Skip to main content
. 2014 Aug 22;9(8):e106087. doi: 10.1371/journal.pone.0106087

Figure 5. KCNN3 expression and KCa2.3 current inhibition by NS8593 in microglia in differing activation states.

Figure 5

A. Expression of KCNN3 mRNA was quantified using NanoString nCounter analysis in unstimulated primary microglia, and at 6 hr (solid bars) and 24 hr (striped bars) after treatment with 20 ng/ml IL4- or IL10-treatment. B–D. NS8593 inhibits the KCa2.3 current, while AA-861 has no effect. KCa2.3 currents were recorded from MLS-9 microglial cells in the perforated-patch configuration produced by amphotericin B (200 µg/ml) in the pipette. The voltage protocol throughout was a 120 ms-long voltage ramp from −100 to +80 mV from a holding potential of −70 mV. The bath always contained 1 µM TRAM-34 to block KCa3.1 currents. Riluzole (300 µM) was used simply as a tool to activate the KCa2.3 current [21]. B. Upper panel: Representative traces show the current evoked by riluzole with or without 7 µM NS8593. Lower panel: The representative time course (current measured at +80 mV) illustrates KCa2.3 current activation and its inhibition by NS8593. C. Representative currents and time course show that no current was activated when 7 µM NS8593 was present in the bath. D. The current is insensitive to 10 µM AA-861. Note that current activation by riluzole is readily reversible (wash), as we previously showed [21]. E–G. The KCa2.3 current in primary rat microglial cells is inhibited by 7 µM NS8593 under differing activation states. Currents were recorded using the same patch-clamp configuration as described for MLS-9 cells. Upper panels: Representative currents in microglia that were unstimulated (E), or treated for 24 hr with 20 ng/mL IL4 (F) or 20 ng/mL IL10 (G). Lower panels: A representative time course for each cell (current at +80 mV) shows activation by riluzole and inhibition by NS8593.