Focus

rsfs.royalsocietypublishing.org

REVI ew CrossMark

click for updates

Cite this article: Silverman MN, Deuster PA.
2014 Biological mechanisms underlying

the role of physical fitness in health

and resilience. Interface Focus 4: 20140040.
http://dx.doi.org/10.1098/rsfs.2014.0040

One contribution of 9 to a Theme lssue
‘Towards a systems model of resilience’.

Subject Areas:
systems biology

Keywords:

exercise, stress, hypothalamic— pituitary —
adrenal (HPA) axis, autonomic nervous system,
inflammation, neuroplasticity

Author for correspondence:
Patricia A. Deuster
e-mail: patricia.deuster@usuhs.edu

%’Royal Society Publishing

Biological mechanisms underlying
the role of physical fitness in health
and resilience

Marni N. Silverman and Patricia A. Deuster

Consortium for Health and Military Performance, Department of Military and Emergency Medicine,
Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA

Physical fitness, achieved through regular exercise and/or spontaneous phys-
ical activity, confers resilience by inducing positive psychological and
physiological benefits, blunting stress reactivity, protecting against potentially
adverse behavioural and metabolic consequences of stressful events and pre-
venting many chronic diseases. In this review, we discuss the biological
mechanisms underlying the beneficial effects of physical fitness on mental
and physical health. Physical fitness appears to buffer against stress-related
disease owing to its blunting/optimizing effects on hormonal stress respon-
sive systems, such as the hypothalamic—pituitary—adrenal axis and the
sympathetic nervous system. This blunting appears to contribute to reduced
emotional, physiological and metabolic reactivity as well as increased positive
mood and well-being. Another mechanism whereby regular exercise and/or
physical fitness may confer resilience is through minimizing excessive inflam-
mation. Chronic psychological stress, physical inactivity and abdominal
adiposity have been associated with persistent, systemic, low-grade inflam-
mation and exert adverse effects on mental and physical health. The
anti-inflammatory effects of regular exercise/activity can promote behavioural
and metabolic resilience, and protect against various chronic diseases associ-
ated with systemic inflammation. Moreover, exercise may benefit the brain
by enhancing growth factor expression and neural plasticity, thereby contri-
buting to improved mood and cognition. In summary, the mechanisms
whereby physical fitness promotes increased resilience and well-being and
positive psychological and physical health are diverse and complex.

1. Introduction

The importance of physical fitness, regular exercise and physical activity has been
acknowledged for over 7000 years, dating back to ancient Chinese and Greek civi-
lizations [1,2]. Although its importance diminished during various periods of
time throughout history, such as after the fall of the Roman Empire when the
church dominated, during the period of industrialization, and in the Roaring
Twenties when relaxation and enjoyment were most important, its significance
remains widely recognized [2,3]. However, scientific data documenting the essen-
tiality of physical activity for health did not emerge until the late 1800s and early
1900s when epidemiological studies clearly demonstrated that physically inactive
persons were more likely to have coronary heart disease than those who led active
lifestyles [3,4]. Since those first studies, the literature has become replete with evi-
dence that physical inactivity serves a major role in the rising prevalence of
obesity, cardiovascular disease (CVD), hypertension, type 2 diabetes, metabolic
syndrome, insulin resistance, hyperlipidaemia, breast and colon cancers as
well as depression and anxiety [5-10]. Moreover, physical inactivity is the
fourth leading contributor to death worldwide [8].

The above-mentioned chronic, non-communicable diseases/disorders have
also been associated with chronic stress and dysregulated neuroendocrine, inflam-
matory, metabolic and behavioural stress responses, which may contribute to their
comorbid expression [11-14]. In contrast to a physically inactive lifestyle, an active
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lifestyle (i.e. high aerobic fitness) is inversely related to stress-
related health problems and the development of chronic
diseases/disorders [15-19]. Importantly, physical fitness,
whether achieved through spontaneous physical activity or
regular exercise, can confer resilience, defined as ‘the ability to
withstand, recover, and grow in the face of stressors and chan-
ging demands’ [20], and serves as a stress resistance resource
in a variety of ways [21-25]. The biological pathways whereby
regular physical activity might confer resilience include
(i) serving as a buffer against stress and stress-related dis-
orders/chronic diseases, (ii) optimizing neuroendocrine and
physiological responses to physical and psychosocial stressors,
(ili) promoting an anti-inflammatory state, and (iv) enhancing
neuroplasticity and growth factor expression [15-19,26—-35].

