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Abstract

Diffusion-weighted images of the liver exhibit signal dropout from cardiac and respiratory motion,

particularly in the left lobe. These artifacts cause bias and variance in derived parameters that

quantify intra-voxel incoherent motion (IVIM). Many models of diffusion have been proposed,

but few separate attenuation from diffusion or perfusion from that of bulk motion. The error model

proposed here (Beta*LogNormal) is intended to accomplish that separation by modeling stochastic

attenuation from bulk motion as multiplication by a Beta-distributed random variate. Maximum

likelihood estimation with this error model can be used to derive IVIM parameters separate from

signal dropout, and does not require a priori specification of parameters to do so. Liver IVIM

parameters were derived for six healthy subjects under this error model and compared with least-

squares estimates. Least-squares estimates exhibited bias due to cardiac and respiratory gating and

due to location within the liver. Bias from these factors was significantly reduced under the

Beta*LogNormal model, as was within-organ parameter variance. Similar effects were appreciable

in diffusivity maps in two patients with focal liver lesions. These results suggest that, relative to

least-squares estimation, the Beta*LogNormal model accomplishes the intended reduction of bias

and variance from bulk motion in liver diffusion imaging.

Introduction

Quantitative measures derived from diffusion MR images can aid in the diagnosis of focal

and diffuse liver diseases (1). Diffusion images are analyzed by modeling signal attenuation

as a function of b-value (2; 3). Many organs exhibit mono-exponential attenuation, which is

quantified with a single apparent diffusion coefficient (ADC). Liver ADC’s have been

widely reported (4–9). Liver actually exhibits bi-exponential attenuation (10; 11), which is

quantified, under intra-voxel incoherent motion (IVIM) theory (12), with three parameters: a

diffusion coefficient (D), a pseudo-diffusion coefficient (D*) reflecting attenuation of

perfusion (in liver, this number is typically an order of magnitude greater than the diffusivity

of bulk water at 37°C), and a fraction (F) reflecting the proportion of signal from perfusing

spins at b=0. Among focal liver lesions, malignancies generally exhibit low ADC and D,
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reflecting restricted diffusion, while benign lesions such as cysts and hemangiomas have

high ADC and D (4; 13). Cirrhotic liver generally has lower ADC, D*, D, and F relative to

normal liver (14–17). However, poor reproducibility of these quantities remains a barrier to

widespread clinical adoption of quantitative diffusion imaging in liver (1). Reducing the bias

and variance in measurements of IVIM parameters may help address this problem.

Cardiac and respiratory motion are known sources of bias and variance in diffusion imaging,

due to the exquisite motion sensitivity conferred by strong diffusion weighting (5–7; 9; 18–

20). Bulk motion from these physiologic processes causes signal dropout in single shot

diffusion-weighted images (Fig 1). This artifact occurs at specific times in the cardiac and

respiratory cycles, but affects random images acquired during untriggered, free-breathing,

diffusion-weighted sequences. The left lobe of the liver is especially, but not exclusively,

affected due to its proximity to the point of maximal impact of the heart (5; 18). Signal

dropout from bulk motion mimics signal attenuation from diffusion and perfusion, leading to

upward bias and increased variance of ADC and IVIM parameters. In previous studies, liver

ADC’s measured with prospective cardiac triggering had greater mean and standard

deviation during systole than during diastole (5; 6). Liver ADC’s measured during free-

breathing were greater than (20) or equal to (7) those measured during breath-holding. Liver

ADC’s measured with prospective respiratory triggering were greater than (7; 21) or equal

to (9) those measured during breath-holding. Respiratory triggering with a navigator

technique did reduce the standard deviation of ADC relative to breath-holding in one study

(21). Overall, these studies demonstrate that prospective triggering and breath-holding

mitigate the effects of bulk motion on ADC measurement. However, these physiologic

methods limit the efficiency of image acquisition, since artifact-prone times in the cardiac

and respiratory cycles must be avoided. This is problematic when a large number of images

are required, for example, to acquire multiple b-values for IVIM parameter determination, or

to acquire multiple repetitions for increased SNR.

