lighting diffuseness are well matched to the diffuseness
of lighting in real-world scenes. We use a novel
multidirectional photometer to measure lighting in
hundreds of environments, and we find that the
diffuseness of natural lighting falls in the same range as
previous psychophysical estimates of the visual system’s
assumptions about diffuseness. We also find that natural
lighting is typically directional enough to override human
observers’ assumption that light comes from above.
Furthermore, we find that, although human
performance on some tasks is worse in diffuse light, this
can be largely accounted for by intrinsic task difficulty.
These findings suggest that human vision is attuned to
the diffuseness levels of natural lighting conditions.

Introduction

The image of an object can vary enormously
depending on the direction, diffuseness, and complexity
of its illumination. As a result, when the human visual
system attempts to recover the 3-D shape and surface
properties of an object from retinal images, whether it
succeeds often depends on whether it has accurate
information about the scene’s lighting. The visual
system estimates lighting conditions from cues in
individual scenes (Brainard & Maloney, 2011; Pont &
Koenderink, 2007), but it also relies on general
assumptions about what lighting conditions are most
likely to occur (Metzger, 1936/2006, pp. 148–150). Two
central problems for understanding human visual
perception are determining what the true statistical
distributions of lighting conditions, shapes, and mate-

rials are in the real world and what prior assumptions
the visual system relies on to perceive 3-D scenes
(Kersten, Mamassian, & Yuille, 2004; Knill & Ri-
chards, 1996). Here we study these problems as they
relate to lighting.

Previous research on lighting statistics

Previous studies have developed mathematical tools
for describing the spatial and directional distribution of
light (Adelson & Bergen, 1991; Debevec, 1998;
Gershun, 1936; Moon & Spencer, 1981). The main
concepts we borrow from this work are the light field, a
function F(~x,~v) giving the luminance in each direction~v
at each point ~x throughout a region of space, and the
light probe, a sample E(~v)¼ F(~x0,~v) from the light field
at a single location.

Dror, Willsky, and Adelson (2004) used omnidirec-
tional photographs of real-world scenes to examine the
directional properties of natural lighting. They found
that although natural lighting is highly variable, it also
has strong regularities. They showed that the luminance
histograms of light probes peak at low luminances with
a few very high luminance values due to small, bright
sources, such as the sun. They also found similarities
between the spatial frequency spectra of light probes
and conventional photographs of natural scenes,
including a pink-noise-like amplitude distribution;
kurtotic wavelet coefficient distributions; and statistical
dependencies between wavelet coefficients at adjacent
scales, orientations, and positions. Fleming, Dror, and
Adelson (2003) reported psychophysical experiments
supporting the idea that human vision relies on these
regularities in order to perceive surface reflectance and
material properties.
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Mury, Pont, and Koenderink (2007; Muryy, 2008)
used a similar approach but paid special attention to
the low-pass components of natural lighting that are
relevant to shading of convex Lambertian objects
(Basri & Jacobs, 2003; Ramamoorthi & Hanrahan,
2001). They found that, although high-spatial-fre-
quency components of light probes vary rapidly as one
moves through a scene, the low-frequency components
are much more stable. They examined a few different
types of scenes, such as open-sky locations and forests,
and showed that the pattern of changes in the low-
spatial-frequency lighting structure throughout a scene
is determined largely by the scene’s coarse geometry.

Dror et al. (2004) and Mury et al. (2007) examined
high-dynamic-range light probes that were produced by
combining conventional photographs or photographs
of mirrored balls taken in several directions and at
several exposures. Light probes created this way
capture lighting patterns precisely, and faithfully
represent sharp features, such as edges and speculari-
ties, but they are time-consuming to produce. For some
purposes, such as understanding the shading of convex
Lambertian objects, much coarser measurements are
adequate.

With this in mind, Mury, Pont, and Koenderink
(2009a, 2009b; Muryy, 2008) built a multidirectional
photometer, which they call the plenopter, to measure
low-pass light probes. They used the plenopter to
investigate the low-pass structure of lighting in natural
scenes. Mury et al. (2009b) measured light probes in
several environments, and consistent with their previ-
ous work (Mury et al., 2007), they found that a lighting
model with a coarse description of the scene layout
accounted for the structure of the measured light
probes.

The human visual system’s assumptions about
the directional distribution of natural lighting

Most work on the human visual system’s assump-
tions about lighting has examined the light-from-above
prior, the assumption that light comes from overhead1

(Metzger, 1936/2006; Morgenstern, Murray, & Harris,
2011; Ramachandran, 1988). An equally important
property of lighting, though, is its diffuseness, the
extent to which light comes mostly from a single
direction as on a sunny day or from all directions as on
a cloudy day (Langer & Bülthoff, 2000; Tyler, 1998).
Lighting diffuseness has a large effect on object
appearance, and the assumptions that observers make
about diffuseness can have a correspondingly strong
influence on their perception of 3-D scenes. Five recent
psychophysical studies have investigated the assump-
tions that observers make about lighting diffuseness
when estimating shape and reflectance, and they found

that observers tend to assume high levels of diffuse-
ness—often higher than the actual diffuseness of the
light in the scene being viewed (Bloj et al., 2004; Boyaci,
Doerschner, & Maloney, 2004, 2006; Boyaci, Maloney,
& Hersh, 2003; Schofield, Rock, & Georgeson, 2011).
This suggests that observers may have a prior for highly
diffuse lighting.

A prior is adaptive when it matches the observer’s
environment, but almost nothing is known about the
diffuseness of natural lighting. In Experiment 1, we
measure the diffuseness of natural lighting in a wide
range of real-world scenes, and we compare these
measurements to previous psychophysical estimates of
the assumptions that observers make about lighting
diffuseness. In Experiment 2, we examine human and
ideal performance in a lighting direction discrimination
task to see whether human vision works more
efficiently in some levels of lighting diffuseness than in
others.

Experiment 1

We used a custom-built multidirectional photometer
(Figure 1) to record natural lighting in several hundred
diverse scenes. The photometer recorded low-resolu-
tion, omnidirectional light probes: snapshots of the
pattern of illumination incident from all directions at a
point in space at a given time (Dror et al., 2004; Mury
et al., 2007, 2009a, 2009b). We measured lighting
conditions in rural and urban environments, under
sunny and cloudy conditions, and in indoor environ-
ments.

We define a new measure of diffuseness, illuminance
contrast energy (ICE), which allows us to describe our
lighting measurements and the results of previous
psychophysical studies in a common language. Let
E(h,u) be the illuminance pattern over the surface of a
unit sphere illuminated by a light probe, described in
spherical coordinates where h is the declination from
the north pole (i.e., 08 at the north pole, 908 at the
equator, 1808 at the south pole) and u is the azimuth.
We define the ICE of the light probe to be the
coefficient of variation of the illuminance over the
sphere, i.e., its standard deviation divided by its mean:

k ¼ 1

4p

Z p

0

Z 2p

0

Eðh;/Þ � Ē

Ē

� �2

sinhd/dh

 !1=2

ð1Þ
Here Ē is the mean illuminance over the sphere. Under
diffuse light, illuminance is largely constant across
surface orientations whereas under directional light the
illuminance depends on the orientation of a surface
relative to the dominant light sources. ICE is a measure

Journal of Vision (2014) 14(9):15, 1–18 Morgenstern, Geisler, & Murray 2



of the variation of illuminance across orientations, and
hence of diffuseness. ICE ranges from 0 for a
completely uniform, ambient light source to 1.29 for a
distant point light source (Morgenstern, 2011). Santa
Clara (2009) independently developed an equivalent
measure of lighting diffuseness.

