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          Palynologists use the morphological characteristics of pollen 
and spore grains to identify, classify, count, compare, and log 
plant diversity within geologic samples from different geo-
graphical locations and ages. These data are used to address 
research questions in areas such as biostratigraphy, paleoecol-
ogy, biodiversity, climate change, taxonomy, and evolution, and 
are even increasingly employed in forensics. The potential sam-
ple size represented by a fossil pollen sample can be very large, 
because hundreds to thousands of grains can be preserved in a 
drop of pollen residue extracted from a geological sample (rock 
or sediment); however, the classifi cation of samples is still pri-
marily qualitative and manual, based on the visual identifi cation 
of key morphological features, and requires signifi cant experi-
ence and expertise ( Faegri et al., 1989 ;  Traverse, 2007 ). 

 This manual, intuitive approach to classifi cation (sensu 
 Birks and Peglar, 1980 ) potentially results in discrepancies 

in taxonomic identifi cations due to individual differences in 
analysts’ interpretation of morphological details, familiarity 
or experience with a given suite of taxa, fatigue, and preser-
vation of fossil pollen material. Morphological similarity 
among related taxa may also decrease the taxonomic preci-
sion of identifi cations, due to the inability to observe or to 
defi ne morphological differences ( Mander and Punyasena, 
2014 ). Moreover, the intrinsic morphological variability found 
within pollen grains from even the same species makes it 
diffi cult to assess the morphological boundaries of any given 
fossil species. There are few published studies of how much 
morphological difference can be consistently recognized 
among analysts (e.g.,  Mander et al., 2014 ). As a result, the rec-
ognition and formal naming of new morphotypes rely on 
a certain degree of consensus from a community of experts. 
However, with advanced imaging technology, digital micro-
scopic pollen images are being generated with increasing speed 
and volume, producing opportunities to improve upon the tradi-
tional manual identifi cation and sorting of grains and to pro-
duce higher throughput approaches to pollen analysis. 

 There are several public databases and software applica-
tions that have been developed to assist palynologists in 
their identifi cations. For example,  Bush and Weng (2007)  
designed a downloadable neotropical pollen database as a 
freeware for neotropical palynology researchers. It provides 
multiple-access keys to query the database with fl exibility 
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  •  Premise of the study:  Digital microscopic pollen images are being generated with increasing speed and volume, producing op-
portunities to develop new computational methods that increase the consistency and effi ciency of pollen analysis and provide 
the palynological community a computational framework for information sharing and knowledge transfer. 

 •  Methods:  Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of 
neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar im-
ages based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic 
annotation and image retrieval by trait semantics and visual content. 

 •  Results:  Mathematical models that map visual features to trait semantics can be used to annotate images with morphology se-
mantics and to search image databases with improved reliability and productivity. Images can also be searched by visual con-
tent, providing users with customized emphases on traits such as color, shape, and texture. 

 •  Discussion    :  Content- and semantic-based image searches provide a powerful computational platform for pollen and spore 
identifi cation. The infrastructure outlined provides a framework for building a community-wide palynological resource, 
streamlining the process of manual identifi cation, analysis, and species discovery. 

   Key words:  content-based image retrieval; database; Miocene; pollen morphology; semantics. 
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gested that computer performance in pollen identifi cation 
and classifi cation was comparable to human experts, but 
with better consistency. This work can be further extended to 
image search using extracted visual features of identifi ed 
grains in both modern and extinct species. Developing a 
broader platform for capturing and sharing expert knowl-
edge builds on previous machine learning and image database 
efforts and provides a pathway for making these tools widely 
accessible. 

 This study is the result of a long-term collaboration among 
palynologists, computer scientists, and informaticians in an 
attempt to develop computational and informatic solutions 
to streamline the process of palynology analysis for effi cient 
and reliable data management, analysis, and retrieval. To 
our knowledge, our work is the fi rst attempt to develop an 
intelligent search engine that utilizes image-based morpho-
logical content for grain image retrievals in palynology. We 
report the following approaches. 

 First, we applied and extended a suite of image analysis 
algorithms and toolkits to automate the process of detecting 
grains from artifacts (debris and organic matter other than 
pollen and spores, common to fossil palynological slides) 
and calculated morphological features based on shape and 
texture. Next, association rule mining ( Agrawal et al., 1993 ) 
was integrated into our methods to assist experts in trait an-
notation based on extracted features and a continuously up-
dated expert knowledge base. We then used information 
retrieval methods ( Baeza-Yates and Ribeiro-Neto, 1999 ) to 
provide fast and accurate data management and image re-
trieval. The morphological features identifi ed by our auto-
mated analysis were used to determine image semantics 
(abstract presentations of morphology) that formed the basis of 
novel tools for automatic semantic annotation, semantic-based 

and tolerance in missing data attributes. The collection contains 
pollen images, primarily taken with transmitted light micro-
scopes, from more than 1000 neotropical species. Morpho-
logical features, such as pollen shape, pore shape, reticulum 
shape, and pollen size, can be used to query the database. A 
second pollen image database, PalDat (http://www.paldat.
org), has a similar query structure and Web-based interface 
and includes both transmitted light images and scanning 
electron microscopy (SEM) images from ~2200 modern species 
and 32 fossil ones. Neotoma Paleoecology Data base (http://
www.neotomadb.org) is another example that provides palyno-
logical, paleontological, geological, and geographic data for 
Pliocene through Holocene sites based on information submit-
ted by collaborating individuals from multiple institutions. 
Its main purpose is to map spatiotemporal taxa distribution 
( Grimm et al., 2013 ). 

