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Abstract

Breast cancer is the most frequently diagnosed malignancy in American women. While significant

progress has been made in development of modern diagnostic tools and surgical treatments, only

marginal improvements have been achieved with relapsed metastatic breast cancer. Small

interfering RNAs (siRNAs) mediate gene silencing of a target protein by disrupting messenger

RNAs in an efficient and sequence-specific manner. One application of this technology is the

knockdown of genes responsible for tumorigenesis, including those driving oncogenesis, survival,

proliferation and death of cells, angiogenesis, invasion and metastasis, and resistance to treatment.

Non-viral nanocarriers have attracted attention based on their potential for targeted delivery of

siRNA and efficient gene silencing without toxicity. Here, we review promising, non-viral

delivery strategies employing liposomes, nanoparticles and inorganic materials in breast cancer.
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1. Introduction

1.1 Challenges in breast cancer treatment

Breast cancer is the most commonly diagnosed malignancy in American women with an

estimated 39510 fatalities per year, accounting for 14 % of all cancer deaths [1]. Most of

these fatalities can be attributed to metastatic spread of aggressive forms of breast cancer.

Frequent sites of distant breast cancer relapse include the livers, pleural membranes, lungs,

lymph nodes and brain with a median time of survival of 2.2 to 0.5 years, depending on

subtype [2].
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Anthracyclines and taxanes have shown promising results against breast cancer.

Shortcomings of conventional chemotherapy include (1) severe side effects due to lack of

targeting. For example, combined treatment with adriamycin, cyclophosphamide and

paclitaxel (ACP group) frequently induces peripheral neurophathy [3]. Paclitaxel kills

without distinguishing carcinoma cells from normal cells; (2) conventional chemotherapy

relies on excipients to solubilize the drugs, failing to promote specific accumulation of drugs

within the tumor to enhance bioavailability. Trastuzumab (Herceptin®), approved in 1998

for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast

cancer, opened the door to the application of specific targeting molecules to improve the

effectiveness of treatment [4,5]. The discovery of candidate molecular, therapeutic targets

led to a focus on RNA interference via small interfering RNA (siRNA) and small non-

coding microRNA. This paper will focus only on siRNA (for a microRNA review see [6]).

1.2 Therapeutic potential of gene silencing by siRNA

siRNAs are double-stranded RNA molecules with each strand composed of 21–23

nucleotides, 7.5 nm long and 2 nm in diameter [7]. siRNA is synthesized and incorporated

into an RNA-induced silencing complex (RISC) and then cleaved into a single sense strand

and an antisense strand within the RISC. The activated RISC hybridizes specifically with its

complementary mRNA target and triggers its degradation by Argonaute 2, depleting the cell

of the gene product and its biological functions. Since the first report of its ability to induce

homology-dependent mRNA degradation [8] and award of the 2006 Nobel Prize, it has

aroused great interest in the potential to knock out expression of disease-causing genes.

Advantages of siRNA over other small molecule drugs include its high degree of specificity,

capacity to inhibit nearly any target of interest, and simple and rapid design, synthesis and

purification [9].

siRNA has shown promising results as a therapeutic agent for brain injury, infection, cancer,

HIV, diabetes and neurodegenerative disorders [10–12]. For example, a single

intracerebroventricular injection of a new type of naked siRNA, Accell siRNA, leads to

neuron-specific protein knockdown in the adult rat brain [13]. After in vivo delivery, Accell

siRNA can be targeted with 97 % efficiency to inhibit the expression of two well-known

reference proteins, glyceraldehyde 3-phophate dehydrogenase and cyclophilin-B. A number

of nanoparticle formulations have also been reported to deliver siRNAs suitable for

treatment of neurodegenerative conditions. Low toxicity/high biocompatibility layered

double hydroxide nanoparticles internalized by clathrin-dependent endocytosis in neuron

cell bodies and dendrites have been used to deliver siRNA to silence neuronal gene

expression for the treatment of Huntington’s disease [14].

