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Abstract

Bacterial symbionts of insects have received increasing attention due to their prominent role in nutrient acquisition and
defense. In social bees, symbiotic bacteria can maintain colony homeostasis and fitness, and the loss or alteration of the
bacterial community may be associated with the ongoing bee decline observed worldwide. However, analyses of
microbiota associated with bees have been largely confined to the social honeybees (Apis mellifera) and bumblebees
(Bombus spec.), revealing – among other taxa – host-specific lactic acid bacteria (LAB, genus Lactobacillus) that are not
found in solitary bees. Here, we characterized the microbiota of three Australian stingless bee species (Apidae: Meliponini)
of two phylogenetically distant genera (Tetragonula and Austroplebeia). Besides common plant bacteria, we find LAB in all
three species, showing that LAB are shared by honeybees, bumblebees and stingless bees across geographical regions.
However, while LAB of the honeybee-associated Firm4–5 clusters were present in Tetragonula, they were lacking in
Austroplebeia. Instead, we found a novel clade of likely host-specific LAB in all three Australian stingless bee species which
forms a sister clade to a large cluster of Halictidae-associated lactobacilli. Our findings indicate both a phylogenetic and
geographical signal of host-specific LAB in stingless bees and highlight stingless bees as an interesting group to investigate
the evolutionary history of the bee-LAB association.
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Introduction

Mutualistic interactions are widespread in the animal and plant

kingdoms and have left their footprints in the evolutionary history

of many organisms. One of the most common groups of mutualists

associated with multicellular organisms are bacteria, which are

particularly prevalent across insects [1]. Mutualistic bacteria can

provide a range of ecological benefits to their insect hosts,

including nutritional upgrading of deficient diets, degradation of

dietary polymers, and defense against antagonists (reviewed by

[2]).

Bees represent an ecologically and economically important

group of insects due to their functional role as pollinators in most

ecosystems. Lately, they have declined in both abundance and

species richness [3–6], with negative consequences for the quality

and stability of pollination services to wild plants and agricultural

crops [7–12]. Among bees, the (highly) social species play a

particularly important role as pollinators due to the sheer numbers

of foragers from single colonies, the diversity of species in some

ecosystems (particularly in the tropics: [13]), the individual flower

constancy (e.g., in bumblebees: [14,15,16]), the early onset of

foraging (e.g., bumblebees: [17]) and year-long foraging in many

species.

In this context, the microbial community associated with social

bees has received considerable attention, and previous studies

found a consistent core microbiota across honeybees and

bumblebees [18–20]. While some of these symbiotic microbes

have been hypothesized to aid in nutrient acquisition [21], others

play an important role for the social immunity of bee colonies [21–

23]. This function may be particularly relevant, as the diversity of

immune-related genes is strongly reduced in honeybees (and likely

other eusocial bee species) compared to other insects [24]. In the

bumblebee Bombus terrestris, gamma- and betaproteobacterial

symbionts convey resistance against an intestinal parasitic proto-

zoan (Crithidia bombi) that negatively impacts the bees’ fecundity

[25]. Within honeybee nests, several Bacillus strains, actinomy-

cetes, as well as some fungal associates have been isolated from

pollen, honey and nest building material and are thought to

protect bee colonies and/or enhance their growth [26–28].

Moreover, lactic acid bacteria (LAB), primarily belonging to the

genera Lactobacillus and Bifidobacterium, have been described for

several bee species, including honeybees (Apis mellifera) [29–32],

bumblebees [32,33], stingless bees [29] and several solitary bee

species (e.g., Xylocopa, halictids, [19,34]). LAB have been

suggested to contribute to pollen fermentation within nests [30]
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and are known to also protect honeybees and bumblebees against

pathogens [29,35].

