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Resilience refers to the ability to recover from illness or adversity. At the cell,

tissue, organ and whole-organism levels, the response to perturbations such as

infections and injury involves the acute inflammatory response, which in turn

is connected to and controlled by changes in physiology across all organ systems.

When coordinated properly, inflammation can lead to the clearance of infection

and healing of damaged tissues. However, when either overly or insufficien-

tly robust, inflammation can drive further cell stress, tissue damage, organ

dysfunction and death through a feed-forward process of inflammation!
damage! inflammation. To address this complexity, we have obtained exten-

sive datasets regarding the dynamics of inflammation in cells, animals and

patients, and created data-driven and mechanistic computational simulations

of inflammation and its recursive effects on tissue, organ and whole-organism

(patho)physiology. Through this approach, we have discerned key regulatory

mechanisms, recapitulated in silico key features of clinical trials for acute inflam-

mation and captured diverse, patient-specific outcomes. These insights may

allow for the determination of individual-specific tolerances to illness and

adversity, thereby defining the role of inflammation in resilience.
1. Inflammation as a complex system in trauma, sepsis
and wound healing

Trauma, sepsis and wounds are acute insults to an organism. These events can be

characterized by parameters reflecting magnitude of insult, spatial localization,

and perhaps most importantly, multi-dimensional dynamics driven by initial con-

ditions of injury and infection as well as by parameters reflecting individual-specific

characteristics such as age, gender and comorbidities. It is now appreciated that it is

predominantly inflammation, not the infectious agent or injury, which drives a

feed-forward process that can lead to tissue/organ dysfunction and, under certain

circumstances, death. However, properly regulated inflammation (i.e. an inflamma-

tory response in which the feed-forward loop of inflammation! damage!
inflammation is presumably kept in check through adequate anti-inflammatory

responses) is at the same time completely necessary for the healthy resolution of

these acute insults. An adequately robust inflammatory response is also a process

that underlies muscle growth post-exercise and, perhaps speculatively, resilient

responses to other forms of traumatic stress [1–6].
2. Resilience and inflammation
Resilience in settings such as post-traumatic stress disorder (PTSD) has been

linked to inflammation. One key feature of resilience is the ability to withstand

repeated stress. That is to say, the response to the nth instance of infection,

injury or traumatic event should be as close as possible to the response to the

first event. Inflammation—and multiple other biological processes such as
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neurotransmission—exhibits the phenomenon of precondition-

ing. Preconditioning refers to the effect that an initial stress

exerts on the response to subsequent stress. In the setting of

infection or injury, preconditioning refers to an inflammatory

response to a secondary challenge that can be the same as,

greater than or lesser than the response to the initial challenge

[7–10]. This behaviour highlights the nonlinear nature

of inflammation, and in a sense is the core confounding

feature of inflammation in the clinical setting: it is highly

unlikely that any individual presents with an inflammatory

response that was never preceded by a prior inflamma-

tory response to a similar or different stress. Nonlinear systems

such as the inflammatory response exhibit what might be

considered ‘system memory’, in which the state of the system

at a given time depends upon the prior dynamics of the

system in a non-intuitive fashion that is, nonetheless, amenable

to mathematical modelling and, hence, prediction [11].
140004
3. Computational modelling of complex systems
3.1. Features of, and approaches to, complex systems
The complexity and nonlinearity of the acute inflammatory

response as described above have largely stymied the develop-

ment of novel therapies for acute inflammatory conditions such

as trauma/haemorrhage and sepsis, and systems biology has

been suggested as a means by which to decipher this complex-

ity in order to create new therapies for such complex diseases

[4,12].

Complex systems, be they biological, physical or man-

made, typically exhibit certain key features. These features

include nonlinearity, system properties that cannot be

inferred readily from an analysis of component parts (some-

times referred to as emergent behaviour), and, consequently,

a strong dependence of the system’s outcomes on the sys-

tem’s initial conditions [13–15]. The inflammatory response

exhibits all of these properties [1,10,16]. Systems biology is

an emerging paradigm for tackling such complex biological

systems in a holistic fashion [13–15,17]. Computational mod-

elling is the central tool used to study such complex systems.