ICE is not the coefficient of variation of the light
probe. It is the coefficient of variation of the
illuminance pattern that the light probe generates on
the surface of a sphere, and illuminance is the lighting
property that is most relevant to the shading of
Lambertian surfaces.2 The light probe L(h,u) is a
function that reports the luminance in direction (h,u).
The illuminance pattern E(h,u) generated by the light
probe on a sphere is the cosine-weighted integral of the
light probe over a full hemisphere of directions:

Eðh;/Þ ¼
RR

Lðh0;/0Þwðh;/; h0;/0Þcosðh0Þdh0d/0

Here w(h,u,h0,u0) is the cosine of the angle between
directions (h,u,) and (h0,u0), half-wave rectified so that
negative values of the cosine are clipped to zero. As a
result, the illuminance pattern E(h,u) is much more low
pass than the light probe itself. Even a rich and detailed
lighting environment creates a simple, smoothly vary-
ing illuminance pattern (Figure 2). Ramamoorthi and
Hanrahan (2001) and Basri and Jacobs (2003) describe
a simple method of using spherical harmonics to
convert the luminance of a light probe to the
illuminance it generates on a sphere.

We compared the ICE of natural lighting measure-
ments with the ICE of the diffuseness levels assumed by

human observers as measured in five previous psycho-
physical studies.

Method

Measurements of natural illumination

We used a custom-built multidirectional photometer
that recovers light probes up to their second-order
spherical harmonics, which is the component of
lighting that is relevant to illumination of convex
Lambertian objects (Basri & Jacobs, 2003; Rama-
moorthi & Hanrahan, 2001). The device is a 20-cm-
diameter aluminum sphere equipped with 64 evenly
spaced photodiodes (UDT Sensors, Inc., model PIN-
10AP) that are filtered to have the same spectral
sensitivity as human observers under photopic viewing
conditions. A laptop computer records the activation of
each photodiode. We developed the multidirectional
photometer independently of Muryy (2008). For
further information on the device, see Morgenstern
(2011).

All light probe measurements were made at York
University. We report two types of measurements. The
first type were measurements made between 12:00 p.m.
and 1:30 p.m. from August to October 2010. Each
measurement site was chosen so that previous sites
could not be seen from the new site. The photometer
sat on a microphone stand, 122 cm above the ground.
We kept it 30 cm away from objects except in forested
areas where this was not always possible. We made 570
measurements in several environments, listed in the

Figure 1. (a) The multidirectional photometer. (b) A Mollweide equal-area projection of a typical low-resolution light probe captured

with the multidirectional photometer, illustrating the level of detail that is captured. Red regions indicate high luminance, and blue

regions indicate low luminance.
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legend to Figure 3. The second type were measurements
taken on the roof of the Lassonde building at York
University over the course of 1 day on November 20,
2010. The photometer was always in the same location,
and the light probe measurements were made approx-
imately every 20 min from sunrise to sunset. There were
53 measurements in total, in which the sky conditions
varied from sunny to slightly overcast to completely
overcast. For these measurements, the center of the
photometer was at a lower position (104 cm above the
ground) to make the device more stable. All measure-
ments are available online as supporting information.

Data from psychophysical studies

We compared the diffuseness of our lighting
measurements to the results of five previous psycho-
physical studies that quantified observers’ assumptions
about lighting diffuseness (Bloj et al., 2004; Boyaci et
al., 2004, 2006; Boyaci et al., 2003; Schofield et al.,
2011). To describe actual lighting conditions and the
lighting conditions assumed by human observers, these
studies used the notion of a point-plus-ambient (PA)
illuminant (Phong, 1975). A PA illuminant consists of a

distant point source and an ambient source, and under
such lighting, the illuminance on a surface patch is

EðaÞ ¼ EPcosðaÞ þ EA a , 908

EA a � 908
ð2Þ

�
Here a is the angle of the surface normal relative to the
point source direction, EP is the maximum illuminance
from the point source, and EA is the illuminance from
the ambient source.

Morgenstern (2011, pp. 141–143) shows that the ICE
of a PA light source is

k ¼

ffiffiffiffiffiffiffiffiffiffi
5=48

p
ðEA=EPÞ þ 0:25

EP . 0

0 EP ¼ 0

ð3Þ

8><>:
In Appendix A, we explain how we recovered the ratios
EA/EP from the previous psychophysical studies. We
used Equation 3 to convert these ratios to ICE.

Here we briefly describe the previous psychophysical
studies and explain how we used their data.

Bloj et al. (2004)

Ripamonti et al. (2004) examined how lightness
constancy varies with surface orientation. Their ob-
servers looked into a chamber that contained a
spotlight, several objects, some gray frontoparallel
paint chips, and a gray test patch that the experimenter
could rotate. Observers judged which paint chip had
the same reflectance as the test patch at various
orientations. Ripamonti et al. found that lightness
constancy was reasonably good but that observers
consistently underestimated the reflectance of the test
patch at orientations at which it was illuminated
obliquely by the spotlight.

Bloj et al. (2004) showed that a simple normative
model, an equivalent illumination model (Brainard &
Maloney, 2011), could account for Ripamonti et al.’s
(2004) findings. According to this model, the observer
assumes that the scene is illuminated by a PA light
source described by Equation 2, and the observer
estimates the point illuminance EP and ambient
illuminance EA. The model assumes that the observer
perceives the orientation and luminance of the test
patch accurately. Using this information, the observer
uses a Lambertian shading model to calculate the
reflectance of the test patch in a physically realistic way.
Bloj et al. showed that the pattern of observers’
lightness matches across test patch orientations is just
what one would expect if observers followed this model
but overestimated the amount of ambient light EA in
the scene.

This diffuseness-based explanation accounts for
Ripamonti et al.’s (2004) findings as follows: When the
test patch is oblique relative to the light source, it has a

Figure 2. A light probe and the illuminance pattern it generates.

The light probe at the position of this sphere has many detailed

features because lighting in the surrounding environment varies

strongly from one direction to another. The illuminance pattern

generated over the surface of the matte sphere is much

smoother, mostly just declining from high illuminance on the

left to low luminance on the right. This image was rendered in

RADIANCE (Ward, 1994) using a light probe captured by

Debevec (1998).
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low luminance. If the observer knows the true lighting
conditions in the scene, he or she can (according to the
model) infer that the low luminance is due to the
orientation of the test patch and can infer the
reflectance correctly from the test patch’s luminance
and orientation. However, if the observer overestimates
the diffuseness of the illumination, he or she expects the
luminance of the test patch to be largely independent of
its orientation. When the patch is oblique relative to the
light source, it has a low luminance, and the observer
incorrectly attributes this to a low reflectance.

Using this model, Bloj et al. (2004) calculated the
level of diffuseness that would explain each observer’s
lightness matches. Below we compare their results to
the ICE values we measured for natural lighting. In
Appendix A, we show how to convert the diffuseness
estimates from Bloj et al.’s study as well as from Boyaci
et al.’s (2003, 2004, 2006) and Schofield et al.’s (2011)
studies, to ICE.

