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Abstract

For four decades, liposomes composed of both naturally occurring and synthetic lipids have been

investigated as delivery vehicles for low molecular weight and macromolecular drugs. These

studies paved the way for the clinical and commercial success of a number of liposomal drugs,

each of which required a tailored formulation; one liposome size does not fit all drugs! Instead, the

physicochemical properties of the liposome must be matched to the pharmacology of the drug. An

extensive biophysical literature demonstrates that varying lipid composition can influence the size,

membrane stability, in vivo interactions, and drug release properties of a liposome. In this review

we focus on recently described synthetic lipid headgroups, linkers and hydrophobic domains that

can provide control over the intermolecular forces, phase preference, and macroscopic behavior of

liposomes. These synthetic lipids further our understanding of lipid biophysics, promote targeted

drug delivery, and improve liposome stability. We further highlight the immune reactivity of novel

synthetic headgroups as a key design consideration. For instance it was originally thought that

synthetic PEGylated lipids were immunologically inert; however, it’s been observed that under

certain conditions PEGylated lipids induce humoral immunity. Such immune activation may be a

limitation to the use of other engineered lipid headgroups for drug delivery. In addition to the

potential immunogenicity of engineered lipids, future investigations on liposome drugs in vivo

should pay particular attention to the location and dynamics of payload release.
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1. Introduction

Lipid vesicles, or liposomes, are micro- or nano-structures formed from a bilayer of lipid

surrounding an aqueous core. In the past 30 years they have been widely used to modify the

pharmacokinetics, biodistribution, and cellular trafficking of drugs, nucleic acids, and

proteins. Liposomal therapeutics have had preclinical and commercial success with more

than 46,000 publications, 850 patents, and 13 clinically approved liposome agents with

greater than $750 million in revenue in 2011. These drugs continue to advance through the

clinic, and the results from a number of pivotal phase III trials, including those from

Merrimack Pharmaceuticals (NCT01494506) and Celator Pharmaceuticals (NCT01696084),

will be available in the next 18 months.

Liposomes can be tailored to deliver a range of cargo using a diverse toolbox of lipids with

well-characterized biophysical behavior. Lipids in this toolbox can be naturally occurring or

rationally designed using a variety of hydrophilic headgroups, linkers, and hydrophobic

moieties. Selecting the appropriate combination of lipids and the method of assembly

provides control over liposome macrostructures, biophysical characteristics, and subsequent

in vivo behavior.

At the most fundamental level, the properties of a liposome depend upon the subtle

physicochemical interactions among the various lipid species in its composition. A wealth of

research has focused on the design, synthesis and characterization of naturally occurring and

synthetic lipids. Individual lipids can be combined to form a myriad of superstructures

including bilayers, and bilayer properties can be tuned to modulate drug release and

membrane stability (Figure 1A,B). In a simplified bilayer model acyl chain length dictates

bilayer thickness and phase transition temperature (Tm), acyl chain saturation controls

bilayer fluidity, and headgroup interactions impact inter- and intra-lipid molecular forces

(Figure 1B). Liposome behavior can be adjusted by incorporating synthetic lipids such as

lipid prodrugs, fusogenic lipids and functionalizable lipids into the bilayer (Figure 1C). As a

result, there have been 50 years of synthetic efforts to develop novel lipids with properties

that improve delivery while maintaining low cytotoxicity and immunogenicity. A number of

databases classify lipids by structure [1], organize information related lipid Tm and phase

preferences into phase diagrams [2], or detail methods for liposome characterization

(cyberlipid.org; lipidmaps.org). This abundance of information provides accessible

resources to guide the development of lipids for drug delivery.

As a starting point, nature has provided a variety of lipids that have evolved to satisfy

diverse structural and functional purposes. Phospholipids with neutral, zwitterionic, or

anionic headgroups, such as: phosphatidylcholine (PC), sphingomyelin, and

phosphatidylethanolamine (PE), are the primary components of cell membranes and are

essential for membrane stability and intracellular trafficking. Glycerides are neutral lipids

that serve as energy sources and signaling molecules in mammalian cells. Naturally
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occurring anionic lipids, including phosphatidylglycerol, phosphatidylinositol, cardiolipin,

phosphatidic acid, and phosphatidylserine are also found in mammalian cell membranes, and

play a critical role in cellular signaling, lipid-protein interactions, and membrane trafficking

[3–7]. These naturally occurring lipids are components of FDA approved therapeutics such

as Doxil®, AmBisome®, and DepoCyt® [8]. Half a century of characterization of the

physicochemical properties of these lipids allows the lipid engineer to build from a wealth of

structure-function relationships to design systems with control over stability and payload

release.

1.1 Synthetic lipids for drug delivery

There are three key steps in liposomal drug delivery that can be improved with synthetic

lipids: 1) extended circulation of the liposome after intravenous administration, 2) directed

lipid headgroup interactions and cell targeting and 3) controlled payload release (Figure 2,

3). Synthetic lipids can be formulated in liposomes alongside naturally occurring lipids to

serve these structural or functional roles.

After administration, liposomes circulate in the bloodstream and accumulate in tumors by

the enhanced permeability and retention (EPR) effect. Increasing the circulation half-life of

the liposomes allows a higher fraction of the dose to transit to the tumor and increases the

probability that liposomes will extravasate into the tumor parenchyma. Functionalizing lipid

headgroups with polymers, proteins, or peptides, can extend liposome circulation time by

reducing liposome adhesion to mononuclear phagocyte system (MPS) cells and preventing

destabilizing interactions with serum proteins (Figure 2).

The next step in delivery involves delivering payload to specific cell types by attachment of

targeting ligands. While cell targeting is not a requisite liposome characteristic, a number of

next-generation delivery systems look to take advantage of targeting particular cell types. To

that end, engineering lipids with chemistries that allow for facile attachment of proteins,

sugars, or other targeting moieties are of particular interest. In addition to targeting, lipids

with specific and programmable interactions in the headgroup can direct macrostructure

formation and membrane biophysics. Such synthetic lipids can be used to probe the intra-

and inter-molecular forces governing superstructure formation.