In this review, we discuss these possible biological mechan-
isms underlying the beneficial effects of physical fitness on
mental and physical health and resilience. First, the main phys-
iological stress responsive systems—the hypothalamic—
pituitary—adrenal (HPA) axis, the autonomic nervous system
and the immune system—are introduced with a description
of how these systems work together to orchestrate metabolic
and behavioural adaptations to stress and how chronic acti-
vation of these stress systems can lead to dysregulation of
multiple physiological and behavioural systems, maladaptive
stress responses and increased vulnerability for the develop-
ment of chronic disease. We then discuss how physical
fitness can protect against the development of chronic,
stress-related disease and promote health and resilience—by
optimizing function and interaction of these physiological
stress responsive systems and hence minimizing the preva-
lence of biological risk factors for disease. Finally, limitations
regarding available studies are presented. It is important to
note that the terms physical activity and exercise are used inter-
changeably (depending on the literature), recognizing that
exercise represents a planned, structured and regular form
of physical activity, whereas physical activity alone may be
spontaneous and unplanned.

2. The stress responsive systems—
hypothalamic— pituitary —adrenal axis,
sympathetic nervous system and immune
system: from adaptation to disease

The biological mechanisms underlying the relation between
physical fitness and resilience are beginning to unfold and are
both multifactorial and complex. The most important mechan-
isms relate to modulation of the body’s main stress responsive
systems—the HPA axis, the autonomic nervous system and
immune system—and interactions among these systems
[36—40]. The two main neuroendocrine/neural systems mediat-
ing the stress response are the HPA axis, with the resultant
release of glucocorticoids (cortisol in humans and primates;
corticosterone in rodents) and the sympathetic nervous system
(SNS), which releases the catecholamines epinephrine (adrena-
line) and norepinephrine. Activation of these stress responsive
systems coordinates the response of other physiological and
behavioural systems, including the cardiovascular, musculo-
skeletal and nervous systems, in preparation for the ‘fight or
flight’ response, allowing an individual to successfully meet
the demands of the challenge and then bring the body back to
homeostasis [11,12]. The temporal effects of rising levels of

catecholamines and glucocorticoids in the initial phase of the
stress response are stimulatory, to include—mobilizing energy,
increasing heart rate and blood pressure, and enhancing cogni-
tive processes such as alertness, arousal, vigilance and attention
[26,41,42], and also work together to coordinate a ‘stress
response’ in the immune system. Just as an acute stress response
prepares for ‘fight or flight’, the immune system adapts to chan-
ging needs by promoting immune readiness in the form of an
initial inflammatory response. Continued exposure to glucocor-
ticoids also serves an important adaptive role by exerting
suppressive effects in an effort to restore initial brain and
immune activity to baseline levels. Terminating the stress
response in a timely manner is crucial for preventing the
detrimental consequences of overactive neuroexcitatory,
cardiovascular, metabolic and inflammatory responses [12,43].

More specifically, early in the stress response, low (permiss-
ive) levels of glucocorticoids and rising levels of catecholamines
(epinephrine) promote leucocyte trafficking from storage sites
(e.g. the spleen) to the circulation. With continuation of stress,
glucocorticoid levels start to rise and immune cells are
mobilized to the first lines of defence (e.g. skin, lungs, gastro-
intestinal and urogenital tracts, mucosal surfaces and lymph
nodes) to prepare for subsequent immune challenges (e.g.
wounds or infections). If glucocorticoid activation continues,
then immunosuppressive effects are invoked to restore the
immune activity to baseline levels and prevent an overshoot
of inflammatory responses. During prolonged, chronic stress,
high levels of glucocorticoids become maladaptive and inhibit
certain aspects of immune function (cellular/inflammatory)
below a healthy baseline. This leaves the immune system in
an inefficient/vulnerable state to fight subsequent or concur-
rent infection and cancer [12,44,45]. On the other hand,
chronic exposure to glucocorticoids can lead to a state of gluco-
corticoid resistance (reduced glucocorticoid sensitivity), which
could lead to a state of unrestrained/enhanced inflammation
and render one more susceptible to developing inflammatory
disorders [46-50]. In addition, sympathetic activation can
exert pro- and/or anti-inflammatory effects, depending on the
type of adrenergic receptor to which catecholamines bind
[36,51], whereas activation of the parasympathetic nervous
system (both afferent and efferent vagal fibres) has been
shown to exert an anti-inflammatory action [40,52]. Therefore,
HPA axis dysregulation and autonomic nervous system
imbalance can negatively impact immune function.