Boyaci et al. (2004, 2006) and Boyaci et al. (2003)

Boyaci et al. (2003) ran an experiment that was
broadly similar to Bloj et al.’s (2004), and they
examined lightness constancy as a function of test
patch orientation. They used computer-generated
scenes instead of real objects. Boyaci et al. (2006) ran a
similar study in which they manipulated lighting cues to

see which ones would affect observers’ estimates of the
illuminant; here we use data from their ‘‘all cues’’
condition, in which scenes contained shadows, shading,
and specular highlights. Boyaci et al. (2004) ran a study
in which the point light source was yellow and the
ambient light was blue, and observers adjusted a test
patch at various orientations so that it appeared
achromatic. In all these studies, the experimenters
calculated the PA illuminant that best accounted for
observers’ performance under an equivalent illuminant
model.

Schofield et al. (2011)

Schofield et al. (2011) found that the 3-D shape
percept generated by a sinusoidal luminance grating
depends on the grating’s orientation. They showed that
this is what one would expect from an observer who
assumes a PA illuminant when recovering shape from
shading, and they estimated the level of diffuseness that
would account for each observer’s shape judgments.

Results and discussion

Figure 3a shows the ICE of our lighting measure-
ments. Each environment’s histogram is scaled to peak
at one to reduce the overlap between the distributions.

Figure 3. Comparison of lighting diffuseness from natural lighting and psychophysical performance. (a) Histograms of the ICE of

natural lighting in several environments, each scaled to peak at one. The ‘‘time of day’’ histogram shows the measurements made

over the course of a single day. The dashed vertical lines show the ICE of a light source matched to Morgenstern et al.’s (2011) ‘‘weak
cue’’ condition (the line labeled ‘‘Morgenstern et al., 2011’’), default OpenGL lighting, and a distant point light source. The thick

vertical blue line shows the mean ICE over all environments. (b) Psychophysical estimates of observers’ assumptions about

diffuseness. Small vertical blue lines show the ICE assumptions of individual observers. Blue dots show averages across observers. The

thick vertical blue line shows the mean ICE over Bloj et al.’s (2004) and Schofield et al.’s (2011) experiments, which, as we explain in

the main text, are the studies we think most relevant for a comparison with natural lighting. Red lines show the ICE of the actual

illuminants in the experiments. Schofield et al. ran their experiments in the dark and with a highly ambiguous sine wave stimulus, so

we do not show a red line indicating an ICE value for their lighting.
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Figure 3a also shows two reference values: the dashed
vertical line at the right shows the ICE of a distant-
point light source, and the dashed vertical line near the
middle shows the ICE of the default lighting in
OpenGL (a PA source with the point source five times
as strong as the ambient), an example of an illumina-
tion condition in simple computer-generated scenes.
(We explain the vertical line at the far left, labeled
‘‘Morgenstern et al. [2011], ’’ in the Discussion.) The
histograms show that natural light is more diffuse than
one might have expected. The light probes mostly fall
in the bottom half of the range of physically possible
ICE values, and only the most directly illuminated
environments are as direct as default OpenGL lighting.
(We use ‘‘direct’’ to mean the opposite of ‘‘diffuse.’’)
The lowest ICEs come from indoor environments, and
the highest come from rural environments, probably
the forested environments on sunny days that we
included in our light probes, in which the sun is
sometimes visible through openings in the canopy. The
vertical blue line in Figure 3a shows the mean ICE over
all measurements, but this is only a rough measure of
central tendency because it depends on the number of
measurements in each environment. Table 1 gives the
means and standard deviations of the ICE in individual
environments.

Figure 3b shows the assumptions about diffuseness
that guided observers’ behavior in the five psycho-
physical studies. Each blue line represents the ICE
assumption of a single observer, and each blue dot
represents a mean across observers. ICE covers a
limited range within most studies but varies substan-

tially across studies. Red lines show the ICE of the
actual illuminants. Bloj et al. (2004) measured the
illumination conditions in their apparatus (including
primary lighting and interreflections), and Boyaci et al.
(2003, 2004, 2006) reported the parameters of the PA
illuminant that lit their computer-generated scenes.
(Thus, the true lighting conditions in some of Boyaci et
al.’s scenes, including interreflections, may have had
lower ICEs than the values reported. In particular,
Boyaci et al. [2003] had a large surface immediately
adjacent to the test patch, possibly adding substantial
interreflections that would have made the lighting more
diffuse.) Schofield et al.’s (2011) experiments were run
in the dark, so we do not show an ICE value for their
lighting conditions. Table 1 gives the means and
standard deviations of the ICE values in each study.

Bloj et al. (2004)

Figure 3b shows that the ICEs of the actual
illuminants in Bloj et al.’s (2004) scenes were at the
upper end of natural lighting ICE values, but their
observers behaved as if the scenes had ICE in the
middle of the range of natural illumination. That is,
observers overestimated the diffuseness of the spotlight
illumination in the experiment (as Bloj et al. pointed
out) and assumed levels of diffuseness that were typical
of natural scenes, just as would occur if they were
guided by a diffuseness prior that matched natural
illumination.

These results also suggest that if the visual system
does have a prior on lighting diffuseness, it is not easily
overridden. Morgenstern et al. (2011) showed that the
light-from-above prior is easily overridden by lighting-
direction cues, such as shadows and shading. The
scenes in Bloj et al.’s (2004) experiments contained
cues, such as shadow contrast, that observers could
have used to estimate lighting diffuseness, and yet
observers’ diffuseness estimates did not match the
actual diffuseness of the scene’s lighting. Lighting cues
apparently do not override the diffuseness prior as
easily as they override the light-from-above prior.
These suggestions are speculative, of course, because
Bloj et al. did not measure or manipulate diffuseness
cues in their scenes. Furthermore, there is room for
doubt about how strong the diffuseness cues really were
because all the surfaces in Bloj et al.’s scene were flat
and only a few of them had clearly visible cast shadows
and penumbrae.

Schofield et al. (2011)

Schofield et al.’s (2011) observers also assumed
diffuseness levels that were consistent with the levels we
found in natural lighting. Schofield et al.’s method of
inferring diffuseness priors was different from Bloj et

Mean

ICE

Standard

deviation

Standard

error

of mean

Indoor 0.4132 0.1498 0.0122

Rural sunny 0.6514 0.1909 0.0208

Rural cloudy 0.6197 0.0984 0.0100

Urban shade 0.4478 0.0790 0.0109

Urban sunny 0.6598 0.0752 0.0079

Urban cloudy 0.5071 0.0659 0.0068

Time of day 0.4424 0.0830 0.0115

Bloj et al. (2004), expts 1, 2 0.4526 0.1922 0.0533

Bloj et al. (2004), expt 3 0.3828 0.1580 0.0304

Schofield et al. (2011) 0.5281 0.2314 0.0546

Schofield et al. (2011), revised 0.3481 0.1989 0.0469

Boyaci et al. (2003) 0.0942 0.0369 0.0165

Boyaci et al. (2004) 0.6139 0.4886 0.1847

Boyaci et al. (2006), expt 1 0.0581 0.0302 0.0135

Boyaci et al. (2006), expt 2 0.0632 0.0034 0.0019

Table 1. Summary statistics of ICE lighting diffuseness
measurements. Notes: The ICE values describe the data shown
in Figure 3 except for ‘‘Schofield et al. (2011), revised,’’ which
describes data shown in Appendix B, Figure B1.
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al.’s (2004)—based on shape judgments instead of
lightness judgments—so their data provide an inde-
pendent test of observers’ assumptions about lighting.
Furthermore, Schofield et al.’s measurements are the
most direct indicators of the visual system’s prior on
diffuseness as their experiments were run in the dark
and their stimulus was simply a sine wave grating,
which is highly ambiguous with regard to lighting
conditions; Bloj et al.’s and Boyaci et al.’s (2003, 2004,
2006) scenes were more complex and contained cues to
lighting diffuseness that may have affected observers’
estimates of the lighting conditions. Appendix B shows
ICE values based on a refinement of Schofield et al.’s
lighting model. The revised ICE values are slightly
lower but still well within the range of natural lighting.

