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Abstract

The multiple-SNP analysis has been studied by many researchers, in which the effects of multiple SNPs are simultaneously
estimated and tested in a multiple linear regression. The multiple-SNP association analysis usually has higher power and
lower false-positive rate for detecting causative SNP(s) than single marker analysis (SMA). Several methods have been
proposed to simultaneously estimate and test multiple SNP effects. In this research, a fast method called MEML (Mixed
model based Expectation-Maximization Lasso algorithm) was developed for simultaneously estimate of multiple SNP
effects. An improved Lasso prior was assigned to SNP effects which were estimated by searching the maximum joint
posterior mode. The residual polygenic effect was included in the model to absorb many tiny SNP effects, which is treated
as missing data in our EM algorithm. A series of simulation experiments were conducted to validate the proposed method,
and the results showed that compared with SMMA, the new method can dramatically decrease the false-positive rate. The
new method was also applied to the 50k SNP-panel dataset for genome-wide association study of milk production traits in
Chinese Holstein cattle. Totally, 39 significant SNPs and their nearby 25 genes were found. The number of significant SNPs is
remarkably fewer than that by SMMA which found 105 significant SNPs. Among 39 significant SNPs, 8 were also found by
SMMA and several well-known QTLs or genes were confirmed again; furthermore, we also got some positional candidate
gene with potential function of effecting milk production traits. These novel findings in our research should be valuable for
further investigation.
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Introduction

Single marker analysis (SMA) is the most practical way for

genome-wide association study (GWAS), in which each SNP is

tested at a time along the genome. Assuming SNP is in linkage

disequilibrium with a casual mutation or just a casual mutation,

the association of a functional gene can be tested with its nearby

SNP. Although the SMA provides a simple and fast way for

genome-wide QTL mapping, it neglects the effects of other genes

on the genome when only one SNP is tested. Because a single SNP

only explains a very small portion of genetic variation, SMA may

not be powerful for identifying weaker associations that may result

from small allelic effects, low minor allele frequencies (MAF), or

weak correlations with genotyped markers [1].

Compared with SMA, the multiple-SNP association study can

simultaneously consider multiple QTL effects, and thus can reduce

the estimate of error variance, and in turn increases the power to

detect weaker associations and decrease the false-positive rate for

QTL detection [1]. Many researchers have investigated the

multiple-SNP association method [2]. These methods included

multiple SNP effects in a linear model and used special model

selection or shrinkage estimate methods for estimating multiple

SNP effects simultaneously. Logsdon et al. [3] adapted the

Bayesian classification model of Zhang et al. [4] to a (VB) for a

genome-wide association study of human data. VB estimates the

posterior expectation by iterative calculation and avoid the time-

consuming Markov chain Monte Carlo (MCMC) algorithm, and

thus, it is suitable for large number of SNPs. Wu et al. used Lasso

penalized logistic regression for genome-wide association study of

multiple main-effect and interacting-effect SNPs in case-control

design [5]. A Bayesian Lasso technology was used by Li et al. for

shrinkage estimate of multiple-SNP effects for human body mass

index [6]. Before the Lasso estimation, a preconditional procedure

is preformed via a supervised principal component analysis to

reduce the effect of observational noise on model selection, which

could denonise the response variable so that variable selection

became more efficient.

The genome-wide association study of economic important

traits of domestic animals has been conducted by many researches

[7]. As we know, the variance of a quantitative trait locus (QTL)

for a complex trait is usually small, which may increase the

difficulties for detecting causative SNPs; furthermore, the tradi-

tional SMA usually generates many false-positive signals. Thus, it

is meaningful to apply the multiple-SNP association method for

genome-wide association study in domestic animals.
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In this research, we propose an Expectation-Maximization

algorithm [8] called MEML for simultaneously shrinkage estimate

of multiple marker effects, which employs an improved Lasso prior

for marker effect [9]. To account for many tiny-effect SNPs, the

random polygenic effect is also considered in model. A series of

simulation experiments are conducted to compare the proposed

method and single marker mixed model method (SMMA). We also

apply the proposed method to a real SNP-panel dataset from

Chinese Holstein dairy cattle, in which, five milk production traits

including milk yield, protein yield, fat yield, protein percentage

and fat percentage are measured [7]. To obtain the significant

threshold value, one thousand permutations are performed.