 While these image databases and software applications 
serve as valuable resources for pollen identifi cation, having 
to manually label and compare morphology is both time-
consuming and subject to the idiosyncrasies of individual 
analysts. Automated visual content extraction allows analy-
ses to be kept more consistent across multiple sites, and is 
especially useful when there is an unknown sample with new 
morphotypes that needs to be compared against existing col-
lections. Previous applications of machine-based classifi ca-
tions for pollen identifi cation have focused on the accuracy 
of the end classifi cation ( Holt and Bennett, 2014 ) and generally 
do not provide a mechanism for establishing the community-
level consensus of identifi cations that is required when work-
ing with extinct species. For example, Classifynder  , developed 
at Massey University, is a stand-alone system that provides 
a framework for image acquisition and classifi cation of mod-
ern pollen materials ( Holt et al., 2011 ). Its experiments sug-

  TABLE  1. Data set of pollen and spore samples from neotropical Miocene. a  

ID b Taxon Source No. of grains No. of images (mean)

 Pollens 
1014  Clavainaperturites microclavatus  Hoorn, 1994 6 24 (4.0)
148  Clavainaperturites clavatus  Van der Hammen and Wymstra, 1964 7 22 (3.1)
246  Echiperiporites estelae  Germeraad et al., 1968 5 18 (3.6)
1430  Echiperiporites scabrannulatus  Silva-Caminha et al., 2010 7 24 (3.4)
365  Grimsdalea magnaclavata  Germeraad et al., 1968 5 21 (4.2)
254  Malvacipolloides maristellae  Müller et al., 1987 ;  Silva-Caminha et al., 2010 7 25 (3.6)
450  Mauritiidites franciscoi  var.  franciscoi  Van der Hammen, 1956 ;  Van Hoeken-Klinkenberg, 1964 9 46 (5.1)
451  Mauritiidites franciscoi  var.  minutus  Van der Hammen and Garcia, 1966 7 34 (4.9)
511  Perisyncolporites pokornyi  Germeraad et al., 1968 7 18 (2.6)
552  Proxapertites psilatus  Sarmiento, 1992 7 29 (4.1)
570  Psilamonocolpites medius  Van der Hammen, 1956 ;  Van der Hammen and Garcia, 1966 7 35 (5.0)
571  Psilaperiporites minimus  Regali et al., 1974 5 19 (3.8)
688  Retitrescolpites? irregularis  Van der Hammen and Wymstra, 1964 ;  Jaramillo and Dilcher, 2001 9 32 (3.6)
722  Retitricolpites simplex  Gonzalez Guzman, 1967 7 24 (3.4)
767  Rhoipites guianensis  Van der Hammen and Wymstra, 1964 ;  Jaramillo and Dilcher, 2001 7 26 (3.7)

 Spores 
43  Echinatisporis muelleri  Regali et al., 1974 ;  Silva-Caminha et al., 2010 7 28 (4.0)
45  Magnastriatites grandiosus  Kedves and Sole de Porta, 1963 ;  Dueñas, 1980 7 24 (3.4)
282  Kuylisporites waterbolkii  Belsky et al., 1965 7 25 (3.6)
44  Crassoretitriletes vanraadshooveni  Germeraad et al., 1968 6 28 (4.7)
46  Polypodiisporites usmensis  Van der Hammen, 1956 ;  Khan and Martin, 1972 5 23 (4.6)

 a  This study collected 397 images of 102 grains from 15 pollen taxa and 128 images of 32 grains from fi ve spore taxa. On average, there were 6.8 grains 
imaged per pollen taxon and 6.4 grains per spore taxon. There are 3.9 images per pollen grain and 4.1 images per spore grain.

 b  Taxon IDs were adopted from the Smithsonian Tropical Research Institute palynology database ( Jaramillo and Rueda, 2013 ).
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to roughly segment a centrally placed object from a fi eld of view ( Pham 
et al., 2000 ;  Gonzalez and Woods, 2002 ;  Armato and MacMahon, 2003 ; 
 Russ, 2006 ). We used several of these methods to extract grains from the 
image background. More refi ned methods were then conducted to extract 
morphological features. We detail the process below. 

 The cropped images of individual grains are RGB color images. How-
ever, in computational analysis and machine vision research, this color sys-
tem is not always the best confi guration to represent how human observers 
perceive content and pattern. Therefore, we converted and separated the 
original RGB images into three single-channel images using the HSV ( hue , 
 saturation , and  value ) color system ( Gonzalez and Woods, 2002 ). In each 
image channel, pixel values not only represent part of the color space, but 
also contribute to segmentation of objects ( Ohta et al., 1980 ) and calcula-
tions, representations of advanced visual constructs, such as textural content 
and shape characteristics. Using only grayscale images limits the ability to 
segment objects of interest effi ciently or extract underlying visual patterns 
that comprise the image content. While  value  images provided the viewer 
with detailed texture of the grain,  hue  and  saturation  images allowed us to 
discriminate between foreground objects and background. Because our goal 
in grain segmentation was to fi nd reasonable contrast to recognize the grain 
contour, we merged the  hue  and  saturation  images to reconstruct an inter-
mediate image that displayed better separation of grains from background 
using the following equation. 
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image search, and content-based image retrieval by image 
examples. 

 MATERIALS AND METHODS 

 Pollen images —   In this study, 525 images from Miocene-aged pollen 
and spore material were taken from a stratigraphic section of Falcon basin 
in Venezuela ( Aguilera and Carlini, 2010 ;  Quiroz and Jaramillo, 2010 ). 
These images represent the 15 pollen taxa and fi ve spore taxa listed in  Table 1 .   
Morphological information for each of the taxa was collected from the 
Smithsonian Tropical Research Institute palynological database ( Jaramillo 
and Rueda, 2013 ), which contains the morphological descriptions of ~2700 
species of neotropical fossil pollen and spores. Images were taken using a 
Zeiss AxioImager microscope, Plan-Apochromat SF25 (63 × , 1.4 NA, oil 
immersion) lens, and a Zeiss AxioCam ICc 3 digital microscope camera 
(Carl Zeiss Microscopy GmbH, Göttingen, Germany). This subset of taxa 
was selected based on its morphological diversity and sample availability at 
the time of the study. Because overlapping of grains and debris is not un-
common in palynological slides, each sample image was cropped roughly 
with the grain at the center without intentionally avoiding debris. 