siRNA-based therapies have been effectively applied in the treatment of cancer. Kobayashi

et al. used siRNAs to target galectin-3, a multifunctional member of the β-galactoside-

binding protein family, to reduce cellular migration and invasion in an effort to improve

pancreatic cancer prognosis and response to chemotherapy. [15]. Specifically, siRNA

targeting the forkhead box protein M1 (FoxM1) [16], glioma-associated oncogene 1 (Gli1)

[17], transforming growth factor beta (TGFβ) and retinoic acid-inducible gene I (RIG-I) [18]

were able to induce growth inhibition, epithelial-mesenchymal transition (EMT), and break
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tumor-induced immunosuppression. The potential of siRNA-based therapy in the treatment

of other cancers has been demonstrated [19–23].

Challenges remain in the delivery of siRNA for biomedical applications. Unintended

reduction of “off-target” genes [24] may require chemical modification and rational siRNA

design [25,26]. Another challenge is that siRNAs can potentially induce an unwanted innate

immune response. Unless RNA-induced immunostimulation is controlled, genetic

manipulation and immune activation can be confused [27]. Delivery of siRNA will also

require versatile drug carriers to overcome multiple biological barriers [28]: (1) protect

siRNA from degradation in the physiological milieu and evade elimination from the

reticuloendothelial system (RES, liver sinusoids, the spleen and the alveolar beds of the

lung). Carrier size and surface charge strongly influence clearance. Nanoparticles smaller

than 100 nm in diameter are readily targeted to and retained within the tumor. Highly

charged particles trigger complement activation, while near neutral particles exhibit reduced

phagocytic uptake [29]; (2) allow the siRNA to cross the blood vessel wall. This will require

the enhanced permeability and retention (EPR) effect and strategies to overcome

unfavorable interstitial pressure within the tumor; (3) allow siRNA to be internalized by

tumor cells. High molecular weight (around 13 kDa), negative charge and hydrophilic

properties prevent siRNA from entering cells by passive diffusion [30]. The promising

choice to promote cell entry of siRNA is to package it into cationic carriers. A number of

targeting moieties, such as small molecules, single-chain monoclonal antibodies and

receptors could also be used to mediate endocytosis [31]; (4) allow release siRNA into the

cytoplasm. Several strategies have been explored to facilitate cargo escape from the

endosomes to reach the cytoplasm. Destabilizing endosomal membranes, induced

endosomal swelling and lysis by the proton sponge effect and use of lipid-substituted

cationic polymers are possible strategies [32]. Overall, delivery systems are needed to

efficiently introduce siRNA into the cytoplasm of specific target cells while avoiding off-

target gene silencing.

This review (1) briefly summarizes the current status of siRNA in the treatment of breast

cancer and (2) highlights recent development of liposome, nanoparticle and inorganic

materials-based non-viral nanocarriers for siRNA delivery as a means to circumvent the

biological barriers to siRNA delivery described above.

2. siRNA for breast cancer therapy

siRNA has advantages over small molecule drugs based on its specificity to inhibit target

gene expression in the cytoplasm with low toxicity [33], providing an efficient way to

silence the expression of many oncogenes.

Molecular alterations involved in oncogenesis, survival, proliferation and death of cells,

angiogenesis, invasion and metastasis, and resistance to treatment have been characterized in

breast cancer. The detail of genes involved is beyond the scope of this review and selective

examples are discussed here (Table 1).
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2.1 Oncogenesis

About 80 genetic mutations can be found in an individual breast tumor, among which a

dozen are thought to be actively driving oncogenesis. Key genes have been identified by

screening siRNA/small hairpin RNA libraries [67,68]. The oncogene usually mentioned in

literature of breast cancer like v-myc myelocytomatosis viral oncogene homolog (c-Myc),

murine double minute clone 2 (MDM2) and FoxM1 [69,70]. CCNE2 and MTDH are

reported to be associated with metastatic recurrence and poor prognosis [71]. There is a

unique spectrum of gene mutations for each patient; therefore the pool of mutant genes is

extremely large. The specific targeting capability of siRNA makes personalized treatment

for each patient a realistic possibility based on a profile of individual genetic and epigenetic

changes [28].