In the final delivery step, liposomes must release their cargo in the appropriate tissue or

cellular compartment over the desired timescale. There are a number of ways to control

contents release from liposomes: 1) change the liposome formulation, 2) make the cargo

more hydrophilic such that it loads into the aqueous compartment, and 3) use remote loading

to cause the cargo to accumulate inside the liposome [9]. These techniques are the subject of

a number of excellent reviews and will not be discussed in this article [10]. An additional

method to control liposome contents release relies on including triggerable lipids that are

sensitive to environmental stimuli (pH, shear stress, oxidative environment, etc.) in the

liposome formulation. Such lipids allow for burst delivery in the appropriate cellular

compartment and have been of particular interest in siRNA delivery, where engineered pH-

dependent fusogenic lipids allow for delivery to the cytosol. These lipids have also been

extensively reviewed [11,12]. Herein we focus on a number of alternatives to these

triggerable systems to control liposome functionalization and payload release, including
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lipid prodrugs, lipids with inverted headgroup architectures, and lipids with covalently

attached hydrophobic structural or drug moieties (Figure 2).

While naturally occurring lipids are the workhorses of liposomal systems, clinical advances

would not have been possible without the development of a number of synthetic lipids. In

this review we focus on synthetic lipids developed over the past 10 years to probe certain

aspects of liposome behavior or to improve liposome in vivo stability and therapeutic

activity. We concentrate on lipids for drug delivery and highlight selected successes and

failures of such lipids in animal studies or in the clinic.

2. Lipids that extend circulation

2.1 Polymer headgroup lipids

Conventional liposomes (CL) are cleared from circulation by the phagocytic cells of the

MPS and preferentially accumulate in the spleen and liver [13]. Sterically stabilized

liposomes (SL) are modified on the surface with a hydrophilic polymer that extends from

the surface in a brush or mushroom configuration. This steric barrier around the liposome

decreases protein adsorption to the lipid membrane, conceals surface charge, reduces

liposome adhesion to cell surfaces, and, as a consequence of these factors, extends

circulation time. This prolonged circulation improves the exposure of rapidly eliminated

drugs by extending payload release and drug exposure and improving biodistribution to the

target site. This is especially true for passive targeting strategies that depend on the EPR

effect [14], in which liposomes preferentially escape the poorly organized tumor vasculature

and accumulate near the tumor blood vessels. Steric stabilization further reduces the fraction

of the drug that distributes to the liver, spleen, and bone marrow.

The first SLs incorporated glycolipids such as GM1 ganglioside, cerebroside sulfate, or

phosphatidylinositol [15,16]. A significant breakthrough in the design of SLs came in the

late 1980’s with the attachment of poly(ethyleneglycol) (PEG) to the liposome surface. PEG

increased circulation half-life of proteins and other biomaterials, and it was discovered that

similar effects were achievable by including PEGylated lipids into liposome formulations

[17,18]. Doxil®, a liposomal doxorubicin formulation incorporating PEG-2000-1,2-

distearoyl-sn-glycero-3-phosphoethanolamine (PEG2000-DSPE) is the only FDA approved

PEGylated liposomal therapeutic [19,20]; its development was recently reviewed [21]. By

forming a steric barrier around the liposome, PEG-modified lipids embedded in a lipid

bilayer decrease interactions with serum opsonins, cellular ligands/receptors and other pre-

existing serum factors [22] while reducing adhesion to other membrane surfaces [23].

In the early work on PEGylated proteins it was assumed that PEG was immunologically

inert [17]. However, it is now recognized that PEG can induce an immune response under

certain conditions. Importantly, PEGylated drugs and liposomes can initiate the accelerated

blood clearance (ABC) effect [24]. In this effect, PEGylated materials induce an anti-PEG

IgM response upon the first injection [26]. Subsequent injections are then labeled for

removal and are rapidly cleared from circulation and accumulate largely in the liver and

spleen [24,25]. This effect reduces the widespread utility of PEG.
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Other synthetic polymer-modified lipids also increase circulation half-life by providing a

hydrophilic steric coat, and may serve as alternatives to PEG (Table 1, Figure 4). HPMA

(poly[N-(2-hydroxypropyl) methacrylamide]) [27–29], PVP (poly(vinylpyrrolidone))

[30,31], PMOX (poly(2- methyl-2- oxazoline)) [32,33], PAcM (poly(N-acryloyl

morpholine)) [34,35], PAA (poly(acrylamide)) [36], PG (poly(glycerol)) [37,38], PVA

(poly(vinylalcohol)) [39–41], pNIPAM (poly(n-isopropylacrylamide)) [42], and

pAAs(poly(amino acids)) [43–46] all increase the circulation half-life of liposomes in vivo.

However, inconsistent experimental procedures make it difficult to directly compare these

polymers. While only PMOX coated liposomes demonstrated similar circulation times to

PEG [33], a number of favorable properties could make these alternative polymers a better

choice for certain drug delivery applications [44]. In particular, polymers that avoid the

ABC effect and have a lower viscosity than PEG may be advantageous for the therapeutic

delivery [44]. Future studies should focus on developing, characterizing, and comparing

these polymers.

2.2 Alternatives to polymer headgroups for extending circulation

Polymer coatings for liposomes are limited by their high intrinsic viscosity and their

induction of the IgM-mediated ABC effect. They can also hinder liposome uptake into

diseased cells [50] and fail to stop absorption of serum proteins that promote clearance such

as IgG [51]. Approaches that avoid these limitations have been promising in preclinical

studies. Masking nanoparticles with markers of “self” is also emerging as an alternative

approach to extending liposome circulation. Red blood cell surface proteins have been

investigated as nanoparticle coatings that allow for evasion of the RES. Hu and colleagues

coated PLGA nanoparticles by extruding them along with disrupted erythrocyte membranes

[52]. These nanoparticles, coated in an erythrocyte membrane, had extended circulation

compared to nanoparticles coated with PEG or unmodified nanoparticles in mice. In a more

defined approach, Rodriguez and colleagues computationally designed a 21 amino acid

peptide mimetic of CD47, a marker of self on erythrocytes that impedes phagocytosis by

signaling through phagocyte receptor signal regulatory protein-α (SIRP-α) [51].

Nanoparticles opsonized with IgG were coated with peptide or with a PEG brush. While

PEG had no mitigating impact on macrophage uptake of the opsonized particles in vitro and

in vivo, the peptide prolonged nanoparticle circulation four fold. Further, nanoparticles

coated with hCD47 showed a longer circulation time than those coated with PEG. To our

knowledge, this peptide has yet to be tested in a liposomal system. A number of additional

factors, including shape, surface chemistry, and mechanical properties are under

investigation to improve the in vivo properties of nanoparticles [53]. Going forward, it will

be important to perform controlled studies comparing these alternatives to PEG and other

polymers for extended circulation in vivo. Such studies should place a heavy emphasis on

understanding the immunogenicity of these systems.