For this study, we developed a method to mitigate bulk motion artifacts that is based on a

reconsideration of the statistical distribution of errors in diffusion images. IVIM parameters

are often derived by minimizing the sum-of-squared error between measured and predicted

signal magnitudes (18). This process is known as least-squares (LS) fitting, and is equivalent

to maximum likelihood estimation under an error model in which signal magnitudes are

assumed to be normally distributed. The validity of that assumption is questionable.

Although the normal distribution closely approximates many of the magnitude distributions

for different coils and reconstructions at high signal-to-noise ratio, those distributions are

derived by assuming normal error in the real and imaginary parts (ie, the cartesian

coordinates) of the complex signal (22). Bulk motion in the presence of a gradient causes,

instead, phase shifts of individual spins (23) (Fig 2). For this reason, it is more appropriate to

express errors from this mechanism in terms of the magnitude and phase (ie, the polar

coordinates) of the complex signal. The Beta*LogNormal (BLN) error model is a statistical

distribution for signal magnitude derived from one set of assumptions about the phase errors

of individual spins. We propose using it in place of LS fitting for maximum likelihood

estimation of IVIM parameters from magnitude diffusion-weighted images. This error

model is distinct from other models of diffusion (2; 3), because it separates attenuation from
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diffusion and perfusion from that of bulk motion. In contrast to other approaches (18; 24),

this method does not require a priori parameter specification to do so.

In this study, we compare IVIM parameters derived from the BLN error model with those

derived from the LS error model. Direct assessment of the accuracy of parameters derived

from each model is not possible, since perfusion does not occur in ex vivo liver phantoms

that could otherwise be used as gold standard reference values (25). However, the effects of

bulk motion vary across the cardiac and respiratory cycles and across the liver. Therefore,

bias from bulk motion can be assessed on the basis of change between different varieties of

cardiac and respiratory gating, and on the basis of differences between left and right liver

lobes. Within-organ variance reveals another aspect of the precision of measurements with

each error model. The purpose of this study is to test the hypothesis that IVIM parameters

have lower bias and variance from bulk motion when estimated with the BLN error model

than when estimated with the LS error model.

Theory

The IVIM theory of diffusion (12) proposes that, in the presence of intra-voxel perfusion,

attenuation will follow a bi-exponential:

[1]

The parameters of this equation are: the signal magnitude (Y), the b-value (b), and D, D*

and F, as defined above. These parameters are often estimated by least squares (LS) fitting,

under an implicit assumption of normally distributed error:

[2]

[3]

The parameters of [Eq 2] are the mean and variance of the normal distribution (μ and σ2).

Two major objections to this assumption can be raised. First, diffusion images have

properties that cannot be represented by a normal distribution, such as non-negative signal,

and negatively skewed errors. Other distributions for signal magnitude, such as the Rician or

noncentral chi-squared distributions, capture the former but not the latter property.

Second, [Eq 2] and [Eq 3] do not capture the fact that bulk motion artifacts arise from a

separate physical mechanism than diffusion and pseudo-diffusion, with a separate effect on

signal magnitude. Bipolar gradients used for diffusion weighting also give rise to phase from

the linear motion of individual spins, as in phase contrast angiography, where:

[4]
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The parameters of this equation are the gyromagnetic ratio (γ), the pulse width (δ) and

separation (Δ), the gradient strength (G), and the velocity of motion (v). The velocity of bulk

motion for spins within a voxel may vary in magnitude, since soft tissue is deformable, or in

direction, since it may emanate radially from the point of maximal impact of the heart (Fig

2). Either phenomenon will cause phase dispersion through [Eq 4]. This residual phase

gradient induced by voxel deformation will cause magnitude attenuation by a factor between

zero and one. The functional form of such attenuation under certain assumptions is given in

(12). Attenuation from bulk motion can be empirically observed (Fig 1e & f), and will be

conflated with the effects of diffusion and perfusion under [Eq 2] and [Eq 3].