2.2 Cell cycle and proliferation

Silencing of specific genes involved in cell cycle regulation can arrest cell division. E2F3 is

a transcriptional activator which promotes cell cycle progression due to its overexpression in

many bladder, lung and prostate cancers [72, reference for RT-PCR and westerns]. siRNA

against E2F3 has been shown to block its expression significantly and is a potential

therapeutic target in the treatment of breast cancer [38].

Akt1, 2 and 3 each exhibit a specific pattern of subcellular localization (the cytoplasm,

mitochondria and nucleus, respectively). Akt2-specific siRNA has been used in MDA-

MB-231 breast cancer cells to show that Akt2 specifically activates the p70S6K signaling

pathway. siRNA silencing of Akt2 expression resulted in cell cycle arrest in G0/G1 due to

cyclin-dependent kinase 2 (Cdk2) and cyclin D downregulation. When combined with

peroxisome proliferator-activated receptor c coactivator-1α (PGC-1α) upregulation, ablation

of Akt2 expression results in an increase in mitochondrial volume [39].

2.3 Cell death and survival

Cell death and survival pathways play an important role in cancer progression [4]. Inhibitor

of apoptosis proteins (IAP3) can directly bind to caspases and block apoptosis. One family

member, survivin, has multiple functions including cytoprotection, cell death inhibition, and

cell cycle regulation, all of which favor cancer cell survival. Therefore, survivin may be a

potential target for anticancer therapy due to its higher levels of expression in carcinoma

cells, inhibition of a default apoptotic cascade initiated in mitosis [73] and its relation to

angiogenesis [52].

Most drugs become less effective in advanced cancer due to development of drug resistance

[74]. MDA435 and MDA231 cells made resistant by chronic exposure to doxorubicin have

upregulated expression of Bcl-2, survivin, NFκB and Mcl-1. Treatment of tumor-bearing

animals with siRNA against Mcl-1 reduces tumor volume significantly. When siRNA for

silencing Ribosomal Protein S6 Kinase was co-delivered, the anti-tumor effect was

enhanced in the absence of chemotherapy at the low injection dose of 1.5 µg per mouse for

intratumoral delivery and 10 µg per mouse for intraperitoneal injections [49].
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2.4 Angiogenesis

New blood vessels are essential to support tumor growth beyond a minimal size. An

angiogenic switch is thought to be controlled by a balance between pro- and antiangiogenic

molecules in the solid tumor microenvironment [75]. When the switch favors angiogenesis,

the tumor adopts a phenotype that facilitates the development of mature vessels.

Neovascularization is required to supply oxygen and nutrients, remove waste metabolites

and is also involved in tumor metastasis. As early as 1971, it was reported that targeting the

tumor blood supply by inhibiting angiogenesis led to growth arrest at a diameter of only 2

mm [76,77]. Vascular endothelial growth factor (VEGF), platelet-derived growth factor

(PDGF) and transforming growth factor-α (TGF-α) are upregulated in many tumors.

Intratumor injection of chitosan/siRNA nanoplexes (siVEGF-A, siVEGFR-1, siVEGFR-2)

along with NRP-1 into breast-tumor-bearing rats results in reduction in tumor volumes of up

to 97 % [78].

2.5 Resistance to chemotherapy

ATP-binding cassette (ABC) transporters are the key component of the energy-dependent

efflux system involved in the multidrug-resistant cancer phenotype [79]. The overexpression

in breast cancer of an ABC transporter, P-glycoprotein, is a common mechanism behind a

poor chemotherapy response. Silencing of the P-gp encoding gene leads to almost complete

restoration of intracellular accumulation of doxorubicin [80,81]. A second type of ABC

transporter is ABCG2 [82], reported to play an important role in resistance to many drugs,

such as leflunomide and teriflunomide [83] and methotrexate and its metabolite [84].

Depending on the different characterization of polymers polyethyleneimine, the delivery of

siRNA to down-regulate ABCG2 expression was different. This down-regulation was

reported to sensitize the drug-resistant cells to the cytotoxic effects of mitoxantrone by 14-

fold and the effect persisted for 14 days [85].