Modelling approaches in systems biology span a broad range

of techniques, and can be categorized roughly into correlative

or causative methods, with focus on either learning basic

principles of system organization and function [13,18,19]

or building predictive computational models [18,20]. In the

following, some of these modelling approaches and their

respective strengths and weaknesses are discussed.

3.2. Data-driven models
Statistical-based (also known as data-driven) modelling

approaches, with which most biologists and clinicians are

generally familiar, include regression techniques that build

models predictive within the conditions of the data on which

the models were trained [21]. Although these methods

cannot provide detailed mechanistic insights, they can be

used to understand abstract features of the response, such as

the presence of nonlinearities or the identification of factor

interactions that affect the response. The main drawback of

this class of models is the fact that they often are devoid of

mechanistic insights, and their linearity in the parameters can

over-fit to the data on which they were trained. Associative

methods such as hierarchical clustering may be used to
highlight the natural variability, as well as any overlap,

across experimental or clinical conditions.

Other, less well-known, data-driven modelling tools have

been used in the systems biology realm, including hierarchical

clustering and principal component analysis (PCA) [19]. PCA

reduces a high-dimensional dataset into a few principal com-

ponents that account for much of the observed variance in the

data. When applied to time-series data, PCA may identify

the subsets of the variables under study (genes/proteins, etc.)

that are most strongly representative of the response [19]. In

the setting of inflammation, PCA has been used to gain insights

into the mechanisms by which proposed therapeutic modalities

may function [22]. Similarly, PCA may aid the development of

diagnostics by analysing the cytokine milieu in the blood result-

ing from inflammatory spillover [23]. Recently, in the setting

of human blunt trauma, we used PCA to suggest patient-

specific, early drivers of system inflammation in the form of

‘inflammation barcodes’, followed by hierarchical clustering

of PCA-transformed data to define patient subgroups. PCA/

hierarchical clustering segregated the patients into groups that

differed significantly in their composite measure of organ dys-

function within the first 24 h post-injury and independently of

the specific set of inflammatory mediators analysed. Impor-

tantly, these patients were otherwise highly similar, and

could not be segregated into subgroups based on the raw

inflammation biomarker data [24].

Like most biological processes, inflammation proceeds as a

series of interacting cascades of signalling events that are often

reflected in the production and secretion of inflammatory

mediators that likely form well-coordinated networks [25–33].

In order to better discern organizational aspects of interacting

networks of inflammatory mediators, such as coregulation or

autoinduction, a variety of methods have been developed. Hier-

archical clustering and Bayesian methods use high-throughput

genomic or proteomic data of several time-points and/or con-

ditions to correlate gene expression patterns with function and

infer regulatory networks of correlated genes [34–37]. Focusing

on the dynamics of inflammation, we used a simple network

analysis method used over discrete intervals of data to analyse

the commonality and differences between experimental surgical

cannulation trauma þ haemorrhage in mice versus the sham

procedure (surgical cannulation only) [25].

Among network methods, dynamic Bayesian networks

(DBNs) are particularly suited for inferring directed (causative)

networks of interactions based on the probabilistic measure of

how well the network can explain observed data. DBNs provide

a good platform for incorporating biological knowledge along-

side data in order to increase our knowledge of connectivity in

biological processes, and may be supplemented by additional

experimental evidence and expert knowledge to hypothesize

mechanistic models. We are currently incorporating DBN infer-

ence analysis into our studies of the dynamics of inflammation

in cells, experimental animals and humans [38]. We recently

demonstrated the potential clinical utility of DBN in the setting

of paediatric acute liver failure (PALF). In that study, DBN of

serum inflammatory mediators segregated spontaneous survi-

vors from non-survivors when the raw mediator trajectories

could not. Interestingly, this retrospective analysis showed that

PALF patients selected for liver transplant had similar DBN to

spontaneous survivors [39].

An intriguing possibility, therefore, is that circulating

inflammation biomarkers or other molecules in the blood of

patients with PTSD or related disorders may be amenable
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to analysis using methods such as PCA and DBN. In essence,

this is a form of ‘precision medicine’. Precision medicine is

an emerging concept for diagnosis and treatment based on

quantitative segregation of patients rather than a reliance

on historical diagnostic and staging criteria [40]. In this vein,

as discussed above, we suggest that data-driven patient segre-

gation could differentiate subgroups of PTSD patients based on

markers of resilience in cohorts that could not be segregated

based on clinical or standard laboratory parameters.
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3.3. Mechanistic models
Mechanistic computational models are based on causative inter-

actions, and can be constructed using ordinary differential

equations (ODEs), rules-based models or agent-based models

(ABMs; along with other methods that include hybrid methods).

