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Induction of Peptide Bond Dipoles Drives Cooperative Helix Formation in
the (AAQAA)3 Peptide
Jing Huang and Alexander D. MacKerell, Jr.*

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
ABSTRACT Cooperativity is a central feature in the formation of secondary structures in proteins. However, the driving forces
behind this cooperativity are poorly understood. The present work shows that the cooperativity of helix formation in the acetyl-
(AAQAA)3-NH2 peptide is significantly enhanced using an empirical force field that explicitly includes the treatment of electronic
polarizability. Polarizable simulations yield helical content consistent with experimental measurements and indicate that the
dependence of helical content on temperature is improved over additive models, though further sampling is required to fully
validate this conclusion. Cooperativity is indicated by the peptide sampling either the coiled state or long helices with relatively
low populations of short helices. The cooperativity is shown to be associated with enhanced dipole moments of the peptide back-
bone upon helix formation. These results indicate the polarizable force field to more accurately model peptide-folding cooper-
ativity based on its physically realistic treatment of electronic polarizability.
INTRODUCTION
Understanding protein folding at an atomic level of detail
is challenging (1,2). Toward this goal atomistic force
field–based simulations have produced a number of insights
(3–8); however, to date additive force fields have not been
able to reproduce the cooperativity of helix formation
(9–11). Thermodynamically, protein folding cooperativity
(12,13) is reflected in the small temperature interval over
which a protein goes from the unfolded to folded state.
Microscopically, this process involves the presence of
partially folded states at very low populations along with
fully, or nearly fully folded states. In practical terms, nature
utilizes folding cooperativity in proteins to lower the popu-
lation of partially folded intermediates and thus prevent mis-
folding and amyloid formation (14,15).

Molecular dynamics (MD) simulation-based methods
represent essential theoretical tools to understand