3. Immunological considerations in lipid headgroup design

Humoral immune responses to natural and synthetic lipids occur under a myriad of

conditions in various animals [55], and immune responses to drug delivery systems have

been recently reviewed by Jiskoot and colleagues [54]. B cells secrete antibodies when the B
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cell receptor both possesses an affinity for a specific epitope and is activated (Figure 5).

Recognition of antigen by a resting or naïve B cell occurs at the cell surface by membrane

bound IgM or IgD. Subsequent B cell activation and antibody induction can occur through

different mechanisms involving either a T cell dependent (T-D) response or T cell

independent (T-I) response. The pathway for antibody generation during a T-D response

requires protein to be processed and loaded in the major histocompatibility complex class II

(MHC II) by antigen presenting cells (APCs) for T cell activation and release of cytokines

for B cell activation. Activated B cells then undergo class switching to generate excreted

forms of IgM, IgG, IgE or IgA depending on the cytokine stimulus from the T cell. T-D

responses arising from liposomal protein and peptide antigens in the context of vaccine

design have been reviewed [55] and are not the focus of this discussion. Rather, we will

examine antibody responses to various non-protein molecules presented on liposomes to

identify potential issues to consider in the design of novel lipids for liposomal drug delivery.

In the absence of protein and consequent T cell activation, B cells orchestrate a humoral

immune response in the T-I pathway to generate IgM and IgG antibodies. Both antibody

isotypes are responsible for complement activation, which may result in adverse response to

non-protein antigens displayed on liposomes. There are two types of T-I responses: T-I type

1 responses depend on toll-like receptor (TLR) agonists to activate B cells, and T-I type 2

responses depend on multivalent ligand interactions to activate B cell receptors for

activation.

In general, most naturally occurring lipids do not exhibit a T-I response. Exceptions to this

generalization include the glycosphingolipids (e.g. ceramide) and acidic phospholipids (e.g.

cardiolipin), which are observed in certain autoimmune disorders, such as anti-phospholipid

syndrome. This syndrome results in severe blood clots leading to stroke, heart attack and

miscarriage [56]. Some synthetic headgroup modified lipids have been shown to induce

immune responses including polymer and hapten conjugates. As discussed, polymer

modifications, including PEG [25], induces an IgM response leading to the advanced blood

clearance by the MPS. This IgM response is thought to be caused by B cell activation

through receptor ligation by the polymer repeat units (Figure 5B) [57]. While the ABC

effect has only been observed to date with PEG, this phenomenon must be considered when

developing other liposome-polymer conjugates.

Haptens do not naturally induce immune responses unless conjugated to a carrier such as a

protein or liposome (Figure 5A,C). While the immune response is generated against the

hapten presented on the carrier, the response persists toward the unconjugated hapten. The

first immune response from a synthetic hapten-lipid conjugate was reported by Uemura and

colleagues in 1974 with the attachment of 2,4-dinitrophenol or fluorescein isothiocyanate

(FITC) to the headgroup of PE lipids [58]. Since then, a number of haptenated liposomes

have been investigated [59,60] and a number of biophysical studies have identified the role

of membrane fluidity [61], linker length between the lipid and hapten [62], and hapten

concentration (Table 2, left) [63] on immunogenicity. While antibody responses to PC lipids

are rare, immune responses were observed when the PC headgroup was appended to PE

lipids using a six-carbon spacer [64]. Importantly, memory IgM was also observed in

response to haptenated liposomes, suggesting that multiple injections would also lead to an
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advanced blood clearance of the haptenated formulations [65]. Several haptenated liposomes

have been evaluated, but the Super Hapten Database reports more than 7000 known haptens

[66]. Given the vast number of known haptens and their chemical diversity, we believe that

most synthetic lipid headgroups will induce an immune response.

Immunomodulatory molecules may also be incorporated in liposomes to induce specific

immune responses. Adjuvants cause a T-I type 1 response through activation of the TLR

signaling pathway. Monophosphoryl lipid A (MPLA), a component of endotoxin, has been

the most widely studied adjuvant incorporated in liposomes and provides B cell activation as

an agonist for TLR 4 [67,68]. Immune responses to haptens in the presence of other

adjuvants, including nucleic acid CpG motifs [60] and Freund’s Adjuvant [58], have also

been investigated (Figure 5D; Table 2, right). Incorporation of MPLA in liposomes induces

antibody responses toward the liposome in the form of MPLA specific antibodies as well as

anti-phospholipid antibodies including anti-phosphocholine, anti-sphingomyelin [67] and

anti-squalene antibodies [68]. Antibody responses toward the liposome may destabilize the

membrane through complement dependent damage [69]. Lipid specific antibodies directed

toward DMPG, MPLA, cholesterol and phosphatidyl inositol-4-phosphate (PIP) were

induced in human subjects after immunization with a candidate vaccine to Plasmodium

falciparum [70]. Although antibodies toward liposomal lipids were observed, the authors

suggest that these formulations appear to have acceptable safety records and that such

vaccines would be well tolerated [70]. Longitudinal studies, however, must be performed to

determine the long-term effects of such antibodies in serum. Other lipid adjuvants including

the lipid core peptide (LCP) system [71] or Pam3Cys [72] have also been incorporated into

liposomal formulations to induce peptide specific immune responses. In each of these

reports, however, the adjuvant is included in the formulations to achieve an immune

response toward a specific antigen. These data indicate that it is critical to prepare endotoxin

free liposomal formulations to avoid the immunogenicity of drug delivery systems [73].

3.1 Inducing immune tolerance with liposomes

Liposome encapsulated cytotoxic agents have been widely used in drug delivery

applications [74], but their activity has also been exploited to induce immune tolerance.

Depleting a specific population of B cells using targeted cytotoxic liposomes leads to

immune tolerance against a specific epitope. Liposomes encapsulating cytotoxic agents can

be targeted to specific B cell receptors. Upon interaction with the B cell membrane, the

liposome is endocytosed and the payload is released, thereby ablating the specific B cell

population. A number of examples of this approach exist in the literature, and Doxil® is a

particularly relevant example. While PEGylated liposomes induce an ABC effect, this effect

is not seen in Doxil®, as B cells with a receptor that recognizes PEG are deleted by the

cytotoxic activity of doxorubicin. Deletion of these B cells leads to immune tolerance to

PEG and prevents the generation of IgM and the ABC effect [75–80]. This tolerance effect

has also been observed with protein agents. Liposomes displaying bovine serum albumin

(BSA) and containing methotrexate were found to depress the anti-BSA plaque-forming

cells in mice [81,82]. In a similar fashion, tolerance to ovalbumin was achieved in the

presence of doxorubicin [83,84], which was reexamined again 16 years later and published

as a novel strategy [85]. The exciting concept of tolerance induction using cytotoxic agents
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is a field of research that is largely unexplored, but may be exploited for autoimmune

disorders and allergic immune responses.