The microbiota of all social and solitary bees analyzed so far

includes widespread LAB that are not host-specific. These LAB

are closely related to flower-inhabiting, fructophilic lactobacilli or

other lactobacilli found in the environment, which are likely

obtained by bees when foraging at flowering plants [34]. In

contrast, highly host-specific and diverged strains (i.e. strains of the

Firm3, Firm4 and, to a lesser extent, Firm5 cluster) were reported

for social bees, but not any other social insects [19,32]. Based on

this finding, McFrederick et al. [32] suggested that host-specificity

of LAB is rare in Hymenoptera and may be maintained in social

bees by spreading the symbionts among nestmates and transmit-

ting them from one generation to the next via workers during

colony fissioning.

While the microbial community of honeybees has received

considerable attention, much less is known about the microbiota

associated with stingless bees (Apidae: Meliponini) (but see [29]).

Stingless bees represent the sister group of honeybees within the

Apidae family, but in contrast to honeybees, they are restricted to

tropical and subtropical regions, where they have achieved an

impressive diversity with approximately 500 species described to

date [36]. In a comparative study of the microbiota associated with

several honeybee and stingless bee species, Vasquez et al. [29]

found Firm4 and Firm5-associated LAB in South American,

African and South East Asian stingless bee species, whereas LAB

associated with Australian stingless bee species have not yet been

investigated.

Here, we characterized the microbial community of three

sympatric Australian stingless bee species (Austroplebeia australis,
Tetragonula carbonaria, and Tetragonula hockingsii), with par-

ticular focus on the bee-associated LAB. According to the

hypothesis that host-specific LAB are maintained by obligate

colony fissioning (see McFrederick et al. (2013), we assume that

LAB associated with the Firm3-5 clusters occur across all

Meliponini. While the home ranges of the three species overlap

broadly [37,38], and they are similar in size and color (worker

body size: [37,38]), the two genera fall within different phyloge-

netic clades that diverged approximately 60 Mya ago [39]. The

genus Austroplebeia (comprising five species) is endemic to

Australia and Papua New Guinea and genetically more closely

related to stingless bee lineages from the ancient African clade,

whereas the closest relatives of the genus Tetragonula (comprising

seven species in Australia) are found across Southeast Asia [39].

They also largely differ in their cuticular surface profiles [40] as

well as their resource intake and nesting behavior, with only

Tetragonula collecting [41] and incorporating substantial amounts

of plant resins in their nest structures ([42]; Leonhardt SD,

Drescher N, Wallace H, unpublished data). These differences in

chemical ecology may result in a different nest and body

environment for associated microbes.

Methods

Ethics statement
The stingless bee species investigated in this study are

commonly found and not protected in Australia. As all bees were

collected on private property, collecting permits were not required.

Sampling of bees
Bee specimens for genetic analyses were collected from colonies

located at the Glenmount Research Station in Buderim (South

East Queensland, Australia) in March 2011 and 2012. All colonies

had access to the same resource environment and faced the same

ecological conditions, with a mixed rainforest and eucalypt forest

as well as gardens included in their foraging range (approximately

500 m radius of the hive).

Specimens were collected from five colonies of Tetragonula
carbonaria, four colonies of Austroplebeia australis and one colony

of Tetragonula hockingsii, a species closely related to T.
carbonaria [43], by placing a clean clear plastic bag over the hive

entrance, thereby catching foragers leaving the nest. To kill the

bees, the plastic bag was placed in a freezer for approximately

10 minutes. Following a close inspection of their bodies to exclude

contamination with plant or hive material (e.g., pollen or resin),

bees were then stored in 70% ethanol for molecular analysis.