 Grain segmentation —   There are multiple options of image analysis tool-
kits ( Ibañez et al., 2003 ;  Abramoff et al., 2004 ;  Bradski and Kaehler, 2008 ) 

 Fig. 1. An example pollen grain ( Clavainaperturites microclavatus ) image segmentation process. The original RGB image (A) is converted from a 
single RGB image to three single-channel images—hue (B), saturation (C), and value (D). (B) and (C) are then merged using selected weights on pixel 
values (Eq. 1) to generate an intermediate image (E) for thresholding, morphology operation, watersheding, and connected component operations. This 
ultimately segments the main grain object (F) from the rest of the image, including background pixels, trivial particles, and debris.   
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and closing ( Gonzalez and Woods, 2002 ) were performed to separate the 
main body of the grains from any debris or trivial particles that were not of 
interest in the analysis. Connected components ( Gonzalez and Woods, 2002 ) 
were identifi ed to represent object candidates, and only the largest one (pre-
sumably the grain) was kept. Finally, a watershed algorithm ( Vincent and 
Soille, 1991 ) was used to separate any remaining particles that were still 
connected to the main body of the grain. When there is a distinct boundary 
between grain and overlapped debris based on differences in pixel value of 
saturation, hue, and intensity or in surface texture, it is also possible to separate 
the grain from debris using the combination of weights described in the 
previous paragraph. However, it should be noted that segmentation is still a 
largely unresolved problem in image analysis research. It is widely recog-
nized in image segmentation that when target objects overlap with debris, 
their boundaries are blurred and undistinguishable, and segmentation per-
formance has less consistency and accuracy. Human delineation may ulti-
mately be needed to construct a reliable training set for our computer vision 
program to learn to separate objects from background. However, most of 
the grain samples in this study minimally overlapped with debris, and ef-
forts were made to confi rm accurate segmentation. 

 Visual feature extraction —   Once the pollen or spore grain is segmented, 
69 visual features ( Table 2 )   related to global visual characteristics (such as 
color, pixel value histograms, and textural patterns) and object morphology 
(such as convexity of convex hull, curvature of contour, and aspect ratio of 

 The merged image pixel value ( p M  ) is a weighted combination of pixel val-
ues from  hue  ( p H  ) and  saturation  ( p S  ) images at the same pixel location. For 
example,  Fig. 1A    is an image of a pollen grain ( Clavainaperturites micro-
clavatus ) that is converted and separated into three single-channel images 
( Figs. 1B–D ) using the HSV color system. The hue image ( Fig. 1B ) and 
saturation image ( Fig. 1C ) are then merged with weights Hw  and Sw  to pro-
duce an intermediate image ( Fig. 1E ). We tested a sizable sample of images 
using various weight combinations and observed an infl uence of weight 
choices on segmentation performance ( Fig. 2 )  . The bigger Hw , the more the 
hue value was emphasized; therefore, image pixels were separated based 
heavily on hue, leading to the inclusion of pixels of debris and artifacts. 
As Sw  increased, the more detailed apertures on the grain surface were lost 
because they were lighter in saturation. Weight values were heuristically 
chosen as 0.4 for Hw  and 0.6 for Sw  to produce the most consistent segmen-
tation. To automate the selection of channel-merging weights, a training 
data set of images with user-defi ned segmentation would be needed to tune 
these two parameters. A simulated annealing (SA) algorithm ( Kirkpatrick 
et al., 1983 ) can then be implemented for automatic parameter selection 
( Han and Shyu, 2010 ). This was not done in this study due to limited sample 
size, but could be implemented with a larger image training data set. 

 Next, the intermediate image was binarized using Otsu thresholding, 
which automatically selected a threshold value for binarization ( Otsu, 
1975 ). Morphological operations (nonlinear operations related to the shape 
or morphology characteristics in an image) such as erosion, dilation, opening, 

 Fig. 2. Weight confi guration examples using two pollen grain images (row 1, ID = 86p; row 2, ID = 25p) and two spore grain images (row 3, ID = 
412s; row 4, ID = 440s). Three segmentation results (highlighted red contours superposed on original grain images) are shown per each image example 
using different weight confi gurations for hue ( w H  ) and saturation ( w S  ) channels.   
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the mathematical formulas detailed in  Barb and Shyu (2010)  and  Barb and 
Kilicay-Ergin (2013) , each semantic representation is constructed as an as-
sociation model using the concept of possibilistic    c -means algorithm 
( Krishnapuram and Keller, 1993 ) based on low-level visual features. This 
process is called semantic modeling. 

 In this study, there are three morphology semantic categories for pollen 
images and three for spores, each of which consists of several exclusive 
semantic labels ( Table 3 )  . Using semantic modeling, each semantic label 
was represented as a semantic model of low-level visual features. Semantic 
model Mζ  is based on a training data set of images all labeled with semantic 
ζ . A trained semantic model Mζ  returns a relevance score for each database 
image for this specifi c semantic label. To reduce over-fi tting issues during 
semantic modeling and to estimate how well these trained models handle 
images that lack certain semantic labels, 10-fold cross-validation ( Kohavi, 
1995 ) was conducted in this study. In our study, an image was fi rst repre-
sented by a multidimensional feature vector, which was then fed into each 
semantic model to calculate its relevance scores. These relevance scores 
were then used for automatic semantic annotation and semantic-based im-
age retrieval. 

 Image annotation using semantic models —   Within each category, the 
higher the relevance score, the larger the possibility that an image has this 
particular morphology semantic. The model that produces the highest score 
in each semantic category determines the assignment of semantic labels to 
an image. In this study, a grain image can be annotated with three semantic 
labels, each from a different category. For example, the relevance scores for 
a spore image are {( pyramidal  = 0.661,  plane-convex =  0.506,  reniform  = 
0.333)   lateral view  , ( elliptic =  0.333,  circular =  0.921)   polar view  , ( radial  = 0.921, 
 bilateral =  0.333)   symmetry  }. In Category “ lateral view ,”  pyramidal  has the 
highest score compared to  plane-convex  and  reniform . Therefore, this im-
age can be annotated as having a  pyramidal  shape in lateral view. With the 
same strategy, this image can also be labeled as  circular  in Category “ polar 
view ” and  radial  in Category “ symmetry. ” In standard practice, newly ac-
quired images are not often labeled. Relevance scores provided by semantic 
models will be useful for automatic annotation of images with undeter-
mined semantics. Once the models are trained, no human intervention is 
needed for model selection and image annotation. Confusion matrices were 
used to visualize annotation performance for individual semantic labels. 
Average accuracies were calculated for pollen and spore samples in this 
study. 

 Image search using semantic models —   The relevance scores provided 
by trained semantic models can be used to search images based on their 
semantic assignment. Consider ranking images based on their relevance 
scores of semantic label ζ  to be a single semantic image retrieval, its perfor-
mance can be evaluated using precision,  P , and recall,  R  ( Baeza-Yates and 
Ribeiro-Neto, 1999 ). 

  
n

P
N

=  (2) 

  ι
= n

R
ζ

 (3)
 

bounding box, illustrated in  Fig. 3 )   were extracted from each of the four 
channels representing the original image: hue, saturation, value, and gray-
scale. This produced a 276-dimension feature space in which individual im-
ages were placed. 