Acute exercise, as a physical challenge or stressor, activates
these systems in a dose-dependent manner, such that the inten-
sity of the exercise, as well as the duration, determines the
magnitude of the stress response. For example, exercise at a low
intensity (50% of maximal capacity or less) minimally activates
and strenuous exercise (greater than 70% of maximal capacity)
markedly activates the HPA axis as well as the sympathetic
nervous and immune systems [53-56]. Upon termination of
the exercise, the systems are supposed to regain homeostasis.
However, when the temporal profile, duration and / or amplitude
of classically observed, exercise-related stress responses are com-
promised, disturbances in stress responsive systems must be
considered. In other words, when the responses suggest pro-
longed activation rather than returning to baseline, or are
exaggerated beyond what is typically seen, these abnormal
responses may be indicative of stress system dysregulation.

In summary, whereas stress responsive systems are adap-
tive when activated and terminated in a timely manner,
prolonged (or insufficient) activation of these systems can
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cause a variety of maladaptive responses. Specifically, psycho-
logical and physiological effects owing to sustained arousal
(or depression/cognitive dysfunction), metabolic dysregula-
tion and immune dysfunction/inflammation could lead to the
development of various chronic diseases [14,43,44,57,58].
Indeed, dysregulation of the HPA axis, autonomic nervous
system and neural-immune interactions are described in
many stress- and inflammatory-related diseases/disorders
(autoimmune, metabolic, cardiovascular, psychiatric and
somatic) [13,39,57,59,60]. By contrast, individuals who rate
high on well-being and stress resilience tend to show the
opposite biological profile, to include lower cortisol levels, sym-
pathetic activity, pro-inflammatory markers and metabolic and
cardiovascular risk factors than those who rate low on these
indices [61-64]. To this end, the science showing how regular
exercise, physical activity and physical fitness promote a heal-
thier and more resilient biological profile than an inactive
lifestyle is presented.

3. Physical fitness serves as a buffer against
stress and stress-related disorders/chronic

diseases

The literature is replete with studies showing that regular phys-
ical activity and/or exercise may provide a protective effect
against stress-related disorders and the development or severity
of many chronic diseases [65-68]. Indeed, stress is highly
associated with various illnesses [17,69-73], and physically fit
persons appear to be less susceptible to life stressors, in particu-
lar with regard to illnesses [17,74,75]. A comprehensive review
of the literature concluded that the majority of studies (both
cross-sectional and prospective) found regular exercise to
be an effective stress buffer: people with high exercise levels
exhibit fewer health problems when they encounter stress
[18]. However, the optimal amount and type of exercise
necessary for maximal protection are not known. Several
meta-analyses and reviews have shown that physical fitness
and regular exercise buffer against behavioural stress disorders,
such as depression and anxiety [76-82]. High physical (aerobic)
fitness is also inversely related to metabolic stress-related dis-
orders, such as obesity, CVD, type 2 diabetes and metabolic
syndrome [16-19,33].

Interestingly, findings from a recent meta-analysis
suggest that poor cardiorespiratory fitness is an independent
and a better predictor of mortality than obesity, and that the
risk for all-cause and cardiovascular mortality is higher in
individuals with normal body mass index (BMI) and poor
physical fitness, compared with individuals with high BMI
and good physical fitness [83]. Additionally, people who
exercise regularly report a higher quality of life and improved
health status—both physically and mentally [18,84]. A recent
meta-epidemiological study of randomized controlled trials
found that exercise is equivalent to pharmacological inter-
ventions in terms of mortality benefits in the secondary
prevention of coronary heart disease and the prevention
of diabetes, and even more effective than drug treatment
among patients recovering from stroke [85]. Exercise also
compares favourably with antidepressant medications as a
first-line treatment for mild-to-moderate depression and has
also been shown to improve depressive symptoms when
used as an adjunct to medications [76,81]. Moreover, exercise

appears to be equal to or better than other interventions (e.g. [ 3 |

cognitive behavioural therapy, but not pharmacotherapy) for
the treatment of anxiety [77,81]. Thus, regular exercise and
physical fitness are key to maintaining good health and
may serve as viable therapeutic interventions for many
chronic and stress-related diseases.