In summary, it is critical to be aware of the potential immune responses that may be induced

by synthetically engineered lipids and novel formulations. The potential for

immunoreactivity using synthetic lipids and lipid conjugates and the clearance of liposomal

formulations through immune dependent mechanisms, including B cell responses, serum

antibodies and complement activation, suggest that immune responses to novel lipids must

be evaluated. The effect of immunoreactivity and clearance may also have implications on

the pharmacokinetics, biodistribution, safety, and efficacy of liposomal formulations.

4. Lipids for directed headgroup interactions

Lipid headgroups can act as points for liposome functionalization for cargo, polymer

coatings, or targeting ligands. These functionalization points often are covalent coupling

moieties that allow for the attachment of ligands that alter pharmacokinetics or

biodistribution, such as cell or tissue targeting groups, membrane-active peptides, or

polymer coatings. In addition, headgroups contribute to lipid-lipid interactions, and

influence the biophysical characteristics and macromolecular behavior of a liposome.

Modifications to the headgroup allow for the control of specific molecular interactions such

as H-bonding, pi-stacking, and electrostatics.

4.1 Lipids with a nucleic acid headgroup

Nucleolipids are lipids with a nucleic acid headgroup, and are unique because they can

interact with nucleic acids via hydrogen bonding, pi stacking, and electrostatics. They are an

excellent model system to study the hierarchy of molecular forces between lipid headgroups

and how those forces contribute to superstructure formation. Further, these headgroups are

biologically relevant, as they complex with single-stranded nucleic acids via base pairing

and are useful in nucleic acid and drug delivery [88] and as lipid prodrugs [6].

Advancements in nucleolipid structures and their applications in transfection have recently

been reviewed [86,89,90]. Herein we focus on engineered lipids with a monomeric

nucleoside or nucleotide headgroup with a particular emphasis on understanding the forces

governing headgroup interactions with nucleic acids.

The deoxyribose sugar is the scaffold for nucleolipid construction (Figure 6A). In general, a

nucleobase (A, T, C, G or U) is conjugated to the 1′ position by a beta-glycosidic linkage.

This base allows for selective interactions with other nucleolipids, single-stranded nucleic

acids, or drugs via electrostatics, hydrogen bonding, and pi-stacking. The 2′ and 3′ positions

of the ribose are generally functionalized to hydrophobic domains via an ester or ether

linker. Finally, anionic, cationic, zwitterionic and non-ionic groups have been conjugated to

the 5′ position in order to alter the behavior and distinct self-assembly properties of these

lipids [89].

A few studies isolate the role of H-bonding and electrostatics in nucleolipid headgroup

interactions with nucleic acids by engineering lipids that lack the functional groups required

for such interactions. Ceballos and colleagues synthesized nucleolipids with 3-nitropyrrole,
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5-nitroindole or 4-nitroimidazole headgroups, universal bases known to form

complementary base pairs with all four natural bases [91,92]. The headgroups are further

functionalized with a quaternized amine at the 5′ position and two oleyl chains to allow for

lipid self-assembly (Figure 6B–D). These bases lack hydrogen-bonding capabilities, and are

limited to interactions via pi-stacking interactions and electrostatics. These forces were

sufficient to complex siRNA and knock down glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) protein levels in a number of cell lines. However, the hierarchies between pi-

stacking and electrostatic interactions remain unclear in these lipids. To our knowledge, this

is the first example of protein knockdown using nucleolipids transfecting siRNA.

Interestingly, the authors increased the nucleolipid affinity for siRNA by altering the

stereochemistry of the base at the 1′ position. This increase in affinity correlates with an

increase in transfection efficiency, and this relationship was corroborated by density

functional theory modeling, a quantum mechanical method to investigate the electronic

structure of a molecule [92]. Defining such quantitative structure-function relationships is

useful in designing amphiphilic molecules [93,94].

Since hydrogen-bonding and pi-stacking interactions are weaker than electrostatic

interactions via cationic groups with DNA, it is difficult to decouple their role in directing

nucleolipid-DNA complexes [95]. To understand the function of these forces, Banchelli et

al. synthesized nucleolipids with a formal negative charge [96]. Two octanoyl chains were

conjugated to a nucleobase at the 5′ position via an anionic phosphate linkage and an

adenosine nucleotide was linked to the 1′ position (Figure 6E). The hydrogen bonding and

pi-stacking interactions of these nucleolipid overcame the repulsive force between the

negative charge in the headgroup and the negative charge on nucleic acids in order to

complex polyuridylic acid [96]. In a similar vein, Khiati and co-workers synthesized anionic

nucleotide-lipids to decouple cationic interactions from H-bonding and pi-stacking (Figure

6F) [97]. Again, the forces of H-bonding and pi-stacking dominated the anionic repulsive

forces between the nucleolipid and nucleic acid to complex and transfect eGFP into HEK

cells in vitro [97]. These studies show that electrostatic interactions are not necessary to

complex and transfect nucleic acids in vitro, as H-bonding and pi-stacking forces can be

sufficient.

The selective intermolecular binding properties of nucleolipids have been incorporated into

other rationally designed lipids. In a series of papers, Ma and colleagues designed synthetic

multivalent hydrogen-bonding lipids with a melamine or cyanuric acid headgroup that

replace the sugar-phosphate backbone of DNA with a phospholipid [98,99]. These lipids

formed large unilamellar vesicles and demonstrated complementary base pairing interactions

in membrane mixing and surface plasmon resonance studies (Figure 6G,H). Polidori and

colleagues extensively investigated the role of lipid shape on macromolecular structure

formation of synthetic lipids with a H-bonding tris(hydroxymethyl) aminomethane (tris)

moiety linked with an aminoglycerol group [100]. Increasing the length of the hydrophobic

tails increased the Tm of the lipids and altered the length of the tubules they formed, their

stability, and their ability to stably entrap carboxyfluorescein (CF). Substitution of an ester

linkage for a carbamate linkage allowed for the formation of unstable vesicles rather than

stable tubes, highlighting the lipid linkage as an important parameter in lipid design and
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behavior. Godeau and coworkers synthesized H-bonding glycosyl-nucleoside lipids as low-

molecular-weight hydrogelators for nucleic acid delivery [101]. Lipids were first conjugated

to a nucleobase using click chemistry and subsequently clicked with glycosyl groups (Figure

6I) to achieve reversible nano-fibers, hollow nanotubes, and hydrogels capable of

transfecting cultured cells in serum [102]. This chemistry allows for a universal scaffold for

facile lipid functionalization and engineering. Two lipid parameters dictated the formation

of gels in solution: 1) H-bonding between headgroups and 2) saturation of acyl chains. H-

bonding headgroups (30 fold) and saturated acyl chains (25 fold) dramatically lowered the

concentration necessary for gelation [101].