We propose an error model in which stochastic attenuation from bulk motion is represented

as a term separate from diffusion and perfusion. In this model, signal magnitude is

distributed as a LogNormal random variate, related only to IVIM diffusion parameters,

multiplied by an independent Beta random variate, related only to bulk motion:

[5]

[6]

We refer to this as the Beta*LogNormal (BLN) error model or distribution (Fig 3). The

parameters of [Eq 5] are the mean and variance of the LogNormal distribution (μ and σ2),

and α. Beta random variates range continuously between zero and one depending on the

parameter α. Multiplication by a Beta random variate represents stochastic attenuation

between zero and the signal maximum. A higher value of α in a voxel corresponds with a

higher probability of acquiring an image unaffected by signal dropout in that voxel. The

Beta form can be derived from an assumption about the distribution of the bulk motion-

induced phase of spins within a voxel over imaging time (see Appendix). The LogNormal

form is chosen to allow for maximum likelihood estimation with a closed-form probability

density function, a considerable computational advantage for parametric map generation.

With sufficiently high signal-to-noise ratio, the BLN error model can be used in place of

other distributions for signal magnitude, such as the normal, Rician, or noncentral chi-

squared. In contrast to these distributions, signal dropout can be captured by the α parameter

of the BLN distribution without affecting estimates of the IVIM parameters.

Methods

Subjects

Approval for human MR imaging was obtained from the local IRB board. A prospective,

observational, single site study was initiated. Six healthy volunteers (5 males and 1 female,

ages 23–46 years old) were recruited. Two patients with focal liver lesions (1 male and 1

female, ages 67 and 64 years old) were also recruited.
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Imaging technique

Diffusion-weighted spin-echo echo-planar-imaging was performed using a 3T GE Signa

Excite MR scanner using the following scan parameters: TE: 61.6 ms, TR: 3500 ms, FOV:

40 cm × 40 cm, matrix size: 64 × 64 and (in an additional scan of volunteers) 92 × 92, k-

space acquisition: 100%, ASSET factor: 2, coil: 8-channel torso coil, fat suppression:

SPECIAL, slice direction: axial, number of slices: 10, slice thickness: 10 mm, slice spacing

2.5 mm. Slices were chosen to span the entirety of the liver and to include the upper pole of

each kidney. For volunteers, the following b-values were acquired: 0, 10, 20, 30, 50, 75,

100, 200, 300, 400, 500, using a single gradient direction (3n1). All b-values are given in

units of [s/mm2]. Multiple single shot (NEX 1) images were acquired at each b-value: 4

repeats for b < 100, 24 repeats for b >= 100. For patients, the following b-values were

acquired: 0, 10, 20, 30, 50, 75, 100, 200, 300, 400, 500, 600, 700, 800, with 4 repeats for b <

100 and 16 repeats for b >= 100. The temporal order of b-value acquisition was randomized

(for example: 10, 500, 200, 30, 10, 40, 200, …). Subjects were instructed to breathe freely

during the course of the exam. A peripheral pulse plethysmography monitor was placed on

the subject’s right 2nd finger and a respiratory bellows monitor was placed around the

subject’s abdomen. Image acquisition was not prospectively triggered. The timing of cardiac

and respiratory triggers during imaging was recorded for subsequent retrospective gating.

The timing of the excitation pulse of each image was recorded as well. Total scan time was

approximately 9 minutes per subject.

Definititions and criteria

The retrospective trigger delay, defined as the time between the excitation pulse of each

image and the immediately preceding cardiac or respiratory trigger, was calculated with in-

house software. The cardiac or respiratory cycle fraction, defined as the retrospective

trigger delay divided by the time interval between immediately preceding and subsequent

triggers (similar to (23)), was also calculated for each image. Retrospective gating was

performed by filtering images to cycle fractions between 0.50–0.75 for cardiac diastole, and

0.20–0.60 for respiratory quiescence, or both. These specific gating thresholds were chosen

on the basis of triggering values from the literature (5) and visual inspection of graphs such

as (Fig 1c & d).