 Morphology semantic modeling —   Palynologists use a common qualita-
tive terminology to describe and compare the morphology of pollen and 
spores (e.g.,  Punt et al., 2007 ). However, complex morphological features 
that are relatively easy for human experts to detect and describe linguistically 
are much more challenging for the computer to recognize numerically. To 
mimic the complex human process of identifying visual patterns, low-level 
visual features were extracted to represent the visual content in images. Ex-
amples of low-level features used in this study include: single-channel his-
tograms ( Fig. 4 )  , Hu shape momentum descriptors ( Hu, 1962 ), and texture 
( Haralick et al., 1973 ). In some image analysis research domains, such vi-
sual patterns are interpreted using high-level abstractions, called  semantics . 
The extracted features can describe, to a limited extent, the visual content of 
grains, but are still not easily interpreted by the human analyst. This is 
known as the  semantic gap  ( Lew et al., 2006 ). To minimize the semantic 
gap, mathematical models are constructed using low-level features to map 
images to high-level trait semantics based on degrees of relevance. Using 

  TABLE  2. Visual features extracted from four single-channel images  . 

Name Description No. of features a Index

Threshold Otsu b  threshold 1 color
Mean Mean pixel value 1 color
SD Standard deviation of 

pixel value
1 color

Histogram 1-dimensional histogram 
with 16 bins

16 color

Size Grain object size 1 shape
HU Hu c  shape descriptors 7 shape
Aspect ratio Ratio of long edge to short 

edge of bounding box ( Fig. 3C )
1 shape

Compactness  see Appendix 1 1 shape
Convexity  see Appendix 1 1 shape
Form factor  see Appendix 1 1 shape
Roundness  see Appendix 1 1 shape
Solidity  see Appendix 1 1 shape
Perimeter  see Appendix 1 1 shape
Texture Seven Haralick d  texture with fi ve 

step sizes
35 texture

Total 69

 a  Numbers indicate the value per single-channel image. All features are 
calculated within segmented grain objects only. Refer to Appendix 1 for 
detailed calculations.

 b   Otsu, 1975 .
 c   Hu, 1962 .
 d   Haralick et al., 1973 .

 Fig. 3. Image examples of selected features listed in  Table 2 . (A) Original image; (B) convex hull that encloses binarized pollen grain; (C) bounding 
box that encloses binarized pollen grain; and (D) contour that traces along the boundary of binarized pollen grain.   
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 Fig. 4. Example histogram of an example image in four individual channels: grayscale, hue, saturation, and value.   

 Fig. 5. Hypothetical query by image example in a multiple-dimen-
sional feature space (illustrated here in three dimensions). Each black dot 
represents a multidimensional feature vector that represents a database 
grain image. A query image is mapped into the same feature space (red 
dot). The nearest neighbors are selected and ranked with their correspond-
ing images displayed to the user.   

  TABLE  3. Semantic labels used to describe morphology of pollen and 
spore grains  . a  

Semantic category Semantic label No. of images

 Pollen 
 Equatorial view Prolate 50

Spherical 138
Oblate 25

Unlabeled 184
 Polar view Elliptic 137

Circular 140
Unlabeled 120

 Symmetry Radial 172
Bilateral 136

Unlabeled 89
 Spore 
 Lateral view Pyramidal 52

Plane-convex 28
Reniform 23
Unlabeled 25

 Polar view Elliptic 23
Circular 80

Unlabeled 25
 Symmetry Radial 80

Bilateral 23
Unlabeled 25

 a  Morphology semantic terms are adopted from  Punt et al. (2007) .

 where n is the number of images labeled with semantic ζ  in a list Tζ  of top N 
ranked images and ι| | I

ζ
 is the total number of images labeled with se-

mantic ζ  in database  I . An image is considered relevant if it is labeled with 
query semantic ζ . Precision is the fraction of relevant images in result list 
T
ζ . Recall is the ratio of retrieved relevant images to the total number of 

relevant images in the database. 
 When an image database contains hundreds of thousands of images, one 

wants to see a list of the most relevant images instead of viewing the entire 

collection. The more relevant the images that appear at the top positions in 
the list, the better the retrieval. Precision-recall curve, which represents pre-
cision as a function of recall rate, can demonstrate how relevant images are 
distributed in a ranked list. Another evaluation measurement is mean average 
precision (MAP) score over 10 folds of experiment (detailed in Appendix 
1). The higher the MAP score, the more relevant the images that are placed 
at the top positions in the list. 

 This semantic-based image search was then extended to include multiple 
semantic labels. The relevance scores for each semantic were used to calcu-
late an overall relevance score in regard to a set  Q  of semantics selected by 
a user (see explanation in Appendix 1). 
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 Fig. 6. Entity relation diagram (ERD) of database design. Entities and their relationships are represented as tables with attributes and connected 
using crow’s feet annotation. For example, the relationship between  pollen  and  pollen_images  is a one-to-many identifying relationship. Specifi cally, 
one pollen taxon can have multiple images, and each record in  pollen_images  must reference to only one record in  pollen . There are eight pollen-related 
tables on the right-hand side and eight spore-related tables on the left-hand side. Tables from both sides share similar structure and reference to two 
common tables— users  and  sources . Note: There are 76 tables and more than 200,000 records in the database. There are 49 attributes in the table  pol-
len_sources  and 39 in the table  spore_sources . For simplicity, some auxiliary tables and secondary fi elds are omitted in this fi gure. Only the most rel-
evant tables and fi elds are shown.   

 Image search using grain examples —   The semantic modeling addition-
ally provides a basis for the query of images within the database and the 
retrieval of the most visually similar pollen grain images. In this way, a 
newly acquired image can be uploaded into the search engine to fi nd similar 
types from the database. This allows for the comparison of morphotypes 
across analysts, potentially improving classifi cation consistency among 
multiple experts. Using the image itself or, in other words, using image 
content as a whole for image database search is called  content-based image 
retrieval  ( Smeulders et al., 2000 ). 