2.6 Invasion and metastasis

Metastasis causes most cancer deaths and can be described by two phases: (1) the physical

translocation of a cancer cell to a distant organ; (2) the development of cancer cells into a

secondary tumor at that distant site [86]. Stat3 is usually expressed at high levels in human

breast cancers and can correlate with poor prognosis. An activated ErbB2 breast cancer

animal model was used to study the role of Stat3 in tumor progression. Stat3 dramatically

affected metastatic progression without altering tumor initiation [87].

Epithelial-mesenchymal transition (EMT) is a highly conserved and fundamental

morphogenic process in multicellular organisms and is relevant to the first step in metastasis

mentioned above. EMT is characterized by loss of an epithelial phenotype and acquisition of

mesenchymal properties. ErbB3 is a member of the epidermal growth factor receptor

(EGFR) family and is involved in cell differentiation, migration, proliferation and survival.

Knockdown of ErbB3 and Smad2 by siRNA transfection in SK-BR-3 and MCF-7 cells

inhibits EMT biomarker expression induced by HRG-β1 [63].
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3. Recent advances in non-viral delivery vectors for siRNA in the

development of breast cancer therapy

Viral and non-viral delivery systems are used to deliver nucleic acid-based therapies. Viral

vector features high gene transfer efficiency but safety concerns have limited their

application. For this reason, effort has been focused on the development of non-viral vectors

with improved safety and efficacy profiles. Liposome, nanoparticle, and inorganic materials-

based vectors have been considered and studied for gene silencing applications.

3.1 Liposome based siRNA delivery

Liposomes and other commercially available transfection reagents like Lipofectamine® and

Oligofectamine® have been used extensively for siRNA delivery. Liposomes, composed of

an aqueous core enclosed within a phospholipid bilayer, are ideal for the loading of drugs

with differing solubilities. Lipophilic agents would localize to the bilayer membrane while

hydrophilic agents like genes and siRNA would be entrapped in the core. Long circulation

lifetime and high levels of tumor cell uptake can be achieved by modulating the lipid

composition, particle size and surface charge of liposomes. Incorporating a poly-(ethylene

glycol) (PEG)-lipid conjugate within the lipid bilayer extends retention in circulation and

reduces uptake by the mononuclear phagocyte system [88,89]. Specific ligands and

antibodies can be conjugated to the lipid to enhance the specificity of targeted delivery

[90,91]. Examples of liposomal siRNA delivery systems applied in breast cancer therapy are

listed in Table 2.

3.1.1 Cationic liposomes—Cationic liposomes are extensively used for siRNA delivery

as a means of protecting siRNA against enzymatic degradation, facilitating tumor cell

uptake, and promoting escape from the endosomal compartment, resulting in effective

cytoplasmic delivery. In fact, the most challenging part in siRNA delivery is how to get the

siRNA out of the endosomes intactly, which requires both endosomes escape and sufficient

de-assembling of the formulation. The overall endosome escape mechanism for liposomes

delivery is shown in Fig. 1.

COX-2-specific siRNA has been encapsulated into DOTAP/DOPE/DOPE-PEG2000

(3:0.95:0.05 molar ratio) cationic liposomes along with MR contrast agents. These

liposomes were internalized within 0.5 h and were detectable within the tumor for at least 24

h post-injection [64].

PEGylation stabilizes liposomes and prolongs their plasma circulation time [106].

Preparation of a cationic liposomal drug delivery system (DC-chol/DSPC/DSPE-PEG2000)

features two PEGylation steps: pre- and post-siRNA insertion. The second PEGylation step

significantly increased siRNA circulation by two fold compared with the single PEGylation

step. This formulation could be used to downregulate luciferase mRNA expression by more

than 50 % [97].

The well-established LPD (liposome-polycation-DNA complex) delivers siRNA efficiently

to tumor cells with specific targeting ligands [94]. Optimized LPD was conjugated with anti-

EGFR Fab’ as the tumor specific antibody. The resulting targeted LPD possessed a small
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size of about 150 nm and enhanced binding affinity, which led to improved gene silencing

activity.