Results

The QTL-MAS XII workshop data
The simulated dataset includes six chromosomes with a total

length of 600 cM, on which.6,000 SNP markers are distributed

with average marker interval of 0.1 cM. The pedigree spans four

generations and includes 4,665 individuals with known genotypes

and phenotypic values. The detailed descriptions of the dataset can

be found from its official website (http://www.

computationalgenetics.se/QTLMAS08/QTLMAS/DATA.html)

[10]. Although our method can simultaneously estimate all marker

effects, it is too time consuming to obtain the significant threshold

value by permutation test. Hence, we used a two-stage procedure

for multiple-SNP modeling. We first selected 500 SNPs with the

lowest p values in single-marker mixed-model analysis (SMMA),

and then simultaneously analyzed these SNPs using our multiple-

SNP method. It is a similar strategy adapted by [6].

Figure 1a and b show the profiles of the true heritabilities and

the estimated heritabilities for the 500 SNPs with lowest P-values

in SMMA. Many SNP heritabilities (effects) were shrunk to zero

except several large-effect SNPs. Eleven SNPs were found to be

significant out of the 15 simulated major-effect QTLs, and except

several SNPs closely linked with the major-effect QTLs only 3 false

-positive signals are showed.

Figure 1c shows the profile of 2log10 p values from SMMA,

where the threshold was determined with 1,000 permutations. It

can be seen that almost all the simulated QTL were detected, but

hundreds of false-positive signals were shown.

Replicated simulation experiments
To further validate the efficiency of the proposed method, we

employed replicated simulation experiments to test the true-

positive rate (power) and the false-positive rate. A population

included two generations each had 2,000 individuals were

simulated. The first generation included 50 full-sib populations

each with 40 individuals; and the second generation included 20

full-sib populations each with 100 individuals. The genome and

QTL (position and effect) were simulated according to QTL-MAS

XII dataset. We totally simulated 6 chromosomes each contained

1,000 evenly spaced SNP markers with total length of 1M. The

markers in disequilibrium were created using the gene-dropping

method [11]. Forty-tree markers closed to the QTL position in

QTLMAS dataset were chosen to serve as QTL; the QTL effects

were the same as those in QTLMAS dataset. The population

mean was set as 1; and the residual error followed normal

distribution with mean zero and variance s2
e~3. The phenotypic

value for each individual was simulated by summing the

population mean, QTL effects and residual error. One hundred

replicated simulation experiments were conducted to compare the

power and false positive between SMMA and MEML. A marker

at the true QTL positions or nearby the true QTL positions with

61 locus was defined as QTL locus; and other markers were

treated as non-QTL locus. The total power for all QTL was

24.8%, which was summarized with the total number of positive

QTL (1,068) divided by the total number of simulated QTL for

100 replications (43*100); and the false positive rate was 0.011%,

which was summarized with the total number of false-positive

QTL (63) divided by the total number of non-QTL locus, (6,000-

43*3)*100, in 100 replications with MEML. Using the same way,

the power and the false positive rate of SMMA were summarized

and they were 35.9% (1,544 significant SNP) and 2.66% (15,638

false positive SNPs), respectively. It is noted that the power of both

methods were low, since only 15 out of 43 simulated QTL had

major effect. The results showed that SMMA had higher power

than MEML; however, the false positive number of SMMA was

much higher than MEML. It seemed that our method can provide

a more conservative way for QTL detection.

Chinese Holstein cattle data
The Chinese Holstein cattle population contained 14 sires and

their 2,093 daughters, and the numbers of daughters of the 14 sires

ranged from 83 to 358. The estimated breeding values (EBVs) of

five milk production traits, including milk yield (MY), fat yield

(FY), protein yield (PY), fat percentage (FP), and protein

percentage (PP) were used as phenotypes in this study Each

individual was genotyped for 54,001 SNP markers using the

Illumina BovineSNP50 BeadChip (see [7] for detailed data

description). The quality control procedure excluded individuals

with .10% missing genotypes and SNPs with (1) call rate less than

90%, or (2) the minor allele frequency (MAF) less than 3%, or (3)

the p-value of the Hardy-Weinberg Equilibrium (HWE) test less

than 1026. Eventually, 40,829 SNPs remained for the subsequent

analyses. We selected 500 SNPs with the lowest p-values in

SMMA, and then simultaneously analyzed them using the

proposed method.