Bacterial tag-encoded FLX amplicon pyrosequencing
(bTEFAP) and data analysis

DNA was extracted from six individual worker bees of all ten

colonies sampled, respectively, using the MasterPure DNA

Purification Kit (Epicentre Technologies) according to the

manufacturer’s instructions. For each colony, a pooled DNA

sample was sent to an external service provider (Molecular

Research LP, MR DNA, Shallowater, TX, USA) for bTEFAP

with 16S rRNA primers Gray28F (59-GAGTTTGATCN-

TGGCTCA-39) and Gray519R (59-GTNTTACNGCGGCK-

GCTG -39) [44,45]. A sequencing library was generated through

one-step PCR with 30 cycles, using a mixture of HotStar and

HotStar HiFidelity Taq polymerases (Qiagen). Sequencing ex-

tended from Gray28F, using a Roche 454 FLX instrument with

Titanium reagents and procedures described at Molecular

Research LP (http://www.mrdnalab.com/). Quality control and

analysis of 454 reads was done in QIIME [46]. Low-quality ends

of the sequences were trimmed with a sliding window size of 50

and an average quality cut-off of 25. Subsequently, all low quality

reads (quality cut-off = 25) and sequences ,200 bp were removed.

High-quality reads were clustered into operational taxonomic

units (OTUs) using a multiple OTU picking strategy with cdhit

[47] and uclust [48], with 97% similarity cut-offs, respectively. For

each OTU, the longest sequence was chosen as representative

sequence (Data S1). Within the set of representative sequences,

chimeras were identified using UCHIME (uchime_denovo) [49]

and removed from further analysis. RDP classifier [50] and

BLASTn against the NCBI database were used for taxonomy

assignment. An OTU table was generated describing the

occurrence of bacterial phylotypes within the samples (Table

S1). OTUs were combined on the order level to display relative

abundances.

Phylogenetic analysis
For phylogenetic analysis, all OTUs with Lactobacillus sp. as the

first BLASTn hit were selected (20 OTUs). The representative

sequences for these OTUs were trimmed to 350 bp in order to

remove potential low-quality ends that were not detected by the

preceding quality-trimming steps (see above). The trimmed reads

were combined with the Lactobacillus sequences used in

McFrederick et al. [32] as well as the Meliponini-associated

lactobacilli reported by Vasquez et al. [29]. The resulting 656

sequences were aligned to the SILVA SSU database [51] using the

SINA aligner [52] (Data S2). An approximately-maximum-

likelihood tree was reconstructed with FastTree 2.1 using the

GTR model [53]. Local support values were estimated with the

Shimodaira-Hasegawa test based on 1,000 resamples without

reoptimizing the branch lengths for the resampled alignments

[53].
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Results

Bacterial community composition
Using bacterial tag-encoded FLX amplicon pyrosequencing

(bTEFAP), we characterized the microbial communities associated

with worker bees from four colonies of A. australis, five colonies of

T. carbonaria, and one colony of T. hockingsii. In total, 139,771

reads were obtained (mean 6 standard error = 13,97762,184 per

sample), 126,919 of which passed quality filtering and chimera

screening (mean 6 standard error = 12,69261,843 per sample).

Rarefaction analyses indicate that the microbiota associated with

the individual colonies was exhaustively sampled, with the possible

exception of the T. carbonaria colony H89 (Fig. S1). Based on

97% similarity clustering with cdhit [47] and uclust [48], the

sequences were grouped into 241 OTUs (Table S1 and Data S1).

Lactobacillales (Firmicutes) as well as Beta-, Gamma-, and

Alpha-Proteobacteria were the dominant taxa across colonies, but

their relative abundance varied considerably within and between

species (Fig. 1). One OTU associated with the genus Ralstonia
(Beta-Proteobacteria, Burkholderiales; 99% similarity to Ralstonia
pickettii) was consistently present across all colonies of the three

bee species, two OTUs related to the genus Pantoea (Gamma-

Proteobacteria, Enterobacteriales) were detected in six of the ten

colonies across the three species, and one OTU associated with the

family Acetobacteriaceae (Alpha-Proteobacteria, Rhodospirillales)

occurred in all six Tetragonula colonies, but not in A. australis
(Table S1). With the exception of the A. australis colony Z4,

Lactobacillales were present in all colonies, with relative abun-

dances ranging from 1.4 to 98.9% of the total microbiota.