Boyaci et al. (2004, 2006) and Boyaci et al. (2003)

Boyaci et al. (2003, 2004, 2006) obtained rather
different results. The lighting in Boyaci et al.’s scenes
had ICE values that were more typical of natural
environments (except Boyaci et al.’s [2006] experiment
2), but their observers seem to have assumed that
lighting was highly diffuse and, in fact, much more
diffuse than almost any realistic lighting condition.3

However, there are good reasons to think that their
results are biased toward high estimates of diffuseness
(i.e., low ICE). Boyaci et al.’s observers’ lightness
constancy was poor: Their lightness matches were
partway between matching the luminance of image
patches on the computer screen and matching the
reflectance of the surface patches they depicted, with a
strong bias toward matching luminance (e.g., Boyaci et
al. [2003] figure 8). The ‘‘equivalent illuminant’’ model
that Boyaci et al. used to infer observers’ diffuseness
assumptions attributes such failures of lightness con-
stancy to assumptions of high diffuseness. However,
there are many reasons why lightness constancy can fail
besides observers assuming unrealistically high levels of
diffuseness. Unlike Bloj et al.’s (2004) scenes, Boyaci et
al.’s scenes were computer-generated, and if observers
did not see them as completely realistic, then they may
have been biased toward matching screen luminance
instead of matching the depicted surface reflectance.
Supporting this view, Lee and Brainard (2014) found
that a computer-generated replication of Gilchrist’s
(1977) paper-based lightness perception experiments led
to much weaker constancy. Furthermore, failures of
lightness constancy occur when observers judge light-
ness in scenes that have dark backgrounds, small
frameworks, and low articulation (Gilchrist, 2006, p.
276), which are all factors consistent with weak
lightness constancy in Boyaci et al.’s experiments. Thus,
Boyaci et al.’s estimates of observers’ assumptions
about diffuseness were probably biased, and we do not
see them as persuasive evidence against a diffuseness

prior that matches natural lighting. (Furthermore, it
was not Boyaci et al.’s goal to estimate observers’
diffuseness priors. Their main goal was to test the
equivalent illuminant model of lightness perception.)

To summarize, all five psychophysical studies
suggest that human observers have a prior on lighting
diffuseness, and Bloj et al.’s (2004) and Schofield et al.’s
(2011) results indicate that observers’ priors fall in the
same range as our measurements of the diffuseness of
real-world lighting. Observers showed a wide range of
assumptions about lighting diffuseness, but this is
consistent with studies of the light-from-above prior,
which have also found large individual differences in
assumed lighting directions (Adams, 2007).

Lighting engineers and designers use a diffuseness
measure called the vector/scalar ratio, which we
describe further in the General discussion. Interesting-
ly, human factors experiments have found that people
prefer vector/scalar ratios of 1.2 to 1.8 for lighting of
human faces (Cuttle, 2003, p. 88). This corresponds to
an ICE range of 0.39 to 0.58 and brackets both the
average ICE across all our natural light probes (blue
vertical line in Figure 3a) and the average ICE level that
the equivalent illuminant model attributes to Bloj et
al.’s (2004) and Schofield et al.’s (2011) observers (blue
vertical line in Figure 3b).

Our measurements show that the average of
observers’ diffuseness assumptions is in line with the
average diffuseness of natural lighting. This leaves open
the question of how strong observers’ diffuseness priors
are, i.e., how narrow the priors are as statistical
distributions, and whether they usually override dif-
fuseness cues in individual scenes. On the one hand, the
large individual differences in observers’ diffuseness
assumptions as well as the wide range of diffuseness in
natural lighting, suggest that the priors may be weak.
On the other hand, the fact that Bloj et al.’s (2004)
stimuli provided observers with cues to diffuseness and
yet observers’ diffuseness estimates consistently had
lower ICE than the actual lighting suggests that the
prior may be strong. Further work is needed to decide
this question.

Experiment 2

If human vision is tuned to the relatively high
diffuseness levels of natural lighting, then why do
human observers perform some tasks poorly under
diffuse lighting? For example, Pont and Koenderink
(2007) found that observers are much worse at
estimating the dominant lighting direction under
diffuse lighting than under direct lighting. Further-
more, it is well known that the image of a Lambertian
sphere rendered under completely diffuse lighting is
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simply a uniform disk and does not appear spherical at
all. One possibility suggested by the latter example is
that diffuse lighting makes some tasks intrinsically
harder in the sense that diffusely lit scenes simply
provide less task-relevant information to the observer. If
so, then poor performance under diffuse lighting might
be explained by the reduction in task-relevant informa-
tion and could be logically consistent with the idea that
human vision is optimized for relatively diffuse lighting.
To test this possibility, we designed a lighting direction–
discrimination task in which we measured the perfor-
mance of both human observers and an ideal observer
that makes optimal use of the stimulus information,
achieving the best possible performance (Geisler, 1989).
We measured lighting direction–discrimination thresh-
olds Da for human and ideal observers under five levels
of lighting diffuseness. We calculated human observers’
efficiency, the squared ratio of ideal and human
thresholds (Tanner & Birdsall, 1958):

g ¼ ðDaideal=DahumanÞ2 ð4Þ
Efficiency is 1.0 for a human observer who has the same
threshold as the ideal observer and less for an observer

who has a higher threshold. Efficiency corrects for
intrinsic task difficulty, so it gives an effective way of
comparing performance across diffuseness conditions.

Method

Participants

Five observers from York University participated.
Four naive observers participated for payment ($15/
hr), and the third author (RFM) was also an observer.
All observers reported normal or corrected-to-normal
vision.

Stimuli

The stimuli were OpenGL renderings of a hemi-
spherical polyhedron composed of 152 Lambertian
triangles (Figure 4). The polyhedron subtended 98 of
visual angle. The simulated lighting consisted of a
distant point source with direction ~p and maximum
illuminance EP and an ambient source with illuminance
EA. The luminance of each triangular patch with

Figure 4. Typical stimuli in the lighting direction–discrimination experiment illuminated from slant 608 and tilt 208 (i.e., lighting above

and to the right). The stimuli show the five diffuseness levels used in the experiment, namely ICE values of (a) 0.2, (b) 0.4, (c) 0.6, (d)

0.8, and (e) 1.0.
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reflectance q and surface normal ~n was calculated using
the Lambertian shading model:

l ¼ q
p

�
EPmaxð~p �~n; 0Þ þ EA

�
ð5Þ

Here � is the vector dot product. We report the values of
the lighting parameters ~p, EP, and EA below under
‘‘Procedure.’’