Specific peptides are potentially able to target liposomes to breast cancer tumors. The F3

peptide is specifically internalized by cancer cells and endothelial cells of the tumor

vasculature. Sterically stabilized liposomes composed of DODAP/DSPC were modified by

F3 peptide and were found to encapsulate, protect and effectively deliver siRNA to breast

cancer cells and the tumor microenvironment [99].

Cationic liposomes have had only modest success as a delivery vehicle for siRNA, primarily

due to issues with toxicity. Cationic liposomes interact with negatively-charged cellular

components (opsonins, serum protein and enzymes) resulting in hemolysis [107]. Cationic

lipids also activate the complement system and undergo rapid clearance by the MPS as in

the case of DOTAP, taken up preferentially by the spleen and liver [108]. Hepatotoxicity

and weight loss have also been observed in mice after systemic administration of cationic

siRNA nanoparticles [109].

3.1.2 Anionic liposomes—Besides using any cationic lipids or polymers [110,111],

divalent cations, such as calcium, have been used to prepare anionic lipid-siRNA complexes.

The formulation composed of 4: 6 DOPG/DOPE, 1µg·mL−1 lipid, 2.4 mM Ca2+ and 10 nM

siRNA exhibited up to 70 % protein knockdown without cytotoxicity in vitro. DOPE

facilitated endosomal escape of cargo while the positively charged calcium ions promoted

complex formation between the anionic liposomes and negatively charged siRNA [102].

3.1.3 Neutral liposomes—Neutral liposomes have been developed with lower toxicity,

longer circulation time, and reduced interaction with proteins in mind [112]. DOPC-based

liposomes developed for PELP1 siRNA delivery have been shown to effectively

downregulate target genes and reduce tumor size of estrogen receptor-positive xenograft-

based breast tumors by 58.6 % [101].

3.2 Nanoparticle based siRNA delivery

Nanoparticles are solid particles with a diameter in the range of 10–1000 nm. They can

improve the pharmacokinetic, pharmacodynamic, biodistribution and targeting of

therapeutics. Particle size is the most important factor in nanoparticle delivery of siRNA.

Diameters larger than 100 nm are preferentially recognized by the RES, leading to short

half-life in circulation. 20–40 nm nanoparticles are better suited for siRNA delivery

[113,114].

Like with liposome based delivery systems, cationic lipids are promising for their

therapeutic potential as a transfection vector. Cationic ethylphosphatidylcholines (ePCs) are

slowly metabolized and exhibit low toxicity. Dimyristoleoyl-ePC (C14) nanoparticles were

complexed with GFP siRNA in MCF-7 cells and exhibited an efficacy exceeding that of

Lipofectamine® RNAiMAX [115]. Another cationic lipid dimethyldioctadecylammonium

(DDAB) was used to prepare cationic nanoparticles with heat-activated human serum

albumin (HSA) as a coating material and D-α-tocopheryl polyethylene glycol 1000

succinate (TPGS) as a hydrophilic surfactant to increase transfection efficiency [116].
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Cationic biodegradable and biocompatible polymers have been used for their ability to

complex with negatively charged siRNA to form nanoparticles by electrostatic interaction.

Polyethylenimine (PEI) is one of the most extensively used cationic polymers for siRNA

delivery. It can be synthesized with different molecular weights, be linear or branched, and

be substituted with various functionalized groups. By the “proton sponge effect”, PEIs have

a buffering capability in the low pH environment of the endosome and finally release cargo

into cytoplasm [117]. The higher the density of positively charged amino groups in PEI, the

stronger the interaction with negatively charged phosphate groups of RNA and the stronger

the protection of siRNA from degradation. However, PEI has been reported to induce

necrosis or apoptosis. The toxicity of PEI tends to increase with higher molecular weight

and increased branching [118]. Therefore, low molecular weights PEIs (<5 kDa) are

supposed to have a more acceptable toxicity profile when compared with high molecular

weight PEIs (>25 kDa). For more effective siRNA delivery, PEIs with low molecular weight

were designed to be substituted with a range of fatty acids with varying chain length (from

C8-C18). The resulting lipopolymers showed a significant capability for cellular delivery of

BCRP-specific siRNA. The levels of siRNA uptake and protein down-regulation were

generally higher with a higher level of lipid substitution [85]. The lipid-substituted polymer

can also be used to co-deliver siRNA simultaneously, and the resulting nanoparticles

showed a more potent response in drug-resistant breast cancer models (p<0.05 vs. scrambled

siRNA) [49].