The beneficial effects of physical activity on positive mood
are also well recognized [84,86,87]. Indeed, relative increases in
cardiorespiratory fitness and habitual physical activity are
dose-dependently associated with greater emotional well-
being and lower depressive symptomatology in both men
and women [6]. In addition to cross-sectional studies, longi-
tudinal studies have demonstrated positive effects of exercise
training and regular physical activity, and negative effects of
exercise withdrawal, on mood and depressive symptoms
[32,88-92]. Following eight weeks of physical training (jog-
ging), adolescent females with depressive symptoms showed
significant decreases in total depression scores, which were
associated with reduced stress hormone levels—24 h urinary
cortisol and epinephrine excretion—and increased cardiore-
spiratory fitness [88]. Interestingly, we demonstrated that
when someone who exercises regularly is forced to abstain
for two weeks, negative mood increases significantly and this
increase is related to a decrease in fitness [89,92]. In addition,
reduced baseline parasympathetic nervous system activity, as
measured by heart rate variability (HRV), predicted the devel-
opment of negative mood after deprivation of exercise [92].
These findings are relevant to understanding the effects of
both exercise maintenance and short-term exercise withdrawal.
Overall, the findings suggest that the relationship between
physical fitness and mood may be mediated in part by the
status of stress responsive systems.

Taken together, regular exercise and physical activity are
key buffers against stress and many chronic and stress-related
diseases/disorders. Possible biological mechanisms under-
lying the stress-buffering and health-promoting effects of
physical fitness include: blunting/optimizing neuroendocrine
stress (HPA and SNS) responses [26-29], reducing inflam-
mation [30-32] and increasing growth factor expression and
neural plasticity [33-35]. These pathways to better health
and resilience are discussed in the following sections.

4. Physical fitness blunts/optimizes
neuroendocrine and physiological responses
to physical and psychosocial stressors

As noted earlier, an acute bout of exercise is a quantitative
stressor such that the intensity of the exercise dictates the mag-
nitude of the stress response [53,54,93,94]. Importantly, our
group has shown marked variability in stress reactivity
within a normal population at the same relative exercise
intensity [55,56,89,92,94-105]. Specifically, some individuals
show marked increases in adrenocorticotropin releasing hor-
mone, cortisol and inflammatory responses, whereas others
have blunted responses. These data support a plethora of
human studies illustrating that some persons are inherently
hypo- or hyper-reactive to stress [99,106,107]. Of note, persons
highly reactive to physical stress (i.e. an acute exercise chal-
lenge) also appear to be highly reactive to mental stress [104];
whether this inherent stress reactivity dictates intrinsic inflam-
matory reactivity remains to be determined [55,108]. Overall,
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improvements in physical fitness have been related to a
reduction in stress reactivity—for both physical and mental/
psychosocial stressors [99,109-118].

One important point with regard to HPA axis and SNS
responses to exercise at the same absolute workload, as
opposed to the same relative workload, is that physically fit
persons have significantly lower responses than unfit persons
[53,94,119,120]. However, if a physically inactive person par-
ticipates in a well-designed exercise programme for six to
12 weeks, then their HPA and SNS responses after training
will be significantly lower than prior to training. This demon-
strates that those with a high aerobic fitness are better able
to tolerate intense workloads and be minimally stressed by
low ones compared with low physically fit individuals
[53,54,93,94]. A high level of aerobic fitness also appears to
confer protection against non-physical stressors—mental
and/or psychological [109,119,121,122]. For example, Rimelle
et al. [123] documented significantly lower cortisol and heart
rate responses to psychosocial stress (Trier social stress test) in
trained men compared with untrained men. Moreover, sig-
nificantly greater calmness and better mood, and a trend
towards lower state anxiety, were noted in these trained
men during the stress protocol. In addition, higher aerobic
fitness among older women has been shown to attenuate
age-related increases in HPA axis reactivity, as indicated by
a blunted cortisol response to psychological stress [124].
High-fit individuals also exhibit reduced cortisol responses
to a combined challenge of physical (cycling) and mental
stress [119].

Whereas reduced HPA axis reactivity to a given stressor
has repeatedly been reported in physically fit individuals, the
finding of reduced sympathetic reactivity is less consistent.
Both blunted and augmented catecholamine stress responses
have been demonstrated in high- versus low-fit persons
during exposure to psychological stressors [120,125]. Along
these same lines, de Geus et al. [111] showed that aerobic fitness
was associated with higher cardiovascular reactivity to mental
stress, but lower heart rate and blood pressure at rest and
during recovery. Although highly fit and untrained individ-
uals have also been shown to exhibit similar cardiovascular
and SNS responses to a novel task, fit individuals exhibit
attenuated responses upon repeated exposure to the task
[109]. This suggests highly fit persons are able to adapt more
rapidly to novel stressors than those who are unfit. Meta-ana-
lytic reviews have also shown both positive and negative
associations between fitness and cardiovascular reactivity
[28,29,110]: those with higher fitness levels may exhibit slightly
greater cardiovascular reactivity to some acute laboratory stres-
sors, but overall they demonstrate better (more rapid) recovery,
which indicates a more optimized stress response compared
with low-fit individuals [28].