The reflectance of each triangle making up the
polyhedron was drawn independently for each new
stimulus from a truncated normal distribution
gtr(x,l,r) with mean 0.6 and standard deviation 0.2.
The distribution was truncated at two standard
deviations from the mean, so reflectance ranged from
0.2 to 1.0.

Stimuli were shown on a CRT monitor (Sony
Trinitron G520, 19-in., resolution 1600 · 1200, pixel
size 0.240 mm, frame rate 75 Hz) in a dark room at a
viewing distance of 57 cm. The color lookup table of
the computer’s video card linearized the relationship
between RGB values in video memory and luminance
on the monitor. A simulated surface patch with the
mean reflectance value (0.60) had luminance 58 cd/m2

when directly facing the virtual point light source, and
the stimuli were shown on a low-luminance back-
ground (0.3 cd/m2).

Procedure

We describe lighting directions in terms of slant and
tilt. Slant is the angle of the lighting direction relative to
a line perpendicular to the computer monitor, so a slant
of 08 is directly toward the viewer and 908 is in the plane
of the monitor. Tilt is the angle of the lighting direction
projected into the plane of the monitor, defined so that
08 is upward and positive angles are clockwise.

All five observers participated in 25 blocks of a slant-
discrimination task and 25 blocks of a tilt-discrimina-
tion task. The blocks were interleaved in random order
and spread over a few weeks.

In the slant-discrimination task, observers discrimi-
nated between two lighting directions with different
slants. We used simulated lighting with ICE values 0.2,
0.4, 0.6, 0.8, and 1.0. We held the maximum simulated
illuminance EP þ EA constant at 304 lux for all ICE
values. (This constraint, along with the ICE value and
Equation 3, determines EP and EA.) Each ICE
condition was shown in five blocks for a total of 25
blocks. Each block contained 150 trials and took
approximately 8 min.

Each trial began with a blank screen for 500 ms,
followed by the first stimulus for 500 ms, another blank
screen for 500 ms, the second stimulus for 500 ms, and,
finally, a blank screen until the observer responded.
One stimulus interval showed a hemisphere illuminated
from slant 608þDh and tilt 08, and the other showed a

hemisphere illuminated from slant 608� Dh and tilt 08.
The two slant directions were randomly assigned to the
two stimulus intervals. The observer pressed a key to
indicate which interval had a lighting direction closer to
the line of sight. Auditory feedback indicated whether
the response was correct. The next trial began
immediately. The task was not trivial because reflec-
tances were assigned randomly in each new stimulus, so
the luminance variations that provided information
about lighting direction were partly masked by
luminance variations caused by the random assign-
ments of reflectance. The perturbation angle Dh varied
over trials according to two interleaved staircases
converging on 71% and 79% correct performance
(Wetherill & Levitt, 1965). The blank screens and the
stimulus background were shown at the monitor’s
lowest luminance (0.3 cd/m2). For each block, we made
a maximum-likelihood fit of a Weibull psychometric
function to proportion correct as a function of the
angle between the two lighting directions, and we took
the angle corresponding to 75% correct performance as
the observer’s threshold. This gave five thresholds for
each observer in each ICE condition.

The tilt-discrimination task was the same as the slant
task except that the two stimulus intervals showed
polyhedral hemispheres illuminated from tilts 6Du
and slant 608, and observers pressed a key to indicate
which stimulus had lighting from a more clockwise
direction.4

Ideal observer analysis

We measured the performance of an ideal observer
on the slant- and tilt-discrimination tasks at the same
five diffuseness levels seen by human observers, and we
found the ideal observer’s 75% thresholds. In Appendix
C, we describe the ideal observer, and we provide
MATLAB code for our ideal observer calculations as
online supporting information.

Ideal observer analysis is a classical signal-detection
tool used in spatial vision to measure human efficiency
for pattern detection and discrimination. In recent
years, it has been extended and used to understand how
human observers interpret 2-D images that arise from
3-D scenes (e.g., Burge & Geisler, 2011; Ernst & Banks,
2002). In terms of the human perception of lighting,
shape, and reflectance from shading, such ideal
observers have helped researchers understand percep-
tual strategies for detecting lighting-direction changes
on a surface (Gerhard & Maloney, 2010) and shown
how observers combine scene lighting cues with prior
assumptions when estimating 3-D shape (Morgenstern
et al., 2011). Recent work has also used ideal observers
to measure how well human observers distinguish
between different illuminants within a scene (Lee &
Brainard, 2011). Here we apply the ideal observer
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paradigm in a novel way by incorporating a Lamber-
tian shading model, illustrating how ideal observers can
be used to understand perception of lighting and
potentially also shape and reflectance from shading.

Results and discussion

Figure 5a and b show thresholds as a function of
lighting diffuseness. Thresholds were much higher
under diffuse light in both tasks. In the slant task, the
average threshold (averaged across observers) was 5.8
times higher at ICE 0.2 (diffuse light) than at ICE 1.0
(direct light). In the tilt task, the average threshold was
4.1 times higher at ICE 0.2 than at ICE 1.0. These
findings are consistent with Pont and Koenderink’s
(2007) finding that observers are less accurate at
estimating the direction of diffuse lighting than of
direct lighting.

The black squares in the same panels show the ideal
observer’s thresholds, which follow a similar pattern to
human thresholds even though they are an order of
magnitude lower. This suggests that much of the
variation in human performance across diffuseness
levels is due to the intrinsic difficulty of the tasks.
Figure 5c and d show human efficiency as a function of
lighting diffuseness and support this interpretation.
Efficiency varied much less across ICE levels than
thresholds did. In the slant task, the average efficiency
was 1.9 times lower at ICE 0.2 (diffuse light) than at
ICE 1.0 (direct light), but there were large individual
differences with some observers more efficient with
diffuse light and some more efficient with direct light.
In the tilt task, the average efficiency was 1.3 times
higher at ICE 0.2 than at ICE 1.0. These differences
between ICE 0.2 and 1.0 are smaller than the
corresponding differences for thresholds. Thus much of
the difference in thresholds across diffuseness condi-
tions can be accounted for by intrinsic task difficulty,
and the fact that human performance is better with
directly illuminated scenes does not mean that vision is
optimized for direct illumination. To a large extent,
observers’ performance patterns simply reflect the fact
that directly illuminated scenes provide more task-
relevant information.

In the experiments with human observers, we drew
reflectances from a truncated normal distribution
instead of the full normal distribution for the pragmatic
reason that reflectances can only span the range [0,1]
whereas the normal distribution has tails that go to
infinity. In ideal observer simulations with the trun-
cated normal distribution, we found that almost all the
ideal observer’s responses were determined by the
truncated tails: On most trials, a few of the stimulus
luminances were so high or low that they could have
only been generated by one of the two possible lighting
directions because to be generated by the other lighting
direction would require reflectances outside the range
[0.2,1.0] that was spanned by the truncated normal
distribution. This seemed problematic to us as a
benchmark for human performance because it relies
almost entirely on knowledge of how quickly the outer
5% of the reflectance distribution goes to zero. For this
reason, we reran the ideal observer simulations using
the full normal distribution for reflectances even
though this meant that reflectances could take values
outside [0,1]. This change had little effect on the overall
pattern of efficiency. Efficiencies were about three times
higher. In the slant task, efficiency did not rise quite as
quickly as a function of ICE, and in the tilt task,
efficiency fell slightly faster as a function of ICE. These
findings give support to our conclusion that people
perform better in direct light (high ICE) largely because
direct lighting provides more task-relevant informa-
tion.