While many publications have sought to simplify the synthesis, characterize the biophysics,

and assess the in vitro behavior of nucleolipids and H-bonding lipids, little is published on

their in vivo activity. Special attention, however, must be paid to the immunogenicity of

such lipids. As previously discussed, nucleolipid headgroups may act as haptens, especially

when delivering known TLR agonists such as double-stranded DNA or single-stranded RNA

[103]. Such studies should be prioritized in order to understand the potential of these lipid

systems for drug delivery.

4.2 Headgroups for attachment of targeting ligands

In addition to engineered lipid headgroups that rely on intrinsic molecular interactions such

as H-bonding and pi-stacking, a myriad of synthetic lipid headgroups have been developed

that contain specific chemistries that permit controlled covalent attachment of targeting

ligands or functional groups. In particular, lipids with maleimide, avidin, ether, ester, thiol,

carboxylic acid, and hydrazine moieties in the headgroup have been extensively reviewed

[104,105]. The maleimide lipid is most commonly used as a functionalization point of lipids

because of the reactivity of the group with a free thiol; the maleimide is typically separated

from the lipid headgroup by a spacer that reduces steric hindrance in the coupling reaction.

This is particularly useful, as a thiol containing ligand, such as a single chain antibody

fragment, can be coupled to preformed liposomes containing a small mole fraction of

maleimide lipid [106].

These covalent attachment approaches are broadly applicable but can require complex

chemistry and can partially inactivate the proteins [107]. Further, the number and location of

attachment sites on the ligand dictate the orientation of ligand attachment. For example, a

maleimide group can form a thioether bond with any solvent exposed cysteine on a protein.

Several attempts to engineer lipid headgroups for facile non-covalent attachment have been

pursued with limited success. Protein A, which interacts specifically with the Fc region of

IgG, can be adsorbed to the surface of polymer nanoparticles. Addition of IgG to the

nanoparticles results in uniform orientation of the antibodies and nearly 100% attachment

efficiency. However, this system is limited by its stability in vivo, as the adsorbed protein is

displaced by proteins in serum [108].

A number of groups have linked His-tagged proteins to liposomes using nickel chelating

moieties [109–113]. His-tags are popular motifs that can be easily engineered into proteins

and act as handles for protein purification or binding by nickel chelation. This interaction is
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reversible by stripping chelated nickel from NTA [114]. In an effort to develop a general

attachment approach for liposomes, van Broekhoven and Altin [115,116] engineered

trivalent nitrilotriacetic acid (tris-NTA) lipids with nanomolar affinities for polyhistidine

tagged (His-tag) proteins. Our group provided an alternative synthetic route to the tris-NTA

lipid [117,118]. Increasing the valency of the chelating moiety in the lipid headgroup

increased the affinity for His-tagged proteins (Figure 7). Yeast cytosine deaminase (yCD)

and monomeric Katushka (mKate), a far red-fluorescent protein, maintained their activity

while attached to the liposomes via the tris-NTA lipid. These proteins were stably attached

to the liposome in fetal calf serum and mouse plasma. However, liposome attachment via

tris-NTA lipids did not enhance the circulation time of proteins in vivo, likely due to

competing interactions from plasma proteins and other histidine motifs. While the in vivo

applications of these chelating lipids are limited, they have shown utility in subcutaneous

vaccine delivery [119] and they can effectively be used to simplify rapid screening of lipid-

protein conjugates in vitro to identify binding and internalizing antibodies for use in targeted

drug delivery [120].

5. Lipids that direct membrane biophysics and payload release

Ideally, liposomes are designed to be stable in circulation until they reach the target site.

Upon interaction with the appropriate compartment in target cells, the payload should be

rapidly released, particularly if cytotoxicity is the objective. Hydrophilic liposome payload

can be encapsulated in the aqueous core of the liposome or substituted for polar liposome

headgroups in the bilayer as a lipid prodrug. In both scenarios, destabilization of the

membrane and release of the therapeutic are critical steps in delivery.

As such, a keen understanding of membrane biophysics and stability is integral to tuning

drug release. The Tm, phase, and composition of the bilayer drive its stability. At the Tm, the

bilayer undergoes a gel to liquid phase transition causing lipid-packing defects that increase

bilayer permeability. Lipid components can dictate the Tm and other bilayer physical

properties. Generally, lipids with long saturated acyl chains have higher Tm than those with

shorter or unsaturated chains. The inter- and intramolecular interactions of lipid headgroups

further control Tm and membrane permeability. Regardless of the lipid composition,

cholesterol can be included in bilayers to eliminate the phase transition and encourage a

stable gel-like phase. In addition to intrinsic liposome parameters, microenvironmental

factors such as redox state, pH, temperature, and enzyme activity have a profound impact on

stability and can be used to trigger drug release [121,122].

5.1 Covalent attachment of hydrophobic moieties

Sterols are important components of natural membranes that play a critical role in regulating

membrane fluidity. Cholesterol is the most common sterol in mammalian membranes and is

the preferred sterol in several FDA approved liposome therapies including DaunoXome®,

Myocet®, Depocyt®, Marqibo®, and Doxil® [123]. While cholesterol or cholesterol esters

do not form bilayer structures on their own, their amphipathic nature allows for their

inclusion in liposome bilayers. Incorporation of cholesterol into liposomes at 30 mol %

eliminates the phase transition of diacylphospholipids [124,125], reduces membrane

permeability [126,127], and forces the bilayer into a stable gel-like state. Because of their
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stability, liposomes of this composition are widely used in the formulation of

chemotherapeutic drugs [128]. Below 30 mol %, cholesterol does not pack uniformly in

diacylphospholipids and fails to completely eliminate their phase transition [122]. Above 50

mol %, cholesterol phase separates in the membrane and can form crystals [129]. As such,

changes in cholesterol composition can have profound effects on liposome formation,

membrane stability, and permeability. In vivo, free cholesterol can rapidly transfer from

liposomes into biomembranes and lipoproteins [130–132]. This constant flux of cholesterol

destabilizes the liposomes and promotes contents release while in circulation.