With regard to immune reactivity to an acute stressor,
higher physical fitness is associated with lower inflammatory
cytokine responses to a mental stressor, as well as a less
pronounced reduction in HRV, indicating greater parasympa-
thetic control [126]. Regular exercisers also show attenuated
leucocyte trafficking and adhesion molecule expression in
response to a mental stressor compared with less physically
active individuals [127]. Overall, these data suggest that fit-
ness may be an important confounder in studies of stress
reactivity, and that low fitness could increase stress respon-
sivity by altering HPA axis, autonomic nervous system and
immune functioning.

In summary, these findings are consistent with the concept
of physiological toughening as a mechanism by which regular
exercise can improve stress tolerance [113,128]. Whereas acute
exposure to a psychological or physical (e.g. exercise) stressor
might induce a transient stress response (increased HPA,
SNS and inflammatory responses), repeated, intermittent
exposure to that stressor, with enough time to recover in
between, can lead to physiological ‘stress training’ or ‘toughen-
ing’. The biological profile associated with physiological
toughening is characterized by an increased initial catechol-
amine response, followed by a rapid recovery, along with
reduced HPA axis responses. This protective physiological pro-
file appears to be associated with improved performance
during challenging/stressful situations, increased tolerance to
stressors (i.e. reduced behavioural suppression/depression),
increased emotional stability (i.e. reduced anxiety/freezing),
and improved immune function. Importantly, Sothmann
et al. [122] hypothesized the concept of cross-stressor adap-
tation: exercise training serves as an intermittent stressor on
the body that can alter/optimize responsiveness to other
types of stressors (e.g. psychological, cognitive, startle). Thus,
improvements in physical fitness may optimize neuro-
endocrine and physiological responses and adaptations to
physical and psychosocial stressors.

5. Physical fitness promotes an anti-
inflammatory state

Another mechanism whereby regular exercise and/or physical
fitness may confer resilience is through minimizing inflam-
mation. For example, psychological stress, physical inactivity /
low aerobic fitness and abdominal adiposity /obesity have all
been associated with persistent, systemic, low-grade inflam-
mation, and adverse effects on mental and physical health
[129-131]. Systemic markers of inflammation include tumour
necrosis factor alpha (TNFa), interleukin (IL)-1, IL-6, IL-8 and
C-reactive protein (CRP), with elevated basal IL-6 and CRP
levels being closely associated with metabolic syndrome,
obesity, type 2 diabetes, CVD, persistent depressive symptoma-
tology and cognitive dysfunction. Likewise, these conditions,
along with physical inactivity, have been shown to predict all-
cause mortality [132-136]. Pro-inflammatory cytokines can
influence virtually every pathophysiological domain relevant
to depressive symptomatology, including neuroendocrine
function, neurotransmitter metabolism and neuroplasticity,
and ultimately affect behavioural resilience and well-being
[61,137,138]. Indeed, many features of depression overlap
with those of ‘sickness behaviour’, including fatigue, psycho-
motor retardation, anorexia, anhedonia, somnolence, lethargy,
muscle aches, hyperalgesia, cognitive dysfunction and
depressed mood [139-141]. Pro-inflammatory cytokines also
facilitate the mobilization of energy sources to meet the meta-
bolic demands of various internal and external environmental
challenges. Therefore, sustained catabolic effects of an enhanced
inflammatory state may also contribute to an ‘inflammatory’
metabolic syndrome [58].

Interestingly, inflammatory biomarker concentrations, par-
ticularly of CRP, are lower across a wide range of individuals
who engage in regular physical activity as compared with
those who are inactive [31,142]. Many studies have shown
that high aerobic capacity is inversely related to CRP levels
[143-146] and that exercise interventions, both aerobic and
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resistance in nature, reduce levels of CRP [144,147-152]. How-
ever, not all exercise studies have shown a significant effect on
CRP [153-156]. A meta-analytic study by Kelley & Kelley [155]
with five randomized controlled trials reported an approxi-
mately 3% reduction in CRP levels across the exercise groups,
but this was not statistically significant. Negative results may
be related to the lack of isolating subjects with elevated/
high-risk CRP levels (greater than 3.0 mg1~") to begin with.
Moreover, the negative studies found other positive benefits
of exercise, such as improved body composition and physical
fitness, regardless of its effect on CRP levels.