Parameter estimation

In-house software was used to generate maps of maximum likelihood estimates of each

IVIM parameter under the LS and BLN error models. The Levenberg-Marquardt algorithm

(Wuttke J, lmfit version 3.2, http://www.messen-und-deuten.de/lmfit/) was used for LS

estimation of Y0, D, and F of [Eq 1]. Simplex minimization (26) was used for estimation of

Y0, D, F and α of [Eq. 4] under the BLN model. D* was held fixed at 70E-3 mm2/s, on the

basis of previously published results (27). In the BLN error model, α was not allowed to

vary with b-value.

Image analysis

In the scans performed on volunteers, multiple ROI’s were drawn in a magnitude-averaged

b=0 image of every slice in the left (n=86) and right (n=164) lobes of the liver, as well as in
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the kidneys (n=36), spleen (n=67), and the paraspinous muscles of the back (n=112). ROI’s

were drawn to avoid prominent vasculature, and were colocalized between scans performed

at the 64 × 64 and 92 × 92 matrix sizes. The mean value of D and F over all voxels was

calculated for each ROI for both error models.

Statistical analysis

Six tests were performed to compare IVIM parameter estimates from each error model. The

first four tests were structured to evaluate the hypotheses that BLN estimates changed less

than LS estimates as a function of factors associated with bulk motion, since mitigation of

bulk motion artifacts was the intended effect of the BLN model. First, to test whether the

estimates from the BLN error model were different than estimates from the LS error model,

we used mixed effects linear regression, comparing IVIM parameters, using error model as

the fixed effect. The random effects of this and all subsequent regressions were subject and

ROI. Second, to test whether estimates from each error model changed as a function of

gating, we used mixed effects linear regression, comparing IVIM parameters, using gating

variant as the fixed effect. Third, to test whether BLN estimates changed less than LS

estimates as a function of gating, we used mixed effects linear regression, comparing the

magnitude of gating-dependent changes in IVIM parameters, using error model as the fixed

effect. Fourth, to test whether differences between the left and right liver lobes were lower

for BLN estimates than for LS estimates, we used mixed effects linear regression,

comparing IVIM parameters, using error model and liver lobe as the fixed effects, with an

interaction term. Fifth, to test whether differences between organ types were detected by

each error model, we used mixed effects linear regression, comparing IVIM parameters in

the right liver lobe with the left liver lobe, spleen, kidney, and muscle, using organ type as

the fixed effect. Finally, to test whether the variance of BLN estimates was lower than the

variance of LS estimates, we used the variance ratio test to compare the variance of IVIM

parameters within each organ. Each of these six tests was performed using data from the 64

× 64 and 92 × 92 matrix sizes separately. Results from the 64 × 64 matrix size are reported

below, results from the 92 × 92 matrix size are reported in the Supplemental Information.

All statistical tests were performed using the R software package (R Foundation for

Statistical Computing, 2009, http://www.R-project.org) using the nlme library (R Core team,

nlme version 3.1-103, http://cran.r-project.org/web/packages/nlme/).

Results

IVIM parameter maps

Typical IVIM parameter maps derived from each error model, as well as map of α from the

BLN error model, are shown for a volunteer in (Fig 4) and for two patients with focal liver

lesions in (Fig 5).

Comparison of IVIM parameters between error models

The LS and BLN error models produced different estimates of D and F in all cases

(P<0.001) (Table S1), with LS estimates being greater than BLN estimates.
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Comparison of IVIM parameters across gating variants

LS estimates of D and F changed significantly with gating (P<0.01, except for one case

where P>0.1). By contrast, BLN estimates of D did not change significantly with gating

(P>0.1) (Fig 6). BLN estimates of F changed significantly with gating (P<0.01, except for

two cases where P>0.1).

Comparison of gating-dependent changes between error models

Gating-dependent changes in D were significantly lower for BLN estimates than for LS

estimates in all cases (P<0.05) (Fig 7, Table S1). Gating-dependent changes in F were not

significantly different between BLN estimates and LS estimates (P>0.1, except for one

case).

Comparison of lobe-dependent differences between error models

Differences in D and F between the right and left lobes were significantly lower for BLN

estimates than for LS estimates (P<0.001) (Fig 7).