In order to prevent such transfer of cholesterol, our group synthesized a family of sterol-

modified phospholipids (SMLs) by covalently attaching cholesterol to the glycerol backbone

of phosphatidylcholine (Figure 8). An early example of such a cholesterol containing

phospholipid was used to investigate the role of cholesterol binding on ATPase activity in a

lipid micelles but had not been demonstrated to form liposomes [133]. We showed that

SMLs readily formed liposomes by themselves or when mixed with diacyl PC lipids. By

anchoring cholesterol in the membrane, we reduced cholesterol transfer and increased in

vivo liposome stability. SMLs are easily synthesized, commercially available, and

recapitulate the biophysical properties of liposomes incorporating cholesterol [134–136].

Compared to liposomes formulated with free cholesterol, SMLs eliminate the phase

transition of diacylphospholipids [135], exhibit similar permeability to entrapped

hydrophilic molecules [135,136] and demonstrate similar membrane fluidity [136]. SMLs

maintain these properties while preventing cholesterol transfer from the bilayer [135].

In vivo, SML liposomes encapsulating doxorubicin demonstrate comparable efficacy to

Doxil® in a C-26 colon carcinoma model [135]. Interestingly, we found that at acyl chain

lengths of C16 and C18, SML liposomes are more stable in circulation than liposomes

containing free cholesterol. Further, we found that these SML liposomes had improved

uptake into and slower clearance from the liver and spleen compared to traditional

liposomes [136]. These studies highlight the stability of SML systems in vivo and their

potential utility as drug carrier systems.

In addition to cholesterol, hydrophobic moieties for therapy and diagnostics can be

covalently coupled to lipids to prevent loss in circulation. Liposomal formulations of

porphyrins, hydrophobic and photosensitive agents with applications in photodynamic

therapy, have been used to improve their solubility. These nanoparticle systems are limited

by the amount of porphyrin that can be included in the formulation (15 mol %) and by

transfer of porphyrin out of the bilayer in vivo [137,138]. Anchoring of pyropheophorbide, a

chlorophyll-derived porphyrin analogue, to lyso PC prevented bilayer transfer of the

porphyrin and enhanced its self-quenching in liposomes [137]. Lipid systems composed of

these engineered lipids along with PEG-DSPE and cholesterol were termed “porphysomes”.

These nanoparticles were safe at high doses in mice, demonstrated favorable

pharmacokinetics, and could be loaded with hydrophilic payload. After accumulation in

tumors, these theranostic particles could be imaged for diagnostic purposes or irradiated for

photothermal therapy [137]. This interesting technology has been extended to applications in

triggerable systems and acoustic imaging [139,140].
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5.2 Inverse zwitterlipids (IZ)

In addition to engineering the lipid hydrophobic domain, modifications to the lipid

headgroup can influence membrane stability and permeability. The influence of lipid

headgroup properties such as hydrogen bonding capability, size and charge on

superstructure formation and molecular interactions has been rigorously examined. For

example, it is well known that the relative size of the lipid headgroup to the hydrophobic

tails determines the phase preference of the lipid: lipids with a small headgroup (i.e. PE)

prefer an unstable hexagonal phase while those with larger headgroups (i.e. PC) prefer a

stable bilayer phase [10]. However, a number of aspects of lipid headgroup architecture have

not been well characterized. In particular, modifications to the zwitterionic PC headgroup

have been sparsely studied despite their pivotal role in biological membranes.

The influence of the position and choice of charged moieties in zwitterionic headgroups on

lipid behavior is not well understood. These headgroups are oriented with an anion proximal

to, and a cation distal to, the membrane interface. In the case of the PC headgroup, the

anionic phosphate group is anchored at the membrane interface while the cationic amine

extends into the aqueous space (Figure 9). In a series of recent studies, our group has

systematically examined modifications to the PC headgroup. We set out to understand the

role of 1) the relative location of charged moieties in the headgroup and 2) the type of

charged moiety on lipid behavior. To that end, we synthesized a library of lipids with an

inverted architecture: the cation is proximal to the membrane while the anion extends into

the aqueous space. This family includes phosphates (CP), ethyl phosphates (CPe),

carboxylates (AQ), sulfonates (SB) and sulfates (CS) as the anionic moiety (Figure 9). AQ,

SB, CP and CPe lipids form liposomes when formulated with cholesterol. This new class of

inverse zwitterionic (IZ) lipids has distinct biophysical properties from traditional PC lipids

including elevated Tm and limited interactions with divalent cations. Most importantly, these

studies have highlighted the pivotal role of the charge at the bilayer interface in drug

permeability and ionic interactions of liposomes. While single chain surfactants with an

inverted headgroup architecture have been studied, these studies extend the understanding of

headgroup charge inversion in lipid systems [141].

The charge at the bilayer interface dictates the ion interactions of the liposome membrane.

Liposomes composed of AQ and SB lipids interact with anions according to the Hofmeister

series (Figure 10A), a classification of ions according to their ability to salt in or salt out

proteins. Ions with high charge densities (F−, Cl−) are strongly hydrated, while ions with low

charge densities (I−, ClO4
−) are weakly hydrated. Anions with low charge density interact

with the bilayer of AQ and SB membranes more than those with high charge density.

Further, all anions interact with AQ and SB membranes to a greater extent than PC

membranes (Figure 10A). We believe that these interactions are directed by the positive

charge at the membrane interface.

While the position of the positive charge enhances interactions with anions, it reduces

interactions with cations. Divalent cations, especially Ca2+, are of particular interest because

they are ubiquitous in biological systems and can interact with lipid headgroups to cause

membrane destabilization via aggregation, fusion, or alteration of surface charge [142]. CP,

CPe, AQ and SB liposomes do not aggregate in the presence of physiological levels of Ca2+,
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and IZ liposomes interact with Ca2+ less than PC liposomes [143–145]. Reduced divalent

cation interactions make IZ liposomes interesting candidates to investigate as in vivo

delivery systems. In addition to ions found in biological environments, the charge at the

membrane interface can influence the permeation of entrapped liposome cargo. CPe

liposomes are more permeable to negatively charged contents and relatively less permeable

to neutral contents than PC liposomes [144]. In this way, IZ lipids may be useful to tune

release properties of certain entrapped liposome drugs.