 The 276-dimensional features used in the initial morphological feature 
extraction formed a visual content space. These features were used to index 
the image database for fast retrievals. For simplicity, only three dimensions 
are depicted in  Fig. 5    to demonstrate the concept of content-based image 
retrieval from a multidimensional feature space. Each data point is a multi-
dimensional vector representing an image in the database. The distance be-
tween a query point and a data point defi nes the similarity between the 
query image and a database image. In other words, the closer two data 
points are in the feature space, the more visually similar these two images 
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to users as the initial weights upon which emphases can be adjusted based 
on users’ search preferences. As our database collection grows to include 
more species and variety in morphology, new weight combinations can be 
learnt to produce better retrieval results based on the newly populated 
database. 

 Database design for multimodal information integration —   For an im-
age database to be effectively used in taxonomic classifi cation and custom-
ized image retrieval, accurate metadata are as important as novel search 
algorithms. Our database structure was designed to be fl exible for database 
management across geographically remote sites and allows for sustainable 
growth over time with the incorporation of new palynological images and 
the participation of new analysts. Instead of storing data in single fi les such 
as spreadsheets or printed catalogs, images and their metadata are stored in 
a relational database where the shared data structure and data relationships 
are carefully designed and maintained to avoid duplication or accidental 
modifi cation. The entity relationship diagram (ERD) illustrates the database 
structure and its tables with relationships that ensure data integrity and han-
dle dynamic data changes such as insertion, deletion, and update ( Fig. 6 )  . In 
the ERD, tables on the left side are designed for spore taxa, and pollen-re-
lated tables are on the right side with the same table structures. In addition, 
to link multiple research groups for cross-site research, the  sources  table 
and the  users  table store information of the research teams and palynolo-
gists who collected the images. With two relationship tables,  pollen_sources  
and  spore_sources , two sides are linked together to enforce relationship de-
pendencies. With this database as the back end, a Web-based system was 
built for palynologists to interact with stored data and search for grain im-
ages. The system provides not only text-based species search ( Fig. 7 )  , but 
also image searches based on trait semantics ( Fig. 8 )   and visual content 
( Figs. 9 and 10 )     with personalized search criteria. The demo website can be 
accessed at http://www.bioshapes.org/mioceneDB. 

are. With this defi ned similarity measure, images can then be ranked based 
on their similarity (distance) scores. For a large-scale image database (millions 
of grains), instead of exhaustively computing distances between the query 
image and all database images, customized database-indexing structures, 
such as M-tree ( Ciaccia et al., 1997 ) or Entropy Balanced Statistical (EBS) 
k-d tree ( Scott and Shyu, 2007 ), can drastically improve the effi ciency of 
retrieval by strategically organizing the indexes of data in a high-dimen-
sional space. In our implementation, we created three M-tree indexes by 
grouping the 276 visual features into colors, shapes, and textures ( Table 2 ). 

 Our system provides users with customized weighing options to search 
grain images. For example, one user may want to see images that are most simi-
lar in regard to shape features with less emphasis on color and texture variances. 
Color, in particular, is a highly variable characteristic as it is mainly controlled 
by the thermal maturation of the organic matter. Pollen grains are light yellow 
when thermal maturation is low but change to darker colors as rock maturation 
increases, reaching a full black when organic matter is over-matured. In this 
scenario, users can customize their queries with a minimal weight on color in-
dex while placing more emphasis on the other two indexes. 

 In this study, content-based image retrieval was evaluated using preci-
sion in the top-ranked images ( Baeza-Yates and Ribeiro-Neto, 1999 ). Preci-
sion, as described above, is defi ned as the ratio of number of relevant 
images in top  k  ranked images ( k  = 10 in this study). A result image is rel-
evant when it belongs to the same species as the query image example. Be-
cause the contribution of indexes to retrieval performance is not, and should 
not, be universally fi xed across all species, we simulated possible combina-
tions of weights (w ) for color ( cw ), shape ( sw ), and texture ( tw ) with an 
increment of 0.2 (see Appendix 1 for detailed process) using labeled images 
in our database as a training set. The most suitable weight combinations 
were identifi ed based on our current database image collection. Their values 
determined the retrieval precision of each query. Once the most suitable 
weight combinations were identifi ed for each species, they were presented 

 Fig. 7. Searching for pollen taxa by name. All existing taxa in the database are listed on the webpages ordered by taxon ID. Users can choose to search 
taxa by their scientifi c names by typing in the text fi eld. Auto-complete hints help users to quickly narrow down the list.   
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 indicating that it was determined with 87.7% confi dence that 
images with measurements in the feature subspace were la-
beled with  oblate . Another rule 

 RESULTS 

 Semantic modeling —    After 10 folds of association rule 
mining, semantic models were trained for each semantic la-
bel. Each model was composed of several associative rules 
mapping subspaces of low-level visual features to high-level 
semantic labels with a certain confi dence. For example, one 
of the rules for model oblateM  is 

 Fig. 8. Searching for pollen images by morphology semantics. Top row: (left) Morphology semantics selected by user and (right) distribution of semantics 
in result images. Center row: (left) fi rst image in ranked list, (middle) relevance scores calculated by trained semantic models, and (right) additional information 
about this image, including taxon name, its overall relevance score as regard to user-selected semantics, and its actual semantics annotated and stored in the 
database. Comparing the actual semantics to the relevance score chart, we can see that spherical has higher relevance than prolate and oblate for equatorial 
shape semantic, circular is more relevant than elliptic for polar shape semantic, and radial is more relevant than bilateral for symmetry semantic. Bottom row: 
the ranked result image list with overall relevance score calculated using Eq. 10 in Appendix 1 as regard to user-selected morphology semantics.   
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ζ  and τ  are from the same category. In an ideal scenario, we 
expect all images be annotated with correct semantic labels in 
each category. Therefore, the confusion matrix should only 
have nonzero values in cells on the diagonal where row label 
(human-annotated semantic) and column label (computer-
annotated semantic) are the same. In reality, errors cannot be 
completely eliminated in automatic annotation. For example, in 
 Table 4 , among the 25 images that were labeled as  oblate  
in Category  equatorial view shape , 18 images were annotated 
by computer correctly while the other seven images were an-
notated as  prolate . In   this case, the accuracy of annotation 
for the semantic label  oblate  is 18/25 = 72.0%. The average 
accuracy was 83.9% for pollen semantic annotation and 98.6% 
for spores. 