Figure 2 shows the estimated heritabilities for the 500 SNP

passing the first filter of SMMA with MEML. The threshold values

for MY, FY, PY, FP and PP were 6.7761023, 6.7761023,

9.6761023, 6.6761023 and 6.6661023, respectively. Compared

with the results of SMMA which found dozens of significant SNPs

in some small regions,,only 1, 2 or several representative SNPs

which has high possibility to harbor functional mutation(s) in these

regions were found with MEML. In total, 39 SNPs were detected

to be significantly associated with milk production traits; however,

overall 105 significant SNPs were found with SMMA [7]. These

results also reflected that our method was more conservative than

SMMA. This conclusion was consisted with the previous

simulation studies.

Table 1 shows the significant SNPs and 8 of them were also

detected with SMMA. The Biomar website (http://www.biomart.

org/) was used to search the SNP nearby (6200 kb) these genes.

The SNP ARS-BFGL-NGS-4939 which is located within DGAT1
(diacylglycerol O-acyltransferase 1) were found to have very large

effects on all five milk production traits. The function of other

genes associated each milk yield trait will be discussed later.

Discussion

In this research, a new EM algorithm was developed to

simultaneously estimate multiple-SNP effects, which uses an

improved lasso prior for marker effects. Usually, the priors of

coefficient is very important in multiple linear regression, which

may bring special results for shrinking coefficient effects [12]. Most

of methods assign the double-exponential prior and Jeffery prior to

regression coefficient. We have proposed an improved double-
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exponential prior for shrinkage estimation of regression coeffi-

cients in our previous work [9] that assigns an independent

double-exponential prior to model effect and further assigns prior

Gamma(0,0) (the BIDE method) or Gamma(0.5,0) (the EMAIL

method) to hyperparameter l2
j =2. BIDE is implemented via

Bayesian MCMC, whereas EMAIL is via EM algorithm. Although

MEML is also implemented via EM algorithm, it is different from

EMAIL, since (1) it assigns a Gamma prior Gamma(a, b) with a

and b being very small numbers to the hyper-parameter l2
j =2; (2) it

treats marker variance as missing data and estimates other

parameters by searching their maximum posterior mode, while

EMAIL adopts Xu’s idea who treats the effects of regression

coefficient as missing data [13]. The prior Gamma(a,b) with a and

b being small numbers are the key of MEML. Although the prior

Gamma(0,0) performed well in BIDE, it will not be meaningful in

MEML, which can be seen from Equation (12). We also varied a
and b to some other small numbers (smaller than 1023), but no

obvious differences were shown.

Figure 1. The profiles of the true SNP parameters (the top panel), the estimated 500 SNP heritabilities with MEML (the middle
panel) and 2log10

P with SMMA (the bottom panel), respectively. The x-axis indicates the SNP numbers. In the top panel, the true
heritabilities of small-effect SNPs are presented with diamonds on the top of their needles but not for large-effect SNPs. The dotted horizontal lines in
the middle and the bottom panels present the thresholds with 1,000 permutations from the multiple-SNP and SMMA methods, respectively.
doi:10.1371/journal.pone.0099544.g001
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Yi and Banerjee proposed a hierarchical generalized linear

model for multiple QTL mapping [14]. They assigned the

variance of model effect t2
j an independent Jeffery prior

p t2
j

� �
*1
.
t2

j , and estimated model effects by finding the

maximum posterior mode. It involves the approximation of the

generalized likelihood with the weighted normal likelihood in

order to analyze binary trait. We modified their method by

directly using normal likelihood for the continuous trait and

applied their method to our simulated and real dataset. It was

found that the results were almost the same as those in MEML

(results not shown), which further confirmed the efficiency of

MEML.

Following [14], we selected a subset of SNPs with the lowest p-

values in single-marker analysis for the multiple-SNP analysis.