Phylogenetic affiliation of lactic acid bacteria (LAB)
Among the 241 Meliponini-associated OTUs reported in this

study, 20 were identified by RDP classification and BLASTn

searches as members of the genus Lactobacillus. Phylogenetic

analyses including 620 additional lactobacilli and outgroup

sequences revealed the placement of the OTUs in four clusters

(Fig. 2). (i) Five OTUs exclusively found in the two Tetragonula
species were most closely related to a sequence obtained previously

from a South East Asian stingless bee, Trigona sp. [29], and

grouped within the bee-associated Firm4 cluster. (ii) A single

sequence from the T. carbonaria colony 292 (OTU64) fell within

the Firm5 cluster comprising honeybee- and stingless bee-

associated LAB. (iii) Five OTUs only found in the two Tetragonula
species formed the sister clade to the Firm5 cluster. And (iv) a

monophyletic group of nine OTUs that were present in all three

stingless bee species investigated in this study formed the sister

clade to a large cluster of Halictidae-associated LAB.

Discussion

While the microbial community of honeybees has been

thoroughly investigated, the microbiota associated with stingless

bees (Apidae: Meliponini) has only been addressed in a single

comparative study with honeybees conducted by Vasquez et al.

[29], which excluded Australian stingless bee taxa. Here we

analyzed the microbiota associated with three Australian stingless

bee species from two distinct phylogenetic lineages, in order to

investigate the occurrence of host-specific LAB across stingless

bees.

We found Lactobacillales (Firmicutes) as well as Beta-, Gamma-,

and Alpha-Proteobacteria as the dominant bacterial taxa in all

three stingless bee species. Samples from all ten colonies contained

bacteria related to the genus Ralstonia (Burkholderiales), which

are known as common pathogens [54,55], but also as laboratory

contaminants. Six of the ten colonies (including all species)

additionally harbored bacteria associated with the genus Pantoea
(Enterobacteriales, Gamma-Proteobacteria), which is a genus

commonly found on plant roots, leaves [56] and flowers [57]. It

has also been found in the hive environment and intestines of

honeybees [58,59]. Likewise, the family Acetobacteriaceae (Alpha-

Proteobacteria, Rhodospirillales) that occurred in all six Tetra-
gonula colonies (but not in A. australis) is often found in floral

Figure 1. Bacterial community associated with three species of Australian stingless bees, as revealed by 16S tag-encoded FLX
amplicon pyrosequencing. Different numbers denote different bee colonies. Aaus = Austroplebeia australis, Tcar = Tetragonula carbonaria, Thoc
= Tetragonula hockingsii.
doi:10.1371/journal.pone.0105718.g001

Microbial Community of Australian Stingless Bees

PLOS ONE | www.plosone.org 3 August 2014 | Volume 9 | Issue 8 | e105718



Microbial Community of Australian Stingless Bees

PLOS ONE | www.plosone.org 4 August 2014 | Volume 9 | Issue 8 | e105718



nectar and in the environment of bees (reviewed by [60]).

Acetobacteriaceae belong to the acetic acid bacteria (AABs) and

are known to break down carbohydrates in an acidic environment.

They have recently been found to regulate the immune system

homeostasis of Drosophila [61] and were suggested to be

secondary symbionts across many insects [60]. They were also

detected in the gut of a solitary bee species, Osmia bicornis [62]. In

agreement with Koch et al. [20], we did not find the honeybee

symbionts Gilliamella apicola and Snodgrassella alvi. The latter

was implicated in the protection of bumblebees against Crithidia
bombi [25].

Lactic acid bacteria (LAB) were present in nine out of ten

colonies, but only the two Tetragonula species contained LAB that

are closely related to other stingless bees and honeybee associated

LAB, i.e. belong to the host-specific Firm4 and Firm5 clusters.