 Semantic-based image retrieval —    The performance of 
the semantic-based image retrieval was evaluated using 
precision-recall curves and MAP scores (see details in Ap-
pendix 1).  Figures 11 and 12      are precision-recall curves for 
morphology semantics of pollen and spores, respectively. In 
 Fig. 12 , average precisions calculated from 10 folds of ex-
periments were plotted as functions of recall for all seven 
semantic models from three categories for spores. Preci-
sions of all semantics were maintained above 80% at 60% 
recall rate. For pollen images ( Fig. 11 ), despite the steeper 

   ∈{ _ _ 16 [0.0654,0.1168]Saturation histogram bin    

   ∧ ∈_( _ 14 ) [0.0162,0.1402]Saturation histogram bin    

   ∧ ∈_ [0.0677,0.1151]Hue perimeter    

   ∧ ∈_ _ 3 _ 5 [0.0712,0.1329]Saturation texture step direction    

   ∧ ∈_ _ 5 _ 4 [0.1474,0.1846]Saturation texture step direction    

   → =" "} 0.766oblate
   

 maps a more complex subspace of multiple features to the 
same semantic label  oblate  with a different confi dence of 
76.6%. 

 Image annotation —    When trained semantic models are used 
for automatic semantic annotation, they are evaluated by anno-
tation accuracy. After 10-fold cross-validation, the annotation 
accuracy is shown in the form of a confusion matrix for pollen 
and spore morphology semantics ( Tables 4 and 5 ).     In a confu-
sion matrix, the value  x  in a cell ( , ζ τ ) means that  x  images with 
human-annotated semantic label ζ  are annotated by computer 
with semantic label τ . Cell values are meaningful only when 

 Fig. 9. Searching for pollen images by query image example. Query image example is selected from the example list, and query weights on three in-
dexes (color, shape, and texture) can be adjusted to the user’s preference. The weight values range from 0 (left end of the bar, representing no weight) to 
100 (right end of the bar, representing the highest amount of emphasis).   
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  Figure 8  shows the result page of a pollen image search using 
multiple morphology semantics. The semantic-based image 
search engine calculates overall relevance scores using Eq. 10 
in Appendix 1, which uses each image’s three relevance scores 
provided by semantic models for  spherical  equatorial view 
shape,  circular  polar view shape, and  radial  symmetry. The da-
tabase images are ranked based on their calculated overall rel-
evance scores, and the top 10 most similar images are displayed. 
It is not required that retrieved images must have all three mor-
phologies labeled. As long as their relevance scores are signifi -
cant, the overall relevance still satisfi es the search criteria. 

precision-recall curves, all precisions were still maintained 
above 60% until the recall rate of 60%. The   differences in 
these results are understandable, because the pollen image 
samples in this study were distributed in 15 distinct taxa, and 
it was therefore more challenging for semantic models to 
fi nd association rules of feature subspaces that were general-
ized for all images. Queries using pollen images had an aver-
age MAP score of 0.81/1.00, and queries using spore images 
had an average MAP score of 0.93/1.00 ( Table 6 )  . The aver-
age search time for pollen and spore images was less than 
0.2 s and as short as 65 ms. 

 Fig. 10. Search by pollen image example result page. Top row: (left) search example and (right) the fi fth result in the ranked list. Center row: distribu-
tion of taxa count from results. Bottom row: ranked result image list with their similarity measures against the query image example (top left). The bar chart 
in the center row indicates that there is a mixture of taxa in the result images.   
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  TABLE  4. Confusion matrix of pollen image trait semantic assignment. 

 p  s  o  e  c  r  b Accuracy (%)

 p 50 0 0 100
 s 45 90 3 65.2
 o 7 0 18 72.0
 e 133 4 97.1
 c 23 117 83.6
 r 129 43 75.0
 b 8 128 94.1

 Note :  p  =  prolate ;  s  =  spherical ;  o  =  oblate ;  e  =  elliptic ;  c  =  circular ;  r  = 
 radial ;  b  =  bilateral .

  TABLE  5. Confusion matrix of spore image trait semantic assignment. 

 p  v  r  e  c  r  b Accuracy (%)

 p 47 5 0 90.4
 v 0 28 0 100
 r 0 0 23 100
 e 23 0 100
 c 0 80 100
 r 80 0 100
 b 0 23 100

 Note :  p  =  pyramidal ;  v  =  plane-convex ;  r  =  reniform ;  e  =  elliptic ;  c  = 
 circular ;  r  =  radial ;  b  =  bilateral .

 Fig. 11. Precision-recall curves of morphology semantics for pollen images. As   the number of images retrieved increases, recall values gradually ap-
proach 100% while precision values gradually decrease due to retrieval of nonrelevant images.   

 Content-based image retrieval —    On the content-based 
image retrieval interface ( Fig. 9 ), a user fi rst picks an image 
as an example and then adjusts emphasis on three trait se-
mantic categories using sliding bars. On the search result 
page ( Fig. 10 ), a list of top-ranked database images that are 
most similar to the image example is displayed. 

 Content-based image retrieval is a much more complex 
image retrieval method than those by key words and seman-
tic labels. It is worth mentioning that species-level classifi -
cation is the most challenging classifi cation task in palynology 
( Punyasena et al., 2012 ;  Mander and Punyasena, 2014 ;  Holt 
and Bebbington, 2014 ), and images that are visually similar 
based on their content do not necessarily belong to the same 
taxon. As a result, even though a list of the visually most 
similar images is ranked and returned, the precision value 
calculated by judging the variation of species can be much 
lower if multiple species are presented in the resulting list. 

  Table 7    lists the top 10 best-performing universal weight 
combinations that yielded average retrieval precisions of 

57.8% and 72.3% for pollen and spores, respectively. This 
means that if all species were treated the same, using a one-
fi t-for-all weight combination, the search results retrieve a 
list of database images with 57.8% belonging to the same 
species as the query image. The retrieval precision using 
such universal weight combinations for spore images in the 
database is 72.3% on average. 