In addition to tracking a change in biomarker expression
over the course of an exercise programme, recent clinical
studies have characterized baseline inflammatory marker
expression to help elucidate which biological mechanisms
are most important in clinical recovery from a disease/dis-
order. For example, in a randomized control trial designed
to assess the relative efficacy of aerobic exercise to augment
selective serotonin reuptake inhibitor (SSRI) treatment of
major depressive disorder (MDD) in treatment-resistant
patients, those who had high basal levels of serum TNFa
were found to have a greater decrease in depressive symptoms
over the 12 week aerobic exercise intervention [157]. Moreover,
a positive correlation between change in serum IL-1B levels
and depressive symptom scores was observed [157]. These
results suggest that high serum TNFa levels may differentially
predict better outcomes with exercise treatment as opposed to
antidepressant medications, wherein high serum TNFa levels
are linked to a poor treatment response [157].

Another mechanism whereby physical fitness and regular
exercise may promote health and resilience is through
changes in body composition, in particular changes in
adipose tissue content. Physical inactivity is typically associ-
ated with an accumulation of visceral fat mass, and increased
abdominal fat is associated with impaired glucose and
lipid metabolism. These compromised biomarkers include
high serum levels of insulin, glucose, and total and low-
density lipoprotein cholesterol [158], as well as enhanced
production of pro-inflammatory cytokines (adipokines), e.g.
IL-6 and TNFa [159], which may all contribute to the devel-
opment of insulin resistance and hyperlipidaemia [160,161].
Interestingly, adipose tissue may account for approximately
30% of circulating IL-6 levels under basal conditions [162].
Although fitter and physically active individuals generally
demonstrate lower levels of inflammatory markers at rest, it
is unclear whether these effects are mediated by adiposity
[31]. Overall, the benefits of regular exercise may, in part,
be attributed to its anti-inflammatory effects via reduction
in visceral fat mass. Proposed mechanisms by which exercise
reduces visceral adipose tissue inflammation include:
reduced adipocyte size, reduced macrophage infiltration,
increased blood flow, increased mitochondrial function,
facilitated fatty acid oxidation, decreased oxidative stress
and improved resistance to cell stress [30,32]. Interestingly,
higher levels of physical activity are associated with lower
basal levels of inflammation (i.e. IL-6, CRP) even after adjust-
ment for adiposity (i.e. BMI and waist-to-hip ratio) [132,163].
In other words, the effect of physical inactivity on these
inflammatory markers is not dependent on obesity, but
rather additive to the presence of obesity.

Another important tissue contributing to the anti-inflam-
matory milieu in a physically fit person is skeletal muscle.
The amount of IL-6 released from contracting skeletal

muscle (myokine) during exercise is dependent on the intensity
and duration of the acute bout of exercise (overall amount of
contracting muscle involved) [164]. This IL-6 promotes an
anti-inflammatory environment by increasing the synthesis
of anti-inflammatory cytokines (i.e. interleukin 1 receptor
antagonist and IL-10) and inhibiting pro-inflammatory cyto-
kines (i.e. TNFa) [159]. Although the IL-6 released from
monocytes/macrophages (including those in adipose tissue)
typically has pro-inflammatory effects [159,165], intramuscular
IL-6 release is associated with activation of distinct signalling
pathways, which may mediate its anti-inflammatory effects
[159]. Monocytes/macrophages are not major contributors to
the IL-6 response to exercise [159]. Contracting muscle-derived
IL-6 during exercise also acts as a hormone-like energy sensor
to stimulate hepatic glucose synthesis and release under con-
ditions of low muscle glycogen concentration [164]. Skeletal
muscle of trained, physically fit individuals is less dependent
on plasma glucose and muscle glycogen for energy substrate
during exercise than muscle from untrained persons [166].
Thus, the need for IL-6-induced stimulation of hepatic glucose
release in the trained individual is less than for untrained, inac-
tive persons. In fact, the more physically active a person is, the
lower their basal, as well as exercise-induced, plasma IL-6
levels appear to be [132,167-169]. Moreover, exercise training
is associated with increased insulin sensitivity in both skeletal
muscle and adipose tissue [170].

Evidence from animal studies also shows that acute stren-
uous exercise increases and exercise training decreases central
nervous system pro-inflammatory cytokine expression [171].
Regular exercise has also been shown to reduce brain inflam-
mation in response to immune challenges, such as stroke
[172] or peripheral infection [173]. And, as in the periphery,
exercise-induced IL-6 production in the brain can exert an
anti-inflammatory and protective role by inhibiting inflamma-
tory TNFa signalling and attenuating neural cell death [174].