Figure 5. Thresholds and efficiency in the lighting direction

discrimination experiment. Each color corresponds to a

different observer. Each small colored data point shows a

threshold or efficiency from one 150-trial block, and each large

colored data point represents the average threshold or

efficiency for a single observer over five blocks. The black

squares in the top two panels show the ideal observer’s

thresholds. The black lines in the bottom two panels show

efficiency averaged over all observers at a single ICE level. All

observers viewed lighting conditions with the same five ICE

values, but we have jittered the data points horizontally so that

they do not overlap. (a) Thresholds in the slant task. (b)

Thresholds in the tilt task. (c) Efficiency in the slant task. (d)

Efficiency in the tilt task.
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We did not find observers to be consistently more
efficient under diffuseness levels typical of natural
lighting as we might have expected if they had a prior
for natural levels of diffuseness. However, our stimuli
showed many polygon faces covering a hemisphere of
orientations, and this provided a great deal of
information about the lighting direction and diffuse-
ness in the scene. We confirmed this using ideal
observer simulations: Ideal thresholds for lighting-
direction discrimination are on the order of just a few
degrees, and ideal thresholds for lighting-diffuseness
discrimination are on the order of 0.01 ICE units. Thus
any prior assumptions about diffuseness may have been
overridden by the very precise lighting information
conveyed by these stimuli. Similar experiments with less
informative stimuli, such as polyhedra with fewer faces,
may force observers to rely more heavily on their
lighting priors and so may reveal larger differences in
efficiency across diffuseness conditions. Another pos-
sibility, though, is that a direction discrimination task
may be a poor choice for probing observers’ assump-
tions about diffuseness, i.e., it may be that observers
use a direction-discrimination strategy that makes no
strong assumptions about lighting diffuseness. This
possibility remains to be explored. In any case, the
main point of Experiment 2 is to address a possible
objection to the idea that human observers have a prior
for high diffuseness, namely that observers often
perform worse under diffuse light. Experiment 2 shows
that (in at least one case), when observers perform
substantially worse under diffuse light, this is almost
entirely due to intrinsic task difficulty rather than to
observers using a strategy unsuited to diffuse lighting.

General discussion

Previous studies have also measured light probes in
order to examine the statistical structure of natural
lighting (Dror et al., 2004; Mury et al., 2007, 2009a,
2009b). The contribution of our measurements with the
multidirectional photometer has been to collect a large
number of low-resolution light probes in diverse
environments, to characterize the diffuseness of the
lighting in these scenes, and to relate the diffuseness of
natural lighting to psychophysical findings. Mury et al.
(2009a, 2009b) used a multidirectional photometer
similar to our own, but they examined a smaller
number of low-resolution light probes in a limited
range of environments and did not examine diffuseness.
Although these low-resolution light probes provide a
characterization of lighting useful for Lambertian
surfaces, a higher resolution is necessary to understand
the lighting relevant to more specular surfaces (such as
a mirror or apple peel). Natural light probes certainly

contain features at high spatial frequencies that are not
captured by our or Mury et al.’s (2009a, 2009b) devices.
With this in mind, Dror et al. used Debevec’s (1998)
and Teller et al.’s (2003) high-resolution light probes to
examine the statistics of natural lighting. Debevec
measured a small number of high-resolution light
probes, and Dror et al. used just nine light probes of
this type, so high-resolution light probes have not yet
been characterized as thoroughly as low-pass light
probes.

ICE and spherical harmonics

Just as planar images can be represented as sums of
sinusoids, light probes can be represented as sums of
spherical harmonics (e.g., Ramamoorthi & Hanrahan,
2001). ICE has a particularly simple relationship to the
spherical harmonic representation. Suppose we repre-
sent a light probe L(h,u) as a sum of orthonormal
spherical harmonics Ylm:

Lðh;/Þ ¼
X‘

l¼0

Xl
m¼�l

clmYlmðh;/Þ ð6Þ

Basri and Jacobs (2003) and Ramamoorthi and
Hanrahan (2001) show that the illuminance pattern
E(h,u) generated over a sphere by the light probe is

Eðh;/Þe�X2

l¼0

Xl
m¼�l

wlclmYlmðh;/Þ ð7Þ

Here clm are the spherical harmonic coefficients, and wl

are fixed weights assigned to each order of spherical
harmonics. The magnitudes of the weights wl represent
how important each order is in the mapping from
luminance to illuminance. For an exact result, the
expansion can be continued beyond order l¼ 2, but the
higher-order weights wl are small, so the higher-order
terms can usually be omitted. In Appendix E, we show
that substituting this expansion into Equation 1 gives
an expression for ICE in terms of spherical harmonic
coefficients:

k ¼
ð
X‘

l¼1

Xl
m¼�l
jwlclmj2Þ1=2

jw0c00j
ð8Þ

e� ð
X2

l¼1

Xl
m¼�l
jwlclmj2Þ1=2

jw0c00j
ð9Þ

Equation 9 shows that ICE is simply the rms energy in
the higher-order (l � 1) harmonics of the illuminance,
divided by rms energy in the zero-order component of
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the illuminance (which is equivalent to the absolute
value of the DC coefficient because there is just one
term).

ICE and diffuseness perception

ICE gives us a measure of diffuseness, but other
measures are possible too. Lighting engineers some-
times use the vector/scalar ratio as a measure of
diffuseness (Cuttle, 2003, p. 302). To find the ‘‘vector’’
in this ratio, we orient a disk in space so as to create the
greatest difference between the illuminance on the two
sides of the disk; the direction of the vector is then the
surface normal to the side with the greater illuminance,
and the magnitude of the vector is the illuminance
difference. The ‘‘scalar’’ in this ratio is the mean
illuminance over the surface of a sphere. The vector/
scalar ratio is defined to be the ratio of the vector
magnitude to the scalar. In Appendix F, we show that
for the special case of a PA light source, the vector/
scalar ratio is simply ICE multiplied by

ffiffiffiffiffiffiffiffiffiffi
48=5

p
.

We developed ICE because the vector/scalar ratio
assigns implausible diffuseness ratings in some cases.
For example, at a point halfway between two equally
bright point sources in an otherwise dark room, the
vector/scalar ratio is zero, just as it would be in an
environment with completely uniform diffuse lighting.

Nevertheless, any diffuseness measure that maps the
high-dimensional space of all possible illuminants onto
a one-dimensional scale will predict diffuseness meta-
mers. In the previous section, we showed that ICE can
be calculated from the squared amplitudes of the
spherical harmonic coefficients of a light probe, and
this means that varying the phase of the spherical
harmonics or shifting energy between harmonics within
a single order will have no effect on the ICE value. It is
an open question what diffuseness measure corre-
sponds best with human judgments of diffuseness.

Equation 8 suggests a possible modification to the
definition of ICE. The weights wl represent the
importance of the spherical harmonic orders l in the
mapping from luminance to illuminance, and they fall
off rapidly with l. Higher-order spherical harmonic
components of light probes are important in rendering
specular surfaces, though, so a modification of ICE in
which the weights wl fall off less rapidly may be useful
in predicting diffuseness judgments in scenes containing
non-matte surfaces.