Compared with full-marker analysis (estimate all markers simul-

taneously), this strategy can save a lot of computational time, so

one can use permutation test to ascertain the threshold value to

declare the significance of a SNP. In both simulation study and

real-data analysis, we selected 500 SNP markers for the analysis,

and it performed well. We also varied the selected SNP numbers

from 200 to 2000, and no clear differences were found (data not

shown), which reflects MEML was not very sensitive to the

selected SNP numbers.

In our results from the real data analysis, the SNP ARS-BFGL-

NGS-4939 which is located within DGAT1 on chromosome 14

had the largest effects for all milk production traits. It has been

concluded by many researches that a causative mutation in

DGAT1 affects variation in milk production traits. On chromo-

some 20, a mutation in GHR (growth hormone receptor) has been

identified to have a large effect on milk yield and composition. The

SNP ARS-BFGL-NGS-118998 which is exactly located in this

gene was detected to have large effect on fat percentage in our

results, but we did not detect this SNP for milk yield. Moreover,

Cohen-Zindel et al. identified mutations in the ABCG2 (ATP-

binding cassette sub-family G member 2) gene on chromosome 6

which have an effect on protein percentage [15]. In our results,

two SNPs, Hapmap24324-BTC-062449 and BTA-121739-no-rs,

were detected for protein percentage and they are very close to the

ABCG2 gene in a distance less than 100 kb. Compared with our

previous research by SMMA [7], these functional genes above

were all successfully confirmed again by our new method with

more targeted mapping, which again validated the new method.

Besides those genes which already investigated in previous

studies, in our result, we also detected other potential functional

candidate genes nearby these associated SNPs. SNP ARS-BFGL-

NGS-11319 associated with milk yield, is located nearby the

SLC40A1 (solute carrier family 40 member 1) gene on chromo-

some 2. SLC40A1 encodes ferroportin which is an iron

transporter involved in iron export from cell, and it is essential

for iron homeostasis. Moreover, Duan et al. found that the

polymorphisms of this gene as well as TRF2 (transferrin receptor

2) were significantly associated with beef iron concentration [16].

It is possible that the polymorphisms of SLC40A1 have an effect

on iron homeostasis of bovine breast cells, which leads to a

potential relationship with milk yield. SNP ARS-BFGL-NGS-

39539 located on chromosome 23 and associated with protein

yield is close to gene JARID2 (jumonji, AT rich interactive

domain 2) that encodes protein Jumonji (JMJ). JMJ also interacts

physically with a transcriptional activator, ZNF496 (zinc finger

protein 496), which inhibits the transcriptional repression of JMJ,

which plays important roles in embryonic development. Golik et al

found that a SNP in bovine ZNF496 gene displayed significant

population-wide linkage disequilibrium with milk protein percent-

age in the Israeli Holstein population [17], so the interaction

between ZNF496 and JMJ as well as our results indicate that

JARID2 also has value to be investigated in further research. SNP

ARS-BFGL-NGS-111443 associated with both fat percentage and

protein percentage is located between the DERA (deoxyribose-

phosphate aldolase) gene and the SLC15A5 (solute carrier family

15, member 5) gene. SLC15A5 is also a member of the solute

carrier family like SLC40A1 mentioned above, thus it of value to

investigated whether it is a causal gene for milk composition.

We have presented the MEML method for multiple-SNP

analysis, and it was found to be efficient for genome-wide

association study both in simulation experiments and real-data

analysis. The key feature of it is that it can dramatically reduce the

false-positive SNPs number. Thus, in practice, one can first

roughly select many suspicious markers using SMMA and then

further confirm them using MEML.

Materials and Methods

Multiple-SNP mixed linear model
Consider n individuals with p SNP markers being investigated,

the multiple-SNP model can be expressed as

yi~mzXibzgizei ð1Þ

where yi is the phenotype of the ith individual; m is the population

mean; Xi~(xi1,:::,xip) where xij is the genotype of the jth SNP

marker of the ith individual, which is assigned 1, 0 and 21 for

genotype AA, Aa and aa, respectively. b~(b1,:::,bp)T , where bj is

the additive effect of the jth SNP marker; gi is the residual

polygenic effect for the ith individual, and ei is the residual error,

which follows a normal distribution, ei*N 0,s2
e

� �
.