Comparison of IVIM parameters between organs

LS and BLN estimates of D and F in both lobes of liver and in spleen, kidney and

paraspinous muscles of the back are given in (Table S2) and (Fig 8). There were significant

differences between right liver lobe and all other organs for each parameter from both error

models (P<0.01), except for BLN estimates of F when compared between right and left

lobes of the liver (P=0.28).

Within-organ variance of IVIM parameters

The within-organ variance of BLN estimates of D was significantly lower than the variance

of LS estimates of D (P<0.05) in right lobe of liver, spleen and kidney. In left lobe of liver

and back, variance of D was lower for BLN estimates, but not significantly (P=0.12 and

P=0.62).

Discussion

The primary results of this study were that estimates of diffusivity (D) changed significantly

less as a function of gating and liver lobe when derived with the BLN model than with the

LS model. Estimates of perfusion fraction (F) changed significantly less as a function of

lobe when derived with the BLN model than with the LS model. Differences in D and F

between organ types were significant with both error models, as expected. However, the

within-organ variance of estimates of D was significantly smaller with the BLN model than

with the LS model, except in left liver lobe and in muscle, where variances were not

significantly different. Results were similar at two different matrix sizes (see Supplemental

Information). Similar effects were appreciable in diffusivity maps in two patients with focal

liver lesions (Fig 5).

Under the assumption that diffusion compartment sizes do not change during the cardiac or

respiratory cycles or between different locations in healthy liver, gating- and lobe-dependent

changes in IVIM parameters are a reflection of bias in the measurement technique. By that
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assessment, BLN estimates of diffusivity and perfusion fraction were less biased than LS

estimates. Within-organ variance of diffusivity was lower for BLN estimates as well. Such

invariance could indicate a reduction in sensitivity to true effects. However, differences

between organ types were significant for both error models, suggesting that sensitivity to

true effects is preserved. With its sensitivity to true effects and its relative invariance to

known confounders, the BLN error model is likely to improve the reproducibility of IVIM

parameter measurement.

In previous studies, estimates of liver ADC were generally lower during diastole than during

systole, and lower during breath-holding than during free-breathing or respiratory triggered

scans. This likely reflects positive bias from cardiac and respiratory motion. Our results are

consistent with these expectations in two ways. First, retrospective gating to quiescent

phases of the cardiac and respiratory cycles generally reduced LS estimates of both D and F,

consistent with reduction in bias through gating. Second, BLN estimates of D and F were

generally lower than LS estimates, consistent with reduction in bias through use of the BLN

error model.

BLN estimation has advantages over physiologic methods for mitigating the effects of bulk

motion on diffusion parameters. Breath-holding limits the number of images that can be

acquired. Retrospective gating and prospective triggering, from either navigators or

monitors, limit the rate of image acquisition. For instance, the thresholds used for combined

cardiac and respiratory gating in this paper resulted in using approximately 10% of acquired

images for parameter derivation. The BLN error model can utilize all of the images acquired

during an untriggered, free-breathing scan. To do so, it must estimate an extra parameter α

from the data to quantify the degree of signal dropout in each voxel. This presents a trade-

off between the amount of data used in each approach and the number of parameters derived

from it. However, that trade-off favors using the BLN model in untriggered, free-breathing

scans, since it allows the use of 10 times more data (relative to gating using the same

amount of scan time) at the cost of estimating only a single extra parameter. An important

implication for clinical sequences is that repeated single shot images must be obtained, since

α can only be estimated from the distribution of signal intensity, which is lost by averaging

over multiple excitations. Inferring this parameter from the data constitutes an advantage of

the BLN error model over other algorithmic methods that require a priori parameter

specification (18; 24). Similarly, the BLN error model requires no specification of the gating

or triggering thresholds used in physiologic methods.