Mechanistic models have the advantage of potentially being pre-

dictive outside the range of conditions/time-points on which

they were calibrated, and thus can unveil system properties

not immediately obvious from the interactions that are encoded

in the model (so-called emergent phenomena).

Much of the mechanistic modelling work in systems

biology has understandably been in simpler, well-studied

model organisms, but even among studies focused on pre-

clinical science, there has been an overall lack of translation

to the clinical arena. Translational systems biology is a framework

with a focus on translational insights for novel diagnostic or

therapeutic purposes and predictive mathematical models

that inform in silico clinical trials [1,41,42]. Initially formulated

to deal with the clinical challenge of integrating acute inflam-

mation and organ dysfunction in critical illness, this work

expanded to include healing of acute and chronic wounds

and infections in various diseases, and rational dynamic

modulation of inflammation. Under the umbrella of transla-

tional systems biology of inflammation, we and others have

created mechanistic computational models of acute inflam-

mation in sepsis [43–47], endotoxemia [48–62] and trauma/

haemorrhage [48,50,63,64]. In large part, these models (both

ODE and ABM) are based on the typical progression of the

inflammatory pathway described in the preceding section.

Some of these models are purely theoretical [43–47,49],

whereas others are based on data either at the protein

[48,50,63,64] or mRNA [52,53,58–60] level. Similar mechanistic

models have focused on related diseases such as necrotizing

enterocolitis [65–68]. From a translational perspective,

mechanistic modelling of inflammation has led to the gener-

ation of model-based in silico clinical trials [43,45,47,69],

modelling the tissue inflammatory responses of individual

patients [70,71], as well as the inflammatory and organ

dysfunction profiles of large, outbred animals [57].

As a showcase for the capabilities of this type of model-

ling, we constructed a multi-compartment ODE model of

the whole-organism response to blunt trauma, consisting of

‘tissue’ (in which physical injury could take place), ‘lungs’

(which can experience dysfunction) and ‘blood’ (representing

the circulation as well as a surrogate for the rest of the body),

along with inflammatory cells and mechanisms that drive

whole-organism ‘damage’. Individual-specific variants of

this model were generated from clinical data on 33 blunt

trauma survivors. A cohort of 10 000 virtual trauma patients

was generated from the 33 patients’ individual inflammatory

and physiological trajectories. Each virtual patient was then

subjected to three insults of trauma: low/intermediate
Injury Severity Score (ISS) (5–20), intermediate/high ISS

(20–35) and severe ISS (35–50). The in silico distributions of

model variables equated with length of stay in the intensive

care unit, degree of multiple organ dysfunction and interleukin

(IL)-6 area under the curve were in concordance with those

observed in a separate validation cohort of 147 blunt trauma

patients. In the virtual patients, IL-6 was the main driver of

outcome in patients with moderate or severe ISS, and in silico
elevation of IL-6 was predicted to convert survivors to non-

survivors. Non-intuitively, however, simulated outcomes in

the in silico cohort as a whole were independent of propensity

to produce IL-6, a finding verified in a subcohort of blunt

trauma patients whose clinical outcomes and plasma IL-6

levels were independent of high versus low IL-6 single

nucleotide polymorphisms [72].