ICE and the light-from-above prior

Morgenstern et al. (2011) showed that the light-
from-above prior is weak in the sense that it is easily
overridden by lighting direction cues, such as shading

and shadows. Does this mean that natural lighting
usually overrides the light-from-above prior so that this
well-known prior is actually unimportant in everyday
perception? Our diffuseness measurements provide an
answer to this question.

Morgenstern et al. (2011) created a lighting
condition (their ‘‘weak cue’’ condition) that is matched
to the light-from-above prior: Lighting conditions that
provide stronger lighting direction cues than this
matched condition override the prior, and lighting
conditions that provide weaker cues do not. The
dashed vertical line at the left of Figure 3a, labeled
‘‘Morgenstern et al. (2011),’’ shows the ICE of a
lighting condition that provides lighting-direction cues
as strong as those in Morgenstern et al.’s matched
lighting. (See Appendix D for details of this calcula-
tion.) Almost all our natural lighting measurements
had much higher ICEs than this, so they almost
certainly provided stronger lighting-direction cues.
The strength of lighting-direction cues also depends
on whether there are 3-D shapes in the scene that
generate shading and shadow cues, of course, but few
scenes are completely devoid of such shapes, and
Morgenstern et al.’s equivalent illuminant is so far
below the natural ICE distribution that observers will
rarely encounter light that approaches this level of
diffuseness. These observations suggest that the light-
from-above prior is unimportant in everyday percep-
tion. Nevertheless, lighting direction cues are stronger
in some parts of a scene than in others, and little is
known about how the visual system propagates
lighting direction information across a scene, so this
conclusion must be tentative (although see Ostrovsky,
Cavanagh, & Sinha, 2005, and Morgenstern et al.’s
figure 3c).

Final remarks

The Bayesian view of vision has been influential, but
it has often been difficult to compare the psychophys-
ically determined assumptions that guide perception
with independently measured statistical distributions
that characterize the real world. Fortunately, there has
been much work recently on characterizing perceptu-
ally important properties of real-world scenes (Attewell
& Baddeley, 2007; Dror et al., 2004; Geisler, 2008;
Mury et al., 2007, 2009a, 2009b; Potetz & Lee, 2003).
The case of natural lighting illustrates how we can
advance our understanding of the human visual system
by comparing its performance to properties of the
world whose ambiguous signals it must use to create
accurate and reliable percepts.

Keywords: lightness, prior, lighting statistics, diffuse-
ness, ideal observer
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Footnotes

1Brewster (1826) is often credited with discovering
the light-from-above prior. In fact, he mostly elabo-
rated Rittenhouse’s (1786) observation that we perceive
ambiguous shaded patterns as having a 3-D shape that
is consistent with whatever we believe about the
lighting direction in the scene being viewed. Neither
Rittenhouse nor Brewster suggested that we have a
default assumption that light comes from overhead.

2In Morgenstern (2011), we used the term Lamber-
tian contrast energy instead of ICE. The two terms are
synonymous.

3We believe that the four unusually high ICE values
from Boyaci et al. (2004) are artifacts. The wide range
of ICE values for Boyaci et al. (2004) in our Figure 3
reflects their table 2, where D ¼ EA/EP was highly
variable. Large differences in D do not always reflect
clear differences in behavior. Consider their observer
BH, who had D¼ 1.39 for light from the left and D ¼
0.12 for light from the right (their table 2). These
correspond to ICE values of 0.20 and 0.87, respectively.
Their Figure 11 shows observers’ chromaticity settings,
and BH’s settings were not drastically different for
lighting from the left and right. Similar comments
apply to RG. Furthermore, their figure 10 suggests that
MM’s chromaticity settings varied less with patch
orientation than MD’s, and yet their table 2 attributes
more direct illumination assumptions to MM. Thus,
their estimates of D may have had a large variance.

4In order to make the slant and tilt thresholds
comparable, we used the actual angle between the two
lighting directions when calculating the psychometric
function, not the nominal angles 2Dh and 2Du. For
example, at a slant of 108, the angle between tilt
directionsþ908 and�908 is just 208, not 1808.
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Appendix A: Calculating ICE from
previous studies

Bloj et al. (2004) show plots where diffuseness is
given by data points’ radial positions (their figures 5 to
10). The radial position is v¼ 1/(FAþ 1) (their equation
7). FA is the ratio of the illuminance EA from ambient
light to the illuminance ID sin(uD)/d

2 from a point
source of luminous intensity ID at distance d and
elevation uD: FA ¼ d2EA/ID sin(uD) (unnumbered
equation below their equation 6). The illuminance that
a surface would receive directly facing the illuminant is
EP¼ ID/d

2, so EA/EP¼ FA sin(uD). In Bloj et al., uD¼
308. We read m from their plots using data capture
software and calculated EA/EP¼ FA sin(308)¼ ((1/m)�
1) sin(308). Equation 3 converts EA/EP to ICE.

Boyaci et al. (2003) report the ratio p̂¼EP/(EPþEA)
that explains each observer’s behavior (their table 1). EA/
EP¼ (1/p̂)� 1, and Equation 3 converts EA/EP to ICE.

Boyaci et al. (2004) report ratios D ¼ EA/EP, and
Equation 3 converts this to ICE.

Boyaci et al. (2006) show plots on which the radial
coordinate is p̂¼EP/(EPþEA), which can be converted
to ICE the same way as Boyaci et al.’s (2003) p̂.

Schofield et al. (2011) fit their equation 5 to
observers’ shape judgments and reported diffuseness
parameters c in their table 1. The first term in their
equation 5, in parentheses following (1 � c), approx-
imates the luminance pattern of a sinusoidal surface
under a point source that would create a luminance of 1
� c on a surface facing it directly. The second term,
following c, approximates the luminance pattern of a
sinusoidal surface under an ambient source that creates
a maximum luminance of 0.5c. Thus EA/EP¼ 0.5c/(1�
c), and Equation 3 converts EA/EP to ICE.

Note that all these psychophysical studies described
observers’ assumptions about lighting in terms of the PA
model. Observers’ representations of scene lighting are
almost certainly more sophisticated than this, e.g.,
Doerschner, Boyaci, and Maloney (2007) show that
observers can discount at least two point light sources
when judging lightness. If the psychophysical studies
described in this appendix were reanalyzed to charac-
terize observers’ lighting assumptions using a more
sophisticated lighting model, then, presumably, the ICE
values of the assumptions would be somewhat different.
We doubt that this would change the ICE values
substantially, but, of course, this is an open question.
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Appendix B: Revised ICE values for
Schofield et al. (2011)

Andrew Schofield (personal communication, April 4,
2012) suggested that Equation B1 approximates the
luminance profile of a sinusoidal surface better than
Schofield et al.’s equation 5.

L’ð1� cÞ cos
p
2
� e

� �
� 0:12sinðxÞ

�
·cos

p
2
� /þ k

� �
sin

p
2
� e

� �
�cos p

2
� e

� �
·0:12sin2ðxÞ=2Þ

þc
�

0:5� 0:067ð1� cosðxÞÞ þ 0:041

·ð1þ cosð2xÞÞd � 0:99cosðxÞe
�

ðB1Þ

Here the variables are the same as in Schofield et al.’s
equation 5, and dxe is x rounded to the next higher
integer. Andrew Schofield provided us with the values

in Table B1 as an improvement on Schofield et al.’s
table 1. The values in Table B1 were obtained by
fitting Equation B1 (instead of Schofield et al.’s
equation 5) to Schofield et al.’s data. The ICE values
that we calculated from these revised data are shown
in Figure B1 and described with summary statistics in
Table B1.