 In contrast, if instead of choosing universal weight combi-
nations for all images, different weight combinations were 
made for individual species, accuracy improves.  Table 8    
shows the top choices of weight combinations for individual 
species and their average retrieval precisions. For images of 
some taxa, selected weights on trait semantics could be dras-
tically different from others. For example, to get an average 
precision of 77.1% for all  Clavainaperturites microclavatus  
(ID = 1014) images, it is best to emphasize shape heavily 
and reduce weights on color and texture. These customized 
weight selections become handy if the user has a small num-
ber of targeted species in mind during the search. 
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to describe an image. In this study, morphology-related se-
mantics were used to describe the grains with differences in 
shape and symmetry (as viewed in both polar and equatorial 
positions). With an average annotation accuracy of 83.9% 
for pollen semantics and 98.6% for spore semantics, the se-
mantic models built for morphology annotation demonstra-
bly produced good predictions based on grain morphology 
that can later be reviewed and validated by palynologists. 

 The degree of morphological difference between morpho-
species, sample size, and evenness of image representation all 
contributed to the robustness and reliability of automatic se-
mantic annotation. For example, the high annotation accuracy 
scores for the spore images in this study ( Table 5 ) are likely a 
result of the morphological diversity among the fi ve spore taxa 
included in this trial analysis, which made classifi cation rela-
tively trivial. While the semantic labels for pollen  polar view 
shape  ( Table 4 ) had the best annotation consistency, the group 
of equatorial semantics had less consistency for pollen images, 
especially for the semantic label  spherical . This observation, as 
well as the high accuracy for all spore samples, indicates that a 
broader selection of species and image samples is needed for 
large-scale studies. However, we should emphasize that the se-
mantic labels used in this study are a small subset of the fea-
tures that can eventually be incorporated into an automated 
system for annotating morphology. Our semantic models can, 
and will, be expanded to include additional features known to 
be critical for accurate pollen and spore identifi cations, includ-
ing pore and colpus number and arrangement, surface ornamen-
tation, and grain size. A full list of possible semantic terms is 
illustrated in  Punt et al. (2007) . 

 In semantic image retrieval, the system’s average MAP 
scores of 0.81 for pollen image samples and 0.93 for spore 
image samples demonstrate that trained semantic models can 
retrieve images based on their estimated relevance of trait 
semantics. Our system provides image retrieval by multiple 

 DISCUSSION 

 The ultimate goal of this research is to use informatics 
tools to assist palynological study by increasing speed and 
effi ciency, reducing inter- and intra-observer inconsistency 
and labor intensity, and eventually assisting in the determi-
nation of new species. The database-driven application that 
we have presented integrates the analysis of image content, 
grain object morphology, morphology semantic modeling 
and annotation, and Web-based user-computer interaction 
for multimodal information integration. 

 Morphological semantic modeling uses mathematical 
equations that are optimized to discover association models 
in visual feature space and to fi nd the best-fi t semantic label 

 Fig. 12. Precision-recall curves of morphology semantics for spore images.   

  TABLE  6. Mean average precision (MAP) scores for semantic models 
trained over 10-fold   cross-validation  . a  

Semantic category Semantic label MAP

 Pollen 
 Equatorial view Prolate 0.86

Spherical 0.88
Oblate 0.73

 Polar view Elliptic 0.83
Circular 0.70

 Symmetry Radial 0.86
Bilateral 0.79

 Spore 
 Lateral view Pyramidal 0.98

Plane-convex 0.84
Reniform 0.94

 Polar view Elliptic 0.88
Circular 1.00

 Symmetry Radial 1.00
Bilateral 0.88

 a  Morphology semantic terms are adopted from  Punt et al. (2007) .
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trait semantics, which returns a list of images ranked based on 
their overall relevance to selected semantics. In the end, how-
ever, it is up to experts to judge the similarity and closeness of 
retrieved images and subsequently form a knowledge base 
for the palynology community. Our image database provides 

a potential platform for capturing those expert classifi cation 
decisions. 

 Using content-based image retrieval, or image-based search, 
to search an image database provides an alternative nontextual 
way to describe morphology, compare visual content, and visu-
ally discover matches for unknown morphotypes. The perfor-
mance of content-based image retrieval relies on the separation 
of samples and clusters in the feature space, training sample 
size, diversity, and on the balance in image representation 
among categories. Those taxa that have low precisions in  Table 
8  have higher variances in visual appearances due to factors 
such as variability in imaging acquisition settings and preser-
vation quality of the grain. In this study, cautions were made 
to ensure consistency in image sample generation. Yet, ideal 
consistency is not always guaranteed when data samples are 
contributed from multiple sources with customized sample 
preparation protocols and experiment settings. As data collec-
tion proceeds with future contributions from multiple research-
ers, training data will be further enhanced by the expansion of 
the number and diversity of image representations, which will 
support a more robust and generalized basis for image retrieval. 
On the other hand, an increase in data sample variety also intro-
duces uncertainty and inconsistency in semantic modeling and 
retrieval performance. The future expansion and implementa-
tion of this database will require that extra precautions be taken 
to overcome these potential shortcomings. 

 Additionally, we plan to incorporate the metadata gener-
ated from image acquisition devices, such as scanner confi gura-
tion parameters, resolution, lighting, and other experimental 
variables. Using this additional information, images contrib-
uted by different researchers can be normalized, producing a 
standard for comparing images taken with different imaging 
conditions and more consistent performance in image analy-
sis and, consequently, in retrieval and annotation. Human-
in-the-loop annotation and validation is another strategy to 
help improve data sample quality and model robustness, as it 
is not always possible to replicate human expert knowledge 
with computerized programs. 

 CONCLUSIONS 

 Our data model provides a platform for the larger palyno-
logical community to collaboratively share and compare the 
morphological variations of formal and informal morpho-
types. Content-based image retrieval allows palynologists to 
fi nd similar images that may exist within the image database, 
assisting in the identifi cation of novel types. The ability to 

  TABLE  7. Top 10 best-performing weight combinations sharing similar retrieval performance for all pollen and spore species in the database. 