This study had several limitations. First, the population statistically analyzed was small,

homogeneous, and healthy. Results may not be generalizable to patients, and provide no

information about focal or diffuse liver diseases. Second, the diffusion gradient direction

was held constant, since liver is isotropic (4) and signal dropout is anisotropic according to

previous studies (5; 28). Parameters reported here will not be comparable to parameters

measured isotropically if there is any anisotropy in D, F or α. Third, BLN estimates were

made using a single α for all b-values. There may in fact be a relation between α and b-

value (see Appendix). Fourth, this work used relatively small matrix sizes and relatively

large voxel sizes, to achieve a high signal-to-noise ratio that justifies comparison with the

normal distribution instead of coil- and reconstruction-specific distributions. Matrix sizes for
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diffusion-weighted echo planar imaging in the recent literature range widely, from 64 × 64

in a study of phase errors in single shot images of brain (23), to 80 × 80 and 120 × 256 in

two different sequences in a study of IVIM parameters in liver tumors (30), to 144 × 192 as

proposed in a review of liver diffusion imaging (1). Our study does not address the optimal

matrix size for diffusion imaging, an important question given the low signal-to-noise ratio

of small voxels in single shot imaging. Fifth, differences in diffusivity between the left and

right liver lobes persisted even with the BLN error model, though they were smaller than

with the LS error model. Work is required to investigate how these differences can be

reduced further. Finally, our results show greater improvement in estimation of diffusivity

than in estimation of perfusion fraction, likely for two reasons. First, our method mitigates

signal dropout, which occurs at high b-values, while perfusion fraction is measured at low b-

values. Second, our pulse sequence sampled relatively few low b-values, and may be

inadequate for precise perfusion fraction estimation by either method.

Bulk motion causes stochastic signal dropout in diffusion images, as well as bias and

variance in IVIM parameters derived from them. Maximum likelihood estimation of IVIM

parameters under the BLN error model reduces bias and variance from bulk motion relative

to LS estimates. Diffusion parameters from ungated, free-breathing protocols may have

greater utility for diagnosis of liver diseases when estimated with the BLN error model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

The mathematical tractability of the Beta*LogNormal error model allows three results. Note

that we use a three-parameter version of this distribution, defined as the distribution of the

product of independent Beta(α,1) and LogNormal(μ,σ2) random variates, rather than the four

parameter version given in (29).

First, the probability density function (PDF) of the Beta*LogNormal distribution can be

expressed in closed form:

[A1]

A closed form PDF facilitates maximum likelihood parameter estimation. While we assign

the second parameter of the Beta distribution to 1, we do not modify this assignment.

Therefore, this approach is frequentist and not Bayesian. While this PDF involves the “error

function” erf, implementations of erf are available on most computational platforms.

Therefore, it is not a barrier to efficient maximum likelihood estimation. Method of

moments estimators for α and σ2 when μ=0 can be determined by solving the following set

of equations, one of which is a quartic but is, again, not a barrier to efficient computational

calculation:

[A2]

[A3]
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Second, the Beta*LogNormal distribution can be related to bulk motion-induced phase

errors, which are the mechanism behind the signal dropout artifact. Beta-distributed

attenuation of signal magnitude over imaging time will arise from any distribution of intra-

voxel phase errors (φ) for which the following relation holds:

[A4]

The bracket notation in [Eq A4] represents expectation value over the voxel, and the pipe

notation indicates absolute value of the complex argument. A statistical distribution for

phase error which satisfies this equation is:

[A5]

This relation implies that phase errors are normally distributed within the voxel, but are

scaled by a Rayleigh-distributed random variate. Random scaling of the phase error arises

because the velocity of bulk motion is, essentially, a random number whose value varies

between images acquired at different points in time. This polar model of error better reflects

the mechanism of signal dropout artifacts, since bulk motion leads to phase errors through

[Eq 4]. Therefore, it is preferable to cartesian models of error that underlie least-squares

fitting.