Aside from lipid-substitution, the transfection problem with low molecular PEI can be

addressed by conjugation between PEI and the neutral lipid DOPE. The resulting small

micelle-like nanoparticles also had improved biocompatibility properties. This hybrid

preparation carrying P-gp siRNA led to a twofold increase in doxorubicin uptake and an

improvement in the therapeutic effects of doxorubicin on resistant cells [119,120].

A biodegradable triblock copolymer poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(2-

aminoethyl ethylene phosphate) (mPEG-b-PCL-b-PPEEA) were designed to self-assemble

into micellar nanoparticles, with PCL as the hydrophobic core, PPEEA as the cationic shell

and PEG as the hydrophilic corona. This micelleplex can simultaneously delivery Plk1

specific siRNA and paclitaxel into the same tumor cells both in vitro and in vivo and

exhibited synergistic tumor suppression effect following systemic administration [34].

Lipid-polymer hybrid nanoparticles were also studied with chemoresistant breast cancer

cells. Hydrophobic, hexadecylated PEI was complexed with siRNA and the complexes were

then encapsulated by lipid components (tripalmitin, cholesterol, DSPE, DSPE-PEG) and

coated with apolipoprotein. The resulting nanoparticles can efficiently serve as a megalin-

targeting device for enhanced siRNA delivery [58].

Another class of nanoparticles based on biodegradable chitosan was developed for siRNA

delivery [78]. Chitosan and its derivatives have been considered as a promising siRNA

transporter with low toxicity, good biodegradability and biocompatibility. Low molecular

weight chitosan condensed siRNA has the highest cell permeability in comparison with

medium molecular weight chitosan and Lipofectamine®. Conjugating a phosphorylatable
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short peptide with chitosan can promote intracellular siRNA unpacking in the cytoplasm and

improve target gene silencing.

Fluorescent quantum dots (QDs) have been used to study the internalization behavior of

nanoparticles. Chitosan nanoparticles with encapsulated quantum dots were synthesized for

delivering HER2/neu siRNA. The presence of fluorescent quantum dots showed that the

delivery of siRNA to SK-BR-3 breast cancer cells is specific with chitosan/QD

nanoparticles [121].

Nanocapsules are also used as a non-viral nanoparticle-based delivery system. They are

similar in construction and function to liposomes, which are self-assembled structures

formed from amphiphilic block copolymers in aqueous solution, such as diblock polymer

poly(1,2-butadiene)-b-poly(ethyleneoxide) (PB-PEO) [122], PEG-ε-caprolactone-malic acid

(PEG-PCL/MA) [123].

An alternative strategy for in vivo siRNA delivery is direct conjugation of siRNA with

specific targeting molecules for cellular delivery. In some studies, siRNA delivery was

enhanced at the cellular level when siRNAs were administered as covalent conjugates with

cell penetrating peptides (CPPs) [118]. CPPs are composed of short amino acid sequences

that can complex with nucleic acids into nanoparticles and achieve efficient cellular uptake.

The major CPPs studied include: penetratin, transportan, TAT, poly-arginine and

amphipathic peptide [124,125]. A TAT-derived cell-penetrating peptide arginine-9 (R9) was

chosen to carry siRNA against the connective tissue growth factor (CTGF) for breast cancer

treatment [126]. PR39 can also deliver siRNA into cell cytoplasm by penetrating cell

membranes rapidly for its proline and arginine rich composition [61].

3.3 Inorganic materials

3.3.1 Metallic oxide nanoparticles—Magnetic nanovectors for effective intracellular

delivery of siRNA provide a safe alternative to the highly cationic vectors of PEI or

PAMAM by using a penetrating peptide, poly-arginine (pArg), as a coating material. Amine

terminated PEG-coated iron oxide nanoparticles with 12 nm core diameter were coated with

PEI, pArg and polylysine (pLys). For MCF7/GFP+ cells, the pArg coating nanoparticles

were the most efficient and least toxic when compared with the other two coating polymers

[127].