Appendix C: Ideal observer for
lighting-direction discrimination

The ideal observer knows the polyhedron’s 152
normal vectors, the probability distribution of re-
flectances, and the two lighting directions on each
trial, ~p1 and ~p2. The stimulus is two sets of 152
luminances, Li ¼ flijg152

j¼1, i ¼ 1,2, corresponding to the
two stimulus intervals. The posterior probabilities
that the lighting directions are shown in order (~p1,~p2)
or (~p2,~p1) are

Pð~p1;~p2jL1;L2Þ ¼
PðL1;L2j~p1;~p2ÞPð~p1;~p2Þ

PðL1;L2Þ
ðC1Þ

Pð~p2;~p1jL1;L2Þ ¼
PðL1;L2j~p2;~p1ÞPð~p2;~p1Þ

PðL1;L2Þ
ðC2Þ

The ideal observer finds the probability ratio

Pð~p1;~p2jL1;L2Þ
Pð~p2;~p1jL1;L2Þ

ðC3Þ

c c

Observer 1 0.62 Observer 8 0.50

Observer 2 0.34 Observer 9 0.87

Observer 3 0.59 Observer 10 0.82

Observer 4 0.52 Observer 11 0.56

Observer 5 0.37 Observer 12 0.67

Observer 6 0.78 Observer 13 0.60

Observer 7 0.70 Observer 14 0.54

Table B1. Refined Schofield et al. (2011) ICE values.

Figure B1. Same as Figure 3 except for the data for Schofield et al. (2011). The revised ICE values from Schofield et al. are slightly

lower than the corresponding values in Figure 3 but still within the range of natural lighting.
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The two lighting orders are equally probable, so
Equation C3 is equivalent to the likelihood ratio

PðL1;L2j~p1;~p2Þ
PðL1;L2j~p2;~p1Þ

ðC4Þ

The luminances lij of different patches are indepen-
dent, so the numerator in Equation C4 is

PðL1;L2j~p1;~p2Þ ¼ PðL1j~p1ÞPðL2j~p2Þ ðC5Þ

¼
Y152

j¼1

Pðl1jj~p1Þ
Y152

j¼1

Pðl2jj~p2Þ ðC6Þ

Equation 5 shows that the distribution of each
luminance lij is a rescaling of the reflectance distri-
bution with constant of proportionality ckj ¼ (EP

max(~pk�~nj, 0) þ EA)/p. If stimulus interval i has
lighting direction ~pk, the probability density of lij is
c�1
kj gtr(c

�1
kj lij,l,r), where gtr(x,l,r) is the truncated

normal distribution of reflectances. Equation C6
becomes

¼
Y152

j¼1

c�1
1j gtrðc�1

1j l1j; l; rÞ
Y152

j¼1

c�1
2j gtrðc�1

2j l2j; l; rÞ

ðC7Þ
The likelihood of the observed luminances under the
opposite lighting order is

PðL1;L2j~p2;~p1Þ ¼
Y152

j¼1

c�1
2j gtrðc�1

2j l1j;l;rÞ

·
Y152

j¼1

c�1
1j gtrðc�1

1j l2j;l;rÞ ðC8Þ

The ideal observer calculates the likelihoods of the
luminances under the two lighting orders using
Equations C7 and C8 and chooses the order that
generates the higher likelihood. Using simulations, we
found the ideal observer’s 75% thresholds in the slant-
and tilt-discrimination tasks under the five diffuseness
levels viewed by human observers.

Appendix D: ICE of the light-from-
above prior

Morgenstern et al.’s (2011) ‘‘weak cue’’ lighting
condition was about as strong as the light-from-above
prior in terms of its influence on observers’ lighting
direction estimates.We cannot simply calculate the ICEof
this illuminant and compare it to natural lighting, though.
In their strong cue condition, the light was a point source

in the direction of the viewer and a stronger source slightly
forward of the frontoparallel plane. In their weak cue
condition, they switched the two sources so thatmost light
came from the viewing direction. Thus, lighting in the two
conditions had the same ICE, and the weak condition
provided weak cues only because the stronger source was
accidentally aligned with the viewing direction.

We circumvented this problem by finding the PA
illuminant that provides lighting cues that are equally
informative to an ideal observer as the weak cue
condition. First, we measured ideal performance at
discriminating between lighting directions 108 apart in
Morgenstern et al.’s (2011) weak cue scenes covered in
pixelwise white Gaussian noise. (This ideal observer is
simply a template matcher.) We averaged ideal
performance across 36 such tasks with lighting
directions 08 versus 108, 108 versus 208, etc. Second, we
measured ideal performance at the same task but with a
PA illuminant. The point source varied across the same
directions as in the first simulation. A point-to-ambient
ratio EA/EP¼ 5.54 gave the same ideal performance as
in the first task. Equation 3 converts this to an ICE of
0.056, shown by the dashed line in Figure 3.

Appendix E: ICE and spherical
harmonics

Equation 1 gives the definition of ICE:

k ¼ 1

4p

Z p

0

Z 2p

0

Eðh;/Þ � Ē

Ē

� �2

sinhd/dh

 !1=2

ðE1Þ

¼ 1

4pĒ
2

Z p

0

Z 2p

0

�
Eðh;/Þ � Ē

�2

sinhd/dh

� �1=2

ðE2Þ
E(h,u)� Ē is the illuminance pattern E(h,u) minus its
DC component. The spherical harmonics Ylm are
orthonormal, so the integral of this factor squared is
the sum of the squared amplitudes of its spherical
harmonic coefficients. The DC component of E(h,u)
� Ē is zero, so c00 ¼ 0. Thus,

¼
Z p

0

Z 2p

0

�
Eðh;/Þ � Ē

�2

sinhd/dh

¼
X‘

l�1

Xl
m¼�l
jwlclmj2 ðE3Þ
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Here we use wl and clm as defined in Equations 6 and
7.

The zero-order harmonic Y00 has a constant value of
(4p)�1/2, so the mean illuminance is

Ē ¼ ð4pÞ�1=2w0c00 ðE4Þ

Substituting Equations E3 and E4 into Equation E2
gives an expression for ICE in terms of the spherical
harmonic coefficients of the light probe:

k ¼
ð
X‘

l�1

Xl
m¼�l
jwlclmj2Þ1=2

jw0c00j
ðE5Þ

Appendix F: ICE and the vector/
scalar ratio for a PA light source

For the PA light source described by Equation 2, the
largest difference between the illuminance on two sides
of a disk is obtained when one side of the disk directly
faces the point light source, and then the difference is
(EP þ EA) � EA ¼ EP. The mean illuminance over the
surface of a sphere is EA from the ambient source and
EP/4 from the point source for a total of EA þ EP/4.
Thus the vector/scalar ratio is ((EA/EP)þ 0.25)�1.
Comparing this to Equation 3, we see that, for a PA
light source, the vector/scalar ratio is ICE timesffiffiffiffiffiffiffiffiffiffi

48=5
p

.
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