This study raises the possibility of, at some point, model-

ling key aspects of resilience and generating in silico clinical

trials aimed at testing interventions. Despite the potential for

mechanistic computational modelling as a tool for integrating

and predicting the behaviour of complex systems, this method-

ology does have several drawbacks relative to data-driven

modelling. First, it must be emphasized that mechanistic

models are nearly always abstractions of what is known

about a complex system, because one goal of mechanistic mod-

elling is to discern emergent phenomena or system properties

not encoded explicitly in the model. In the setting of resilience,

much new knowledge must be gained for such an approach to

become feasible, though it should be noted that initial models

could be much less than complete and yet lead to valuable sug-

gestions regarding therapy. Another, related disadvantage of

mechanistic models versus data-driven models is that the mod-

eller—or, perhaps more accurately, the interdisciplinary team

that is trying to create such a mechanistic model [73]—must

determine which of the myriad mechanisms to include, the

level/scale (e.g. molecular/tissue–organ/whole organism/

population) for the model, and the modelling framework

(e.g. ODE versus ABM). As knowledge and data evolve,

mechanistic models can grow in concert and thus yield ever

more quantitative predictions. This is a worthwhile endeavour

because, ultimately, the concept of ever-deeper and wider data

gathering to feed purely data-driven models is simply not feas-

ible. In contrast, mechanistic models have the potential to

streamline and focus the data gathering effort. Indeed,

data-driven models are often much better than mechanistic

models at predicting phenomena that occur within the range

of conditions (e.g. time frame) of the dataset on which they

were trained, whereas mechanistic models generally are

better than data-driven models at predicting phenomena

that occur outside the range of the training dataset. Thus,

the most productive approach may be one that integrates

data-driven and mechanistic models, as discussed below.
3.4. Integrating data-driven and mechanistic models
Although there is overlap between data-driven and mechanistic

modelling, most efforts at elucidating biological mechanisms

from high-dimensional data have traditionally focused on parti-

cular points along this spectrum of computational approaches.

We suggest that gleaning translationally relevant insights into

the inflammatory response and its interconnected (patho)phy-

siology will require integration of methods from across this

spectrum [25,46–50,63,64,74], in order to progress from data
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to models to actionable knowledge and prediction (ideally in an

in vivo or clinical context) [6,75].
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4. Towards modelling of inflammation
in defining resilience

If we define resilience at the purely physical level, we are con-

cerned with the ability to withstand either a single major

challenge (e.g. a major battlefield trauma that results in exten-

sive physical injuries) or repeated instances of more minor

injuries (e.g. multiple instances of concussion) and retain a

high degree of biological/physiological function. A more

nuanced view of resilience would incorporate additional

dimensions such as psychosocial responses to such stresses,

and in this context resilience might be viewed as avoiding

PTSD following major or repeated stress. We view the individual

response to stress as lying on a continuum that spans these two

extremes, and we acknowledge the role of inflammation in med-

iating—and likely connecting—these two extremes. Thus, we

might hypothesize that measuring, modelling and modulating

inflammation could improve an individual’s resilience. This pro-

posed approach would synergize with calls in the literature to

synthesize processes from the cell to the society in dealing with

resilience [76].

How might this be carried out? We would suggest the

following approach. Data would be gathered that would reflect

both individual variability in, and the dynamics of, responses to

stress associated with either favourable or negative resilience

outcome measures. This process would initially involve

gathering multivariate data that reflect multiple facets of inflam-

mation and, importantly, relevant physiological responses.

Data-driven modelling would be used initially to define the con-

trol structures of the inflammatory response, leading to the
generation of reduced mechanistic models, which in turn

would be initially validated in cohorts reflecting multiple out-

come groups. This process would be initiated with a reduced

set of parameters, and expanded iteratively to include

additional inflammatory and physiological parameters. This

process could be expanded to include such variables as the

microbiota [77] as well as factors from the external environment

that are known to modulate the inflammatory response.
5. Conclusions and perspectives
Acute inflammation is in essence a form of multi-scale cell–cell,

tissue–tissue and organ–organ communication. When confined

to the immediate environment of the initiating stimulus,

and when induced only to a level commensurate with the

initiating stimulus, inflammation is generally beneficial and

self-resolving. However, overly robust inflammation can

become self-sustaining and hence harmful. We suggest that an

appropriate inflammatory response in the face of stress, injury

or infection is a necessary part of resilience. Moreover, we

hypothesize that a resilient response to stress is reflected in the

ability to mount repeated, appropriate and self-resolving inflam-

matory responses in the face of repeated challenges. A corollary

to this hypothesis, then, is that self-maintaining or inadequate

inflammation reflects maladaptation and lack of resilience.

We have gained many insights into the inflamma-

tory response through combined experimental/clinical and

computational studies. We suggest that these lessons could

be leveraged to gain insights into the mechanisms underlying

resilience. We further suggest that this combined approach

could be used to define specific biomarkers of resilience in indi-

viduals, and possibly also to define resilience as a surrogate

endpoint in clinical trials using in silico approaches.
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