Recently, hollow manganese oxide nanoparticles have been used as MRI contrast agents

because of their suitable characteristics for cellular and molecular imaging application.

Biomedical application, however, requires the surface of these nanoparticles to be modified

in order to achieve good pharmacological properties. PEI-coated hollow manganese oxide

nanoparticles were developed for HER2-overexpressing human breast cancer to target

VEGF expression with siRNA. DOPA was utilized as a robust anchor for surface

immobilization of PEI on the particles, and the particles were still functionalized by

Herceptin. Herceptin-mediated targeting greatly increased intracellular delivery and the

therapeutic effects of VEGF siRNA against the cancer cells [128].
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3.3.2 Gold nanoparticles—Gold nanoparticles are ideal for cell imaging due to ease of

preparation and bioconjugation, high contrast, large absorption coefficients and non-

cytotoxicity. They can be tailored to a specific size and shape and can be modified with

thiolated molecules to become gene carriers [129,130]. There are concerns that gold

nanoparticles would exert concentration-dependent cytotoxicity and upregulation of mRNA

expression of p53, caspase-3 and so on in human breast epithelial MCF-7 cells [131].

To construct siRNA delivery systems, poly(allylamine hydrochloride) (PAH), PEI and

poly(diallyl dimethyl ammonium chloride) (PDDA), and siRNA were assembled on the

surface of gold nanoparticles, respectively, by the ionic layer-by-layer method. After

stabilization by denatured bovine serum albumin, the EGFR siRNA delivered by PAH-

modified gold nanoparticles exhibited an improved silencing effect when compared to

Lipofectamine 2000® [132].

3.3.3 Silica nanoparticles—Silica nanoparticles have been explored as a tumor-targeting

delivery system. Aside from low immunogenicity and ability to be endocytosed by cells,

silica nanoparticles can also control loading efficiency and release profile by adjusting

surface area, pore volume and structure [133]. Porous silica nanoparticles, especially,

possess a range of mesoporous structures. Well-functionalized silica nanoparticles have been

harnessed as a potential biocompatible drug/gene delivery vehicle [134]. They have been

functionalized with Herceptin®, targeting HER2, which is overexpressed in breast cancer

[135]. To overcome chemotherapy resistance in breast cancer, 50 nm mesoporous silica

nanoparticles have been functionalized with PEI-PEG copolymers to provide protected

delivery of attached doxorubicin and P-gp siRNA to the tumor site. Up to 8 % of the

injected dose was retained in the tumor and dual delivery by this particle could achieve

synergistic inhibition of tumor growth [136]. The multistage vector (MSV) based on silicon

particle is also developed comprising of nanoporous silicon microparticles (first-stage

particles) loaded with drug-incorporated nanoparticles (second-stage particles). For

example, liposomal-encapsulated, gene-specific ATM siRNA was loaded into porous

silicon. Biweekly treatment of MSV/ATM suppressed ATM expression in tumor tissues, and

consequently inhibited growth of MDA-MB-231 orthotopic tumor in nude mice [45].

3.3.4 Carbonate apatite nanoparticles—pH-sensitive carbonate apatite nanoparticles

are getting attention because of their biodegradability and resemblance to body hard tissue

components. Because of their high affinity interactions with siRNA and desirable size for

endocytosis, carbonate apatite nanoparticles efficiently deliver siRNA into cells. With a fast

dissolution profile in the acidic endosomal environment for efficient cargo release,

carbonate apatite appears to be a promising tool for therapeutic delivery [137–139].

Carbonate apatite-mediated delivery of the siRNAs targeting ABCG2 and ABCB1 gene

transcripts resulted in a robust increase in chemosensitivity of therapy resistant breast cancer

cells [140]. Carbonate apatite also facilitates the intracellular delivery of c-ROS1 siRNA to

sensitize MCF-7 breast cancer cells to cisplatin and paclitaxel, resulting in increased cell

killing in comparison to chemotherapy drugs used alone [141].