By [Eq. 4], phase from linear motion of spins is proportional to gradient strength and to

velocity. For this to be true under [Eq. A5], the same proportionality must hold for the scale

parameter of the Rayleigh random variate, since the wrapped normal variate is constrained

by definition to [0,2π]:

[A6]

This predicts the relation of α with b-value, since b-value is proportional to the square of

gradient strength. Relative to α at b=1 s/mm2, αi at another b-value will be:

[A7]

That is, αi should scale inversely with b-value. This may guide the choice of b-values to

sample in a diffusion protocol, since αi < 1 results in a magnitude distribution whose mode

is zero (Fig 3). In this work, we assumed a fixed α for all b-values, since there are

mechanisms other than [Eq. 4] (such as the time-of-flight effect) which could cause

stochastic magnitude attenuation but no relation between αi and b-value. [Eq. A5] also

predicts that:
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[A8]

That is, α−½ is a measure of the distribution of the velocity of bulk motion in the direction of

the gradient over imaging time. This result may allow quantification of “pseudo-anisotropy”

(ie, signal dropout that depends on the gradient direction) that has been reported previously

(28).

Third, the relation between Beta*LogNormal error and bias in diffusivity estimates can be

calculated analytically. If Yi is distributed according to [Eq. 5] with F=0, then the

distribution of a simple estimator of diffusivity is as follows:

[A9]

[A10]

[A11]

That is, Dest is an unbiased estimator of D in the presence of LogNormal error alone.

However, in the presence of Beta error, Dest is biased by a number inversely proportional to

α and the average b-value. Bias will always be positive since α > 0 in the Beta distribution.

Bias will be greater in locations with low α and in protocols that use low b-values to achieve

short echo time for short T2 organs like liver. Similar bias is apparent in the relation of α

with LS estimates of D (Fig 8).

In addition to these three benefits, the relation between this error model and the previously

described p-means approach (18) can also be determined. If X is distributed as the product

of a Beta random variate, reflecting signal dropout, and the correct value c, then the p-mean

of X will approach the expectation value of Xp, which can be calculated analytically.

[A12]

[A13]

For the p-mean algorithm to correct X to c, requires that this c be equivalent to the

expectation value.
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[A14]

[A15]

[A16]

This gives a relation between α, c and p. Although there is no closed form solution to this

equation, it demonstrates that α and c determine the value of p that will correct a certain

amount of signal dropout within a voxel. Since, α and c vary spatially, use of the same value

for p in all voxels may be inappropriate.
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Figure 1. Signal dropout from bulk motion in DW-SE-EPI
Diffusion weighted images of liver are affected by signal dropout from bulk motion at

specific times in the cardiac and respiratory cycles. In (a, b), two single shot images

acquired at the same b-value (b=500 s/mm2) and slice, but at different times in the scan, are

shown. The entire left lobe of the liver, a portion of the right lobe, and most of a small focal

lesion are greatly attenuated in (b) relative to (a). In (c, d), variation of signal intensity at a

single b-value (b=500 s/mm2) is shown for an ROI in the left lobe (c) and for an ROI in the

right lobe (d). Signal intensity is plotted versus the time during the cardiac and respiratory

cycles at which the image was acquired (defined as ratio of retrospective trigger delay to

trigger interval, for peripheral pulse monitor and respiratory bellows monitor respectively).

Trendlines (cyclic cubic splines through centroids of 7 bins) are shown (curves). Gating

thresholds, within which signal was maximal and change was minimal, are indicated

(vertical dashed lines, cardiac: 0.5–0.75, respiratory: 0.2–0.6). In (e, f), magnitude and phase

of a diffusion weighted image (b=500 s/mm2) are shown. There is rapid change in phase (f)
as the region of signal dropout in the left lobe is approached (e). This suggests a mechanism

of attenuation other than diffusion, which causes no net phase.
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Figure 2. Phase dispersion induced by non-rigid body motion
During a bipolar gradient, the phase of a spin within a voxel is shifted by motion according

to [Eq 4]. If the voxel does not move as a rigid body, spins in different locations within the

voxel will experience different phase shifts, leading to phase dispersion. Magnitude

attenuation from this mechanism will occur in addition to that from diffusion. The