Top 10 performance with 
universal weight combinations

Pollen Spore

Weights (color_shape_texture) Average precision (%) Weights (color_shape_texture) Average precision (%)

1 0.4_0.6_0.6 57.9 0.2_1.0_0.0 72.4
2 0.8_1.0_0.8 57.9 0.0_0.2_0.0 72.3
3 0.6_1.0_0.8 57.9 0.0_0.4_0.0 72.3
4 0.6_0.6_0.8 57.8 0.0_0.6_0.0 72.3
5 0.2_0.2_0.2 57.8 0.0_0.8_0.0 72.3
6 0.4_0.4_0.4 57.8 0.0_1.0_0.0 72.3
7 0.6_0.6_0.6 57.8 0.2_1.0_0.4 72.2
8 0.8_0.8_0.8 57.8 0.4_1.0_0.4 72.2
9 1.0_1.0_1.0 57.8 0.2_0.8_0.0 72.0
10 0.2_0.4_0.4 57.8 0.2_0.8_0.4 72.0

  TABLE  8. Best-performing weight combinations for each taxon and their 
average retrieval precisions. The taxon    Retitricolpites simplex  (ID = 
722) has been used as an example. Each of its 24 images were used 
as query images, searched against the database, and the top 10 most 
similar images in feature space were retrieved. All   215 weight 
combinations were used for each image, yielding a total of 215  ×  24 = 
5160 queries. For each image as a query image, maximal precision 
was identifi ed. There could be multiple weight combinations ( n  out 
of 215) that produced the same maximal precision for the same query 
image. All of these weight combinations were considered candidates. 
The candidates that occurred most frequently were the fi nal 
candidates. In this example, there were four (#Candidates) candidate 
weight combinations that were identifi ed to produce maximal 
precisions in nine (#Occurrence) individual query occasions. The 
average pre cisions using each of four candidates across all 24 images 
were calculated, and the candidate with the highest average precision 
was the top choice. 

ID a #Candidate #Occurrence Top choice b Avg. precision (%)

 Pollen 
 722 4 9 0.8_0.2_0.0 50.8
 767 2 17 0.4_0.6_0.2 73.1
 688 7 6 0.0_0.4_0.2 63.4
 570 2 24 0.0_0.6_0.2 59.1
 571 21 10 1.0_0.6_0.2 74.7
 552 1 16 0.2_0.8_1.0 73.1
 451 8 14 0.2_0.0_0.0 61.2
 511 1 9 0.2_0.0_1.0 68.9
 450 1 20 1.0_0.4_0.8 67.2
 254 5 16 0.2_0.0_0.0 49.6
 1430 13 13 0.4_0.2_0.2 62.1
 365 2 10 0.0_0.2_0.6 49.5
 148 2 8 0.8_0.2_0.6 40.5
 246 14 15 0.4_0.2_0.2 38.9
 1014 3 11 0.2_1.0_0.2 77.1
 Spore 
 46 3 15 0.2_0.6_0.0 89.1
 44 6 11 0.2_1.0_0.00 65.0
 282 2 12 0.2_0.2_0.4 78.4
 45 9 8 0.2_0.4_0.2 58.3
 43 5 24 0.0_0.2_0.0 91.1

 a  Taxa IDs are provided in  Table 1 .
 b  Weight combinations are of format cw _ws_ tw  for color, shape, and 

texture.
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compare images with subtle visual differences potentially 
allows for fi ner delimitations of morphospecies and a more 
consistent taxonomy among analysts. By using the semantic 
modeling function in place of manual labeling, researchers 
can automatically annotate new grain images with best-fi t 
morphology semantic labels for learning and discovery. This 
potentially speeds up the discovery and establishment of 
novel types. The value of such a database will only increase 
as the diversity of images and annotations increases, because 
the search results and semantic modeling potentially will be-
come more robust and more generalized with training on 
larger and more heterogeneous image data. 
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  APPENDIX    1. Supplementary defi nitions for visual feature calculation and algorithms for image retrieval. 

 Selected features listed in  Table 2  are defi ned and demonstrated as follows: 

 Area: Total number of pixels in identifi ed grain object or size of connected component. 

 Perimeter: Summation of distances between each pair of neighboring points on object contour ( Fig. 3D ). 

 Max. diameter: The maximal distance between two points on object contour. 

 Convex hull ( Sklansky, 1982 ) length: Convex hull ( Fig. 3B ) perimeter. 

 Convex hull area: Total number of pixels contained inside a convex hull. 

 Compactness: 
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 Form factor: 
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 Convexity: 
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 Solidity: 
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  Mean average precision  (MAP) is the mean of the average precision (AP) scores over multiple queries. 
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 Specifi cally, all database images are fi rst ranked using relevance scores calculated by Mζ . At each position  k  in the ranked list Tζ , precision is calculated using 
Eq. 2 where  N  =  k  and  n  is the number of relevant images counted until cutoff  k . When the  k -th image is not relevant, = 0P . The precisions at each position are then 
averaged to yield an AP score for semantic ζ . In this fold of modeling of M

ζ
, an AP score is generated. Finally, the mean of AP scores for semantic ζ  over 10 folds 

of modeling is calculated. 
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 Image search using multiple semantic labels—  Once the semantic models were trained, database images could be searched based on their relevance scores of 
multiple morphology semantics. For example, a set  Q  of query semantics is selected out of all  N  available semantics to query the database. Each image’s overall 
relevance to this query is calculated using Eq. 10. All database images are then ranked based on such relevance score. The top  k  most relevant images are eventually 
returned to the user ( Fig. 8 ). 
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 Specifi cally, the overall relevance score ( s ) is a weighted combination of the average relevance score ( rels ) and the irrelevance score ( irrs ). To calculate the average 
relevance score ( rels ) of an image, its relevance scores ( ir) for each selected semantic in  Q  are averaged. The irrelevance score ( irrs ) is the opposite of the maximal 
relevance score calculated for those semantics that are not in  Q . In Eq. 10,  p  is a system adjustment penalty to balance the scores of relevant and nonrelevant 
semantics. It is heuristically set to be 0.002 in this study. 

 Evaluation of content-based image retrieval—  To fi nd the most-suitable weight combinations, a series step was performed using permutated experiment results 
for each species in the current data set. 

        

def

= ∈, , 0,0,0 , 1,1,1c s tw w w w
 

(13)
 

 1. Each image, 
θι , from species θ  was used as a query image for 215 (= 6 3 −1) times to search against the entire database. Precisions, 

ι
ip  ( ≤ ≤1 215i ), were 

calculated for each query. 

 2. The weight combinations ( ι
kw ) that produced the highest precision ( ι

maxp ) were identifi ed for each query image, composing a set of candidates, ι ι ιι
k k maxW w p p . 

 3. For all images from the same species θ , their sets of weight combinations identifi ed in step 2 were joined, and the most frequently occurring combinations were 
considered candidates for the most-suitable weight choices. If there were multiple candidates with the same number of occurrences, the one that yielded the highest 
average precision across all images in this species was considered the top choice. 