Prior specifications
The population mean follows a uniform prior, p(m)!1. In

Baysian Lasso, the regression coefficient bj is assigned a double-

exponential prior [12],

p(bj)~
l

2
e
{l bj

�� ��
, ð2Þ

where l is the hyperparameter. We have modified the Lasso prior

by assigning an independent double-exponential prior to each

marker effect [9], i.e.,

p(bj)~
lj

2
e
{lj bj

�� ��
, ð3Þ

which can be factorized into two-level priors: at the first level, bj

follows a normal distribution,

Figure 2. The profiles of the estimated heritabilities of 500 SNPs for five milk production traits against on the selected SNPs. The
panels from the top to the bottom are the estimated heritiabilities for milk yield, fat yield, protein yield, fat percentage and protein percentage traits,
respectively. The x-axis indicates the chromosome number (chromosome are divided by vertical dotted lines). The dotted horizontal line presents the
threshold from 1,000 permutations.
doi:10.1371/journal.pone.0099544.g002
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Table 1. The significant SNPs and their nearby genes in the analysis of Chinese dairy cattle data.

Trait SNP Chr Position (bp) Heritability Nearest Gene

Gene Distance(bp)

MY ARS-BFGL-NGS-4939a 14 1801116 6.26E-02 DGAT1 Within

Hapmap47777-BTA-91000 X 1.41E+08 9.81E-03 LOC785455 81004

ARS-BFGL-NGS-49079a 9 6574398 9.05E-03 NA NA

ARS-BFGL-NGS-103091 5 74518588 8.14E-03 RBFOX2 45586

Hapmap60955-rs29022431 23 21292766 7.83E-03 NA NA

ARS-BFGL-NGS-11319 2 6763227 7.69E-03 SLC40A1 22898

Hapmap48369-BTA-50306 1 7627111 7.39E-03 NA NA

FY ARS-BFGL-NGS-4939a 14 1801116 2.63E-02 DGAT1 Within

Hapmap42263-BTA-60093 25 35342491 1.18E-02 MIR2388 42285

Hapmap40191-BTA-73919a 5 71978791 7.54E-03 SYN3 52073

PY ARS-BFGL-BAC-6525 10 92127288 1.94E-02 NRXN3 Within

ARS-BFGL-NGS-115291 4 4090824 1.70E-02 NA NA

ARS-BFGL-NGS-39539 23 41457147 1.05E-02 JARID2 154416

ARS-BFGL-NGS-4939a 14 1801116 1.02E-02 DGAT1 Within

ARS-BFGL-NGS-110497 26 45870133 9.98E-03 ADAM12 Within

ARS-BFGL-NGS-29581 4 1.14E+08 9.66E-03 KCNH2 Within

FP ARS-BFGL-NGS-4939a 14 1801116 0.179094 DGAT1 Within

Hapmap50271-BTA-17442 5 81903458 2.68E-02 CCDC91 Within

ARS-BFGL-NGS-111443 5 94269370 1.21E-02 DERA 46923

Hapmap51303-BTA-74377a 5 83790390 1.18E-02 ITPR2 Within

ARS-BFGL-NGS-118998 20 32030332 1.03E-02 GHR Within

Hapmap39717-BTA-112973 2 26781358 8.62E-03 KBTBD10 Within

BTB-00231742 5 77095345 8.15E-03 NA NA

BTB-00285653 8 30036807 7.72E-03 NFIB Within

BTB-00777571 20 34017024 6.96E-03 NA NA

ARS-BFGL-NGS-113507 11 98407974 6.38E-03 PTRH1 Within

PP ARS-BFGL-NGS-4939a 14 1801116 3.52E-02 DGAT1 Within

BTA-39609-no-rs 0 0 1.63E-02 — —

Hapmap48524-BTA-92140a 5 75684520 1.58E-02 NCF4 24751

BTA-50402-no-rsa 20 34451383 1.50E-02 NA NA

BTB-01844123 X 307557 1.30E-02 NA NA

BTA-121739-no-rsa 6 38063313 1.17E-02 PKD2 Within

Hapmap54188-rs29022489 6 75017253 1.11E-02 NA NA

Hapmap24324-BTC-062449a 6 37631640 1.07E-02 PIGY 45459

ARS-BFGL-NGS-111443 5 94269370 1.04E-02 DERA 46923

ARS-BFGL-NGS-107037 10 46486647 9.55E-03 USP3 Within

ARS-BFGL-NGS-61452 4 75250982 9.15E-03 HUS1 91623

ARS-BFGL-NGS-53343 6 29709875 8.08E-03 NA NA