Beta*LogNormal distribution models attenuation from bulk motion and attenuation from

diffusion separately.
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Figure 3. The Beta*LogNormal distribution
The probability density function of the Beta*LogNormal distribution is shown for increasing

values of α, at constant exp(μ)=1 and σ2=0.01. Lower α produces negative skewness relative

to exp(μ), reflecting signal dropout. Higher α produces a distribution similar to other signal

magnitude distributions.
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Figure 4. IVIM parameter maps
Typical parametric maps of D (a, b) and F (c, d) from the LS (a, c) and BLN (b, d) error

models derived from images from an ungated scan of a volunteer are shown at matrix size

92×92. Diffusivities in the left lobe of the liver are appreciably greater in (a) than (b). Map

of α from the BLN error model is shown as well (e). Low α indicates areas of high

stochastic signal dropout. Units for gray-scale bars are 1E-3 mm2/s (a, b), [%] (c, d), and

unitless (e).
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Figure 5. Diffusivity maps in two patients with focal liver lesions
LS (a, b, c, d) and BLN (e, f, g, h) error models were used to generate parametric maps of D

without gating in two patients with focal liver lesions. Two contiguous slices are shown for

each patient. The first patient (a, b, e, f) had a 5 cm cyst in the right liver lobe. The second

patient (c, d, g, h) had multiple lesions, including two 1 cm cysts in the left liver lobe. In the

LS maps, diffusivity is artifactually elevated in the liver parenchyma to the left of each

lesion (arrows), reducing contrast between lesion and parenchyma, and potentially leading to

incorrect classification of the lesion as benign or malignant. This effect occurs because of

signal dropout from cardiac motion, and is mitigated in the BLN maps. Window and level

settings are the same for all images. Units for gray-scale bars are 1E-3 mm2/s.
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Figure 6. Gating-dependent changes in D
Estimates of D in the left lobe of the liver of six subjects were derived with the LS (a) and

BLN (b) error models using four varieties of gating: (ungated: NONE, respiratory gated:

RESP, cardiac gated: CARD, cardiac and respiratory gated: BOTH). Median and 25–75%

quantiles are shown. LS estimates changed significantly (P<0.01) as a function of gating,

indicating bias from bulk motion at specific phases of the cardiac and respiratory cycles.

BLN estimates did not change significantly as a function of gating (P>0.1). Since absence of

significant differences can be due to increased variance rather than closer means, further

tests were performed to exclude that possibility.
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Figure 7. Gating- and lobe-dependent changes in IVIM parameters
Estimates of D (a–c) and F (d–f) in parametric maps derived from LS (triangle) and BLN

(circle) error models were measured in multiple ROI’s colocalized across four gating

variants (a, b, d, e) in the left (a, d) and right lobes (b, e) of the liver. The ungated left and

right lobe estimates are shown in (c, f). Median and 25–75% quantiles are shown. P-values

are shown for the hypothesis that BLN estimates changed less than LS estimates as a

function of gating or lobe. P-values annotated with (#) support the opposite hypothesis.

Gating- and lobe-dependent changes in D and lobe-dependent changes in F were

significantly lower for BLN estimates than for LS estimates (P<0.05).
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Figure 8. IVIM parameters as a function of organ type
Estimates of D (a, b) and F (c, d) derived from the LS (a, c) and BLN (b, d) error models

were measured without gating in multiple ROI’s in liver, spleen, kidney, and paraspinous

muscles of the back. Median and 25–75% quantiles are shown above. There were significant

differences between the right lobe of the liver and each other organ type, including the left

lobe, for both parameters from both error models (P<0.01, except for one case). The

variance of D was significantly lower for BLN estimates than LS estimates for each organ

type (P<0.05), except for the left lobe of liver (P=0.12) and for muscle (P=0.61). Variance of

D was reduced in the left lobe of the liver, but not by a statistically significant amount.

Estimates of D from the LS (e) and BLN (f) error models are plotted as a function of α for

ROI’s in each organ type (right liver lobe: blue, left liver lobe: cyan, spleen: magenta,

kidney: orange, muscle: red). Every variety of gating for three voxel size variant scans is

included. In liver, an inverse relationship between D and α, similar to that predicted by [Eq.

A11], can be appreciated for LS estimates, which is reduced though not eliminated for BLN

estimates.
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