The inverted headgroup architectures also alter inter- and intra- headgroup interactions. The

Tm is a measure of the intramolecular forces driving hydrophilic interactions between lipid

headgroups and hydrophobic and van der Waals interactions between lipid tails. Stronger

interactions in these two lipid regions lead to elevated Tm. PE lipids have strong headgroup

interactions because of their H-bonding capability, and as such, have higher Tm than non H-

bonding PC lipids. Similarly, lipids with long saturated acyl chains have stronger

hydrophobic interactions and thus higher Tm than those with shorter or unsaturated chains.

IZ lipids have very high Tm characteristic of PE lipids rather than PC lipids (Figure 10B).

To our knowledge, CS lipids have the highest Tm of any lipid, natural or synthetic (Figure

10B). Interestingly, these Tm are dependent on the ionic character of the surrounding

solution. For SB, CS and certain chain lengths of AQ, anion interactions with the membrane

according to the Hofmeister series shift the transition from PE-like to PC-like. This shift is

likely driven by inter- or intra- headgroup interactions that are disrupted when anions

interact with the bilayer surface.

IZ lipids have potential as triggerable in vivo delivery systems. AQ liposomes have similar

pharmacokinetics and biodistribution to PC liposomes, but have dramatically different

biophysical properties that may be exploited for thermo-responsive systems [145]. Further,

CP and CS lipids may be useful in enzyme-triggered systems. The CP lipid headgroup can

be cleaved by alkaline phosphatase, yielding a lipid with a net positive charge that may

destabilize the membrane and release trapped cargo (unpublished data). Such triggerable

systems may be useful in drug delivery to organs enriched in phosphatase or sulfatase

activity.

5.3 Triggerable lipids

As previously described, liposomes are designed to optimize stability and circulation time in

order to drive a high dose of payload to the target site. However, this stability in circulation

must be balanced with the release of payload in diseased tissue. Incomplete release of drug

at the site of action can limit the clinical success of therapeutics, as evidenced by the failure

of liposomal cisplatin in the clinic [146]. To improve release, researchers have developed a

number of triggerable liposome systems. The trigger can be an external cue (heat, light,

ultrasound) or intrinsic to the disease site (pH, redox environment, enzymes). These systems

have been thoroughly reviewed [147,148], but have been disappointing in practice [147].

This is especially true for systems dependent on external triggers, since only primary

tumors, and not nascent metastasis, can be targeted via such cues. ThermoDox® (Celsion

Corporation) is a prime example of the failure of these systems in the clinic. This heat

sensitive liposome formulation incorporates lysolipid that promotes liposome degradation at
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mildly elevated temperatures [149] and is administered alongside radiofrequency ablation or

ultrasound. However, incorporation of lysolipids can destabilize the liposome in circulation

[150] and may lead to contents release before the liposome reaches the tumor site.

ThermoDox® recently failed to meet its primary endpoint in a Phase III study in patients

with hepatocellular carcinoma (Celsion Corporation press release January 31, 2013).

5.4 Lipid Prodrugs

Incorporation of small molecule drugs or prodrugs into self-assembling, amphiphilic

molecules can improve their biodistribution, pharmacokinetics, safety profile, trafficking

and stability [3,6]. In particular, lipid prodrugs can improve the characteristics of small

molecule drugs that are not well suited for traditional liposomal encapsulation and delivery

due to their molecular properties. In principal, a hydrophilic drug is conjugated to a

hydrophobic lipid tail such that it is substituted for a polar lipid headgroup; this amphiphilic

lipid prodrug can then be incorporated into a liposome. The long history of these prodrugs

have been reviewed [6]. However, a number of recent clinical advances and setbacks

suggest that the clinical on the development of these drugs will be challenging. In this

section we review recent developments in lipid prodrugs of doxorubicin (dox), gemcitabine,

cytarabine (Ara-C), mitomycin C (MMC), and paclitaxel. We focus our discussion on

clinical and in vivo preclinical developments.

Dox, a topoisomerase II inhibitor, is the chemotherapeutic most often studied in nanoparticle

formulations because of the thorough understanding of its pharmacology and the success of

Doxil® in the clinic. Systemic doses of dox lead to myelosuppression, gastrointestinal

toxicity and cardiotoxicity. These issues make doxorubicin a prime candidate for

nanoparticle formulation, and a number of dox prodrugs have had preclinical success. The

most promising dox derivative is not a lipid prodrug, but an albumin binding dox derivative:

Aldoxorubicin® (CytRX) (Figure 11). Binding of doxorubicin to albumin improves the

pharmacokinetics and efficacy of the free drug and has shown promise in early clinical trials

[151]. A number of lipid prodrugs of dox are in preclinical testing. A docosahexanoic acid

(DHA) dox conjugate proved more efficacious than free dox in L1210 leukemia and B16

melanoma models [152]. Further, Duhem and colleagues conjugated dox to tocopherol

succinate via an amide linkage which self assembled into 250 nm macrostructures when

stabilized with PEG lipid [153]. These nanoparticles have improved efficacy over free dox

in CT26 tumors in vivo. While these dox derivatives are promising, future experiments

should be carried out to benchmark these dox-prodrug systems to Doxil®.

MMC is an alkylating chemotherapeutic agent limited by toxicities such as leukopenia,

thrombocytopenia, and mucous membrane toxicity [154]. A number of lipid prodrugs have

been developed to improve the therapeutic index of MMC. In particular, Gabizon and

colleagues have developed an MMC prodrug in which the drug is conjugated to a 1,2-

distearoyl glycerol lipid via a cleavable dithiobenzyl linker (Figure 11) [155]. In this system,

the MMC acts as the polar lipid headgroup and the prodrug is easily incorporated into

liposome membranes. This prodrug liposome system has demonstrated impressive efficacy

in a range of preclinical models [155,156], and is now advancing in a phase I dose escalation

study (Promitil®, LipoMedix, NCT01705002).
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Nucleoside analog chemotherapeutics, including gemcitabine and Ara-C, are a major class

of chemotherapeutics. Small structural differences have a profound impact on the activity of

these molecules: Ara-C is primarily used to treat hematological tumors while gemcitabine,

which is structurally similar except for two fluorine atoms, is used against solid tumors.

Both drugs are limited by short circulation times and can be rapidly deactivated by

deamination reactions in vivo. As such, a wealth of research has been focused on lipid

prodrug modifications of these compounds to prolong circulation of the active form.