ARS-BFGL-NGS-117896 28 35874524 7.50E-03 MAT1A Within

Hapmap42216-BTA-45665 19 45934555 7.45E-03 GOSR2 Within

Hapmap50621-BTA-21320 6 64425164 7.31E-03 NA NA

ARS-BFGL-NGS-53398 X 21953655 7.30E-03 MAGEA11 Within

Hapmap38455-BTA-100999 9 76346736 6.94E-03 OLIG3 63196

BTA-48480-no-rs 2 95119968 6.70E-03 ADAM23 25151

aSNP are also detected by SMMA; NA: there is no assigned gene around the SNP in a distance of 200 kb; —: the SNPs with unknown positions.
doi:10.1371/journal.pone.0099544.t001
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bj t
2
j

��� *N 0,t2
j

� �
; ð4Þ

and at the second level, t2
j follows an exponential distribution,

p(t2
j lij )~Expon t2

j

l2
i

2

����
 !

~
l2

i

2
e
{l2

i
t2
j
=2

, ð5Þ

where lj is the hyperparameter and l2
j =2 is assigned a conjugate

Gamma prior, Gamma(a,b) with a and b being very small

numbers, and here both a and b are taken as 1026. The special

prior was to have special characters in that it could estimate zero-

effect marker effect very close to zero [9]. The prior of the residual

variance s2 follows non-informative scale-invariant prior

p(s2
e)!1=s2

e ; the prior of the residual polygenic effect follows

normal distribution g s2
g*N 0,As2

g

� ���� , where s2
g is the residual

polygenic variance and A is the additive genetic relationship

matrix, which can be inferred from pedigree.

EM algorithm

Let L~ l2
j

n op

j~1
, S~ t2

j

n op

j~1
, and h~ s2

e ,m,L,S
� �

; then the

likelihood can be expressed as

L(h b,yj )~p(y b,s2
e ,m

�� )p(b Sj )p(SjL)p(L)p(g s2
g

��� )

!(s2
e ){n=2 exp {

1
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e
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j
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:(s2
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1

2s2
g

g’A{1g

" #
:

ð6Þ

E-step. Since the polygenic effect g cannot be derived

explicitly, it is treated as missing data here and substituted with

its posterior expectation

E g y,hjð Þ~ Z’ZzA{1 s2
e

s2
g

 !{1

Z’ y{m{Xbð Þ: ð7Þ

The posterior variance of g is

Var g y,hjð Þ~ Z’ZzA{1 s2
e

s2
g

 !{1

s2
e : ð8Þ

M-step. The M-step maximizes the logarithm of the likeli-

hood (6) log L(h b,yj )ð Þ with respect to m, t2
j , l2

j , s2
e and s2

g to

obtain the their next estimates,

m~1’n(y{
Xp

j~1
Xjbj)=n ð9Þ

t2
j ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4l2

j b2
j

q
{1

2l2
j

, ð10Þ

l2
j ~

a

t2
j zb

, ð11Þ

s2
e~

1

n
y{m{

Xp

j~1
Xjbj

� �’
y{m{

Xp

j~1
Xjbj{g

� �

z
1

n
tr A{1Vg

� �
,

ð12Þ

and

s2
g~

1

n
g’A{1gztr(A{1)Vg


 �
, ð13Þ

where Vg~Var g y,hjð Þ.
Given the initial values for h, the EM algorithm proceeds with

repeatedly updating the E-step equations (7) and (8) and the M-

step equations (9)–(13) until reaching convergence.

Significance test
The variance of the jth SNP can be expressed as

s2
j ~2pj(1{pj)b

2
j , where pj is the allele frequency of the jth

SNP. The heritability of the SNP can be written as

h2
j ~s2

j =(
Pp

j~1 s2
j zs2

gzs2
e). The threshold value for declaring

the significance of the SNP is determined from the empirical

distribution of h2
j derived by 1,000 permutations.
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