Given that regular exercise typically reduces inflammation,
normalizes insulin resistance and improves several character-
istics of metabolic syndrome and depressive symptomatology,
itis plausible that exercise may be especially effective in decreas-
ing the risk for the development of various comorbidly
expressed conditions with low-grade systemic inflammation at
their root. Thus, regular exercise may promote behavioural
and metabolic resilience [30,32-34,129,159,175-179]. Adipose
tissue and contracting skeletal muscle have been reported to
serve as endocrine organs to release molecules (such as cyto-
kines) that orchestrate the metabolism and function of other
organs, including the brain. The balance between the amounts
of visceral adipose tissue and duration and intensity of ‘con-
tracting” skeletal muscle likely serves an important role in the
balance of pro- versus anti-inflammatory cytokines, which
in turn contributes to improved mood, cognition, metabolic
function and overall well-being.

6. Physical fitness enhances neuroplasticity and
growth factor expression

The beneficial effects of physical activity and increased cardio-
respiratory fitness on brain health are well recognized. Chronic
stress, exemplified by high level glucocorticoid exposure,
decreases neurotrophic factor expression/signalling, neuro-
genesis and gliogenesis in the brain [180]; this appears to be
associated with reduced volumes of stress-sensitive brain
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regions (e.g. hippocampal and prefrontal cortex) as well as
depression and cognitive dysfunction [181,182]. By contrast,
regular exercise has been shown to enhance positive mood,
decrease depression and anxiety (as discussed earlier), and
increase cognitive function, such as learning and memory
in both animal and human studies [32-34,171,183-185]. Poss-
ible biological mechanisms mediating these effects include
structural (e.g. increased neurogenesis, synaptogenesis, glio-
genesis and angiogenesis) [186—189] and cellular/molecular
(e.g. altered central monoamine neurotransmission and
increased growth factor expression) [33,186,190-197] changes
in the brain. Together, they can promote enhanced neuro-
plasticity and may be capable of blocking and/or reversing
the detrimental effects of chronic stress on the brain.

One important growth factor that has received much
attention is brain-derived neurotrophic factor (BDNF) [198—
200]. BDNF plays a critical role in integrating behavioural
and metabolic responses to various challenging environ-
ments, including exercise [198-200]. In the hypothalamus,
BDNF inhibits food intake and increases energy expenditure;
in the hippocampus, BDNF promotes synaptic plasticity and
neurogenesis, thereby improving cognitive function, mood
and neuroprotection [198]. Whereas hippocampal and/or
serum/plasma BDNF levels are downregulated by chronic
psychosocial stress and inflammation [138,180,201], central
and peripheral BDNF levels can be upregulated by acute
exercise [33,198,202,203]. Interestingly, brain BDNF has
been shown to be a major source of circulating BDNF [204].
Importantly, a recent systematic review of how acute exercise
and/or training affect peripheral BDNF levels reported that
the majority of human studies showed a transient (exercise
intensity-dependent) increase in serum/plasma BDNF, but
only about 30% showed training-induced increases in basal
and/or acute exercise-induced BDNF concentration [35]. Evi-
dence showing a long-lasting BDNF response to acute
exercise or training is lacking. Thus, studies with prolonged
periods of the training period and in different populations
(i.e. trained versus untrained, healthy versus diseased) are
necessary to elucidate whether basal serum/plasma BDNF
concentrations are influenced by physical fitness and/or
regular activity levels.

In terms of structural changes that may occur with regular
exercise, imaging studies in humans have shown that increa-
sed aerobic/cardiorespiratory fitness is associated with
increased brain grey matter volume and white matter integrity,
especially in the prefrontal cortex and hippocampus [205,206].
Interestingly, stress- and age-sensitive regions of the brain
also seem to be most responsive to the beneficial effects
of a physically active lifestyle. Moreover, aerobic exercise
training-induced increases in hippocampal volume have been
associated with increased serum BDNF levels, and higher
pre-intervention fitness has been shown to be protective
against age-related hippocampal volume loss and cognitive
decline [207]. Exercise-induced increases in BDNF and hippo-
campal volume have also been associated with reduced
depressive symptoms [182,208].

Interestingly, higher basal levels of serum BDNF predict
improved efficacy of a 12 week aerobic exercise programme
in reducing depressive symptoms in treatment-resistant
MDD patients currently on SSRIs [209]. In addition, the thera-
peutic effects of basal BDNF levels appeared to become greater
as BMI increased, suggesting that the effect of the BDNF ‘boost’
from pre-treatment may be even more important in those with

high BMI—a condition usually associated with low peripheral [ 6 |

BDNF levels [209]. Animal studies support the findings of a
synergistic, therapeutic effect of exercise and medication, and
that enhancement of BDNF expression may be an important
element in the clinical response to antidepressant treatment
[210]. Enhanced BDNF is also associated with optimized regu-
lation of energy metabolism and cardiovascular function,
where mice with impaired BDNF expression exhibit elevated
plasma glucose and insulin levels, elevated basal heart rates,
an impaired heart rate response to stress, and are obese [198].