Gemcitabine lipid prodrugs have shown promise in preclinical studies and are

comprehensively reviewed [157]. Modification of Ara-C at the 5′ position with an elaidic

acid chain (Elacytarabine®, Aqualis ASA) circumvented drug resistance in vitro and

resulted in an improvement in in vivo anti-tumor efficacy as compared to unmodified Ara-C

(Figure 11) [158,159]. However, Elacytarabine® demonstrated no advantage in efficacy

over the control arm in two phase III studies in acute myeloid leukemia and pancreatic

cancer (Aqualis ASA press release November 12, 2012 and April 1, 2013). While the lipid

prodrugs improved pharmacokinetic and biodistribution of Ara-C, these changes did not

translate into a survival advantage in patients. Another prodrug, CP-4126, is a 5′ elaidic

ester of gemcitabine that has advanced into the clinic (Figure 11) [160]. Orally administered

CP-4126 was poorly absorbed and subject to metabolism before systemic exposure [160].

As such, future work with this compound will focus on intravenous administration. These

studies highlight the difficulties and unknowns in moving lipidated prodrugs into the clinic.

Similar to the nucleoside analog prodrugs, paclitaxel lipid prodrugs have had disappointing

clinical outcomes. Paclitaxel is highly hydrophobic and its encapsulation in liposomes is

problematic. Modification of paclitaxel at the 2′ hydroxyl with DHA (Taxoprexin®,

Protarga Inc.) improved anti-cancer efficacy by extending circulation [161]. However, these

improvements in pharmacokinetics did not translate into improvements in efficacy, as

Taxoprexin® had only modest activity in gastric and esophageal adenocarcinoma [162].

Further, a phase III trial in metastatic melanoma showed no survival advantage of

Taxoprexin® versus dacarbazine [163]. Squalenoylation of paclitaxel and gemcitabine may

represent a new class of prodrugs for clinical evaluation [164–166] but their promise must

be viewed in the light of the challenges experience by the other lipid prodrugs reviewed

above.

6. Conclusions

The large variation of lipid structures outlined in this review can be combined to form

liposomes with multifunctional capabilities including increased serum stability, extended

circulation, ligand targeting, optimized drug loading and triggered release. These lipids have

been vital tools for probing lipid membrane biophysics, especially for understanding the role

of inter- and intra-molecular interactions on liposome superstructure formation and

behavior. Such studies have led to a wealth of well-characterized lipid structure function

relationships that are useful to those looking to synthesize novel molecules. For this reason,

systemic manipulation of lipid headgroups, linkers and hydrophobic domains to further our

understanding of lipid biophysics remains a worthwhile and productive area of research.
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While a number of novel lipids have been synthesized and published for applications in drug

delivery, their pharmacokinetics, pharmacodynamics and immunogenicity are rarely

thoroughly characterized [74]. Looking forward, such studies should be prioritized in order

to realize the translational potential of these systems. Special attention should be paid to

commonly overlooked areas such as lipid immunogenicity, and extreme care should be

taken to ensure that liposome preparations administered in vivo are endotoxin free to avoid

confounding immunological factors.

The setbacks of Lipoplatin®, Thermodox®, Elacytarabine®, and Taxoprexin® in the clinic

provide insight into the critical parameters in drug delivery to solid tumors. While in

circulation, liposome payload should be stably encapsulated in order to maximize

accumulation in the tumor. However, once the liposome extravasates from the vasculature

into the tumor, it must quickly release its payload uniformly throughout the tumor. The

complex process of payload release then involves three parameters: 1) stability in

circulation, 2) distribution in the tumor, and 3) payload release over the appropriate

timescale. Future work should focus on the balance between these parameters in order to

optimize formulations for drug delivery. As has been written elsewhere [167], the

incorporation of engineered lipids into a delivery system must take into account the higher

costs, complexity of manufacturing, and complicated intellectual property of the multi-

component systems. In order to justify the added costs of these systems, liposomes, like

other nanomedicines, must offer significant clinical advantages in both safety and efficacy.
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Figure 1. Modulating liposome behavior
Liposome behavior can be controlled across a number of length scales: (A) engineering of

individual lipids (B) modification of bilayer biophysics and (C) inclusion of lipids that direct

macroscopic liposome behavior and interactions.
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Figure 2. Overview of lipid engineering
Potential modifications to a single lipid are highlighted along with their potential functional

consequences.
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Figure 3. Three key steps in liposome drug delivery
After intravenous administration, liposomes circulate in the bloodstream and accumulate at

the disease site. Directing liposome headgroup interactions allows for targeting to the

appropriate cellular or tissue compartment. Finally, membrane thickness, fluidity and

interfacial charge orientation control payload release.
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Figure 4.
Polymer headgroup lipids for extended circulation of liposomes.
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Figure 5. Pathways to B cell activation
(A) Short polymers or monomeric haptens fail to activate B cells. (B) Long polymers, such

as PEG, or (C) multivalent haptens on liposomes can activate B cells by cross-linking B cell

receptors. (D) Inclusion of TLR4 agonists alongside haptens can also activate B cells.
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Figure 6. Nucleolipid headgroup structures
Predicted forces governing interactions with nucleic acids are shown.
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Figure 7.
Structure of Tris-NTA lipid.
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Figure 8.
Structure of sterol modified lipids (SMLs).
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Figure 9. Structures of lipids with inverted headgroup architecture
Structures of inverse zwitterlipids (IZ) lipids.
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Figure 10. Biophysical properties of IZ lipids
(A) IZ lipids (AQ, SB) preferentially interact with ions according to the Hofmeister series.

(B) IZ lipids have elevated Tm compared to PC lipids.
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Figure 11. Prodrug structures
Selected structures of prodrugs that have advanced into the clinic.
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Table 2

(Left) Selected examples of hapten conjugated lipids that induce immune responses in the absence of

adjuvants. (Right) Selected examples of hapten conjugated lipids that induce immune responses in the

presence of adjuvants. In all structures, the R group represents a non-specific lipid moiety.

−Adjuvant +Adjuvant

PEG [25,75–80] MPLA, MPLA [67]

Theophylline [59]

TEMPO [61] phosphatidylcholine MPLA [67]

Atrazine [63] Sphingomyelin, MPLA [67]

Azobenzone arsonate [65] Squalene, MPLA [68]

Dinitrobenzone [65] Biotin, CpG [60]
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−Adjuvant +Adjuvant

Trinitrophenyl [62] FITC, CFA/IFA [58]

Phosphocholine [64] Dinitrobenzone [58]
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