3.3.5 Carbon nanotubes—Carbon nanotubes (CNTs) are cylindrical molecules

composed of carbon atoms organized in thin graphite sheets of condensed benzene rings
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rolled up into a seamless, hollow cylinder. CNTs are considered as potential nano drug

delivery vectors due to prolonged circulation time, ease of crossing cell membranes, and

translocation directly into the cytoplasm of target cells by an endocytosis-independent

mechanism without inducing cell death [142,143]. Their distinctive length-to-diameter ratio

and surface properties make them promising candidates as molecular transport systems

[144]. CNTs are divided into four categories according to their diameter, length and

presence of walls: (1) single-walled carbon nanotubes (SWCNTs), (2) double-walled carbon

nanotubes, (3) triple-walled carbon nanotubes and (4) multi-walled carbon nanotubes. For

many applications, it is necessary to tailor the outer surface of CNTs to take advantage of

their unique properties. SWNTs with suitable size are potential anticancer drug carriers after

being properly functionalized [145]. A novel strategy for chemically functionalized SWNTs

involves nanotubes with a diameter of 0.8–1.2 nm and length of 100–1000 nm

functionalized with DSPE-PEG-Amine and connected to MDM2 siRNA by disulfide bonds.

These can be successfully introduced into breast carcinoma cells and inhibit proliferation by

44 % and induce apoptosis in 30 % of the tumor cells [69].

4. Future perspectives

Since siRNA offers advantages over traditional pharmaceutical drugs, breast cancer therapy

will continue to benefit from the discovery of novel molecular targets. However, siRNA

delivery remains a challenge, partly due to the instability of siRNA and its inability to cross

cellular membranes. To realize the possible delivery siRNA based therapies, further research

must focus on (1) specific target genes involved in tumorigenesis and progression of breast

cancer plus rules governing siRNA effectiveness and selectivity; (2) Various non-viral

nanocarriers have been reported to provide promising application in siRNA delivery in vitro

and in vivo, such as liposomes, nanoparticles and inorganic materials. Although significant

advancement has been made in the field of siRNA delivery, there is still a need to explore

alternative effective strategies. The delivery system should be nontoxic, non-immunogenic,

and sufficient for siRNA protection, to reach the target cell and facilitate cell uptake, to

release siRNA into the cytoplasm to achieve gene silencing; (3) after injection of siRNA,

pharmacokinetic profile and siRNA distribution in organs and tumors are not well

investigated in many studies. Florescence and inorganic materials like gold, QDs and

metallic oxide are used for in situ distribution analysis. The siRNA in the organ cells, tumor

cells and stroma cells are not known. A suitable analytical method should be developed for

detailed and accurate evaluation of siRNA delivery at varying time points and in different

tissues.
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Fig. 1.
Endosome escape in liposomes mediated siRNA delivery. A. Liposomes containing siRNA

(shown as orange lipid bilayer and red siRNA) with PEG and targeting ligand on the tip

(shown as blue circle) are taken up by target cell via receptor mediated endocytosis. B. The

cationic lipid of the liposomes forms ion pairs with the anionic endosomal lipid (PEG

molecules may leave the liposomes spontaneously or under appropriate design) and can

further form the inverted hexagonal phase (HII). This leads to the fusion of the liposomes

with endosomal membrane and release the siRNA into cytoplasm. C. Liposomes containing
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molecules having buffer capacity in endosomal pH range can trigger proton sponge effect

that causes the influx of Cl− and swelling of the endosome. D. Free highly positive charged

molecules (shown with orange colored cationic lipid and purple colored PEI or oligo-

arginine) can interact with anionic endosomal membrane and destabilize it by excluding

water. E. Intact liposomes may escape from the ruptured endosome and de-assemble in the

cytoplasm and release siRNA if the particle is not too large for the “holes” of the ruptured

endosome. F. Liposomes may also de-assemble inside the endosome and directly release

siRNA out of the ruptured endosome. Reproduced with permission from [105].
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