Indeed, low levels of serum/plasma BDNF have been found
in various chronic disease states and metabolic conditions
associated with insulin resistance—neurodegenerative dis-
orders, major depression, impaired cognitive function, CVD,
type 2 diabetes and obesity—and this could be owing to
enhanced inflammation and/or reduced growth factor
expression [198,202,203]. However, not all studies have shown
reduced levels of peripheral BDNF in obese persons, which
may be dependent on the age and gender of the population
studied, as well as the source of BDNF measured (i.e. serum,
plasma, platelets) [211,212]. For example, obese women have
been shown to exhibit elevated levels of serum BDNF and
these BDNF levels were positively correlated with body
weight and BMI [211]. It may be that the increased BDNF
levels observed in obesity are secondary to the positive energy
imbalance associated with this chronic disease state and that
they may represent an adaptive mechanism to counteract the
condition of positive energy imbalance by stimulating energy
expenditure and decreasing food intake. Interestingly, a recent
study by Huang et al. [212] showed no difference in plasma
BDNF levels between obese and non-obese people. However,
when peripheral blood mononuclear cells where stimulated
with lipopolysaccharide (endotoxin), those extracted from
obese people showed an exaggerated BDNF release from their
immune cells, which again may be a protective compensatory
mechanism. Further studies are needed to clarify the exact role
of BDNF in the pathophysiology of obesity and energy homeo-
stasis. In support of the beneficial role of exercise-enhanced
peripheral BDNF expression, Araya et al. [213] showed that
after aerobic exercise training (over 10 weeks), overweight and
obese people exhibited increased levels of serum and platelet
BDNF levels, but no significant change in plasma BDNEFE.
Moreover, these changes were associated with post-training
improvements in anthropometric and metabolic parameters.

Importantly, physical exercise can improve growth
factor signalling directly or indirectly by reducing pro-
inflammatory signalling [33]. Exercise-induced increases in
brain monoamines (norepinephrine and serotonin) may also
contribute to increased expression of hippocampal BDNF
[194]. In addition, other growth factors—insulin-like growth
factor-1 (IGF-1) and vascular endothelial growth factor—
have been shown to play an important role in BDNF-induced
effects on neuroplasticity [33,172,190,192], as well as exerting
neuroprotective effects of their own [33,214,215], thereby con-
tributing to the beneficial effects of exercise on brain health.
Like BDNF, increases in circulating IGF-1 levels in response
to acute exercise are only transient and possibly time-depen-
dent as it relates to chronic training (i.e. increases seen after 12
weeks of training) [216]. Clearly, growth factor expression
and neuroplasticity are fertile areas of research with the
potential to further elucidate mechanisms of how physical
activity and exercise can be powerful preventive and
therapeutic tools for optimal brain health.
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7. Limitations

Studies examining how physical fitness contributes to health
and resilience have limitations that must be acknowledged.
First, some studies have not objectively quantified aerobic fit-
ness (via measuring VO, max) or physical activity (using an
accelerometer/pedometer), which is essential for being able
to accurately interpret the results. Second, further research
is needed to determine the type, frequency, duration and
intensity of physical activity or a prescribed exercise pro-
gramme that optimally confers health benefits. This will
depend on many factors, including population character-
istics—age, gender, life events, genetic predisposition,
current level of physical fitness, body composition/degree
of adiposity, nutritional status and any existing psychological
or physiological pathological conditions. Discrepant results
among studies may also reflect the outcome and assessment
methods used. Likewise, better characterization of biological
markers at baseline is important, to include genetic predispo-
sitions to stress-related disorders, adherence to exercise
programmes, motivation and stress reactivity. Do these bio-
logical markers change over the course of an exercise
treatment/programme? If so, are they stable over a given
period of time after the exercise programme has been com-
pleted? In addition, examining how participants respond to
psychological or physical challenges before and after long-
term exercise interventions may help elucidate which mech-
anisms are most important in preventing the onset of
disease and/or for clinical recovery from a pre-existing dis-
order. These are some of the issues that remain to be
uncovered.

8. Conclusion

Overall, the clinical implications of a physically inactive life-
style are profound, and the literature clearly demonstrates
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