Interestingly, neither our study nor the study of Vasquez et al. [29]

found LAB of the Firm3 cluster in stingless bees. The Firm3 cluster

is the most derived cluster of LAB associated with bees and may be

honey- and bumblebee-specific, while Firm4–5 LAB are shared by

honeybees, bumblebees and stingless bees across geographical

regions. However, the absence of LAB of the Firm4–5 cluster in A.
australis indicates that they are not present in all corbiculate bee

species that propagate through colony fissioning as suggested by

McFederick et al. [32].

In addition to the Firm4–5 clusters, we identified a novel cluster

of LAB that is closely related to Halictidae-associated LAB in both

A. australis and the two Tetragonula species. Despite its

phylogenetic affiliation with the Lactobacillus buchneri group, this

monophyletic group (comprising LAB associated with Halictidae

and Meliponini) may represent a novel host-specific clade of bee-

associated LAB.

Considering the occurrence of host-specific LAB (particularly

Firm4–5) across corbiculate bees, their presence in stingless bees

appears to be the ancestral state, with A. australis having

secondarily lost the Firm4–5 cluster. This agrees with earlier

studies detecting LAB of the Firm4–5 cluster in other stingless bees

of the genera Trigona, Melipona, and Meliponula [29]. Given the

close phylogenetic affiliation of Austroplebeia with the African

genus Lisotrigona [39], it will be interesting to characterize the

microbial community of additional species in these two genera, in

order to find out how widespread the loss of Firm4–5 LAB is

across stingless bees. Furthermore, investigating the distribution of

LAB of the Halictidae-Meliponini cluster identified in this study

across social and non-social bees may yield novel insights into the

occurrence of host-specific LAB in bees. The widespread

occurrence and potential host specificity of LAB in stingless bees

suggests an important function in the protection against pathogens

[29,35] or in pollen fermentation within nests [30], as has been

demonstrated for honeybees.

Our analysis of the microbiota associated with three Australian

stingless bee species shows that the LAB community associated

with stingless bees resembles that associated with honeybees, but

lacks LAB of the highly host-specific Firm3 cluster and instead

comprises an additional clade of likely host-specific LAB that form

a sister clade to a large cluster of Halictidae-associated lactobacilli.

This finding suggests that LAB are of similar ecological

importance to stingless bees as they are to other corbiculate bees,

but that their composition depends on the phylogenetic back-

ground and geographic region of their hosts. Therefore, stingless

bees represent interesting organisms for understanding the

evolutionary history of the bee-LAB association.

Supporting Information

Figure S1 Rarefaction analysis with the sequencing
data for 10 colonies belonging to three different species
of Australian stingless bees. Different numbers denote

different bee colonies. Aaus = Austroplebeia australis, Tcar =

Tetragonula carbonaria, Thoc = Tetragonula hockingsii.
(TIF)

Table S1 Abundance of 241 operational taxonomic units
(OTUs) across ten colonies of three different Australian
stingless bee species (Aaus = Austroplebeia australis,
Tcar = Tetragonula carbonaria, Thoc = Tetragonula
hockingsii). Taxonomic assignment was done with the RDP

classifier based on the representative sequences for the OTUs.

OTUs associated with the genus Lactobacillus (BLASTn results)

are highlighted in bold print.

(XLSX)

Data S1 Representative sequences for 241 OTUs iden-
tified across ten colonies of three different Australian
stingless bee species. Each sequence is identified by the OTU

number, the species and colony it was found in (Aaus =

Austroplebeia australis, Tcar = Tetragonula carbonaria, Thoc

= Tetragonula hockingsii), and a unique sequence identifier. If an

OTU was detected in multiple colonies, only one colony/species is

indicated.

(FASTA)

Data S2 Alignment of 656 lactobacilli and outgroup
sequences used for the phylogenetic analyses of Meli-
ponini-associated lactic acid bacteria. The sequences

obtained in this study were combined with the Lactobacillus
sequences used in McFrederick et al. [32] as well as the

Meliponini-associated lactobacilli reported by Vasquez et al.

[29], and the resulting sequence set was aligned to the SILVA

SSU database [51] using the SINA aligner [52].

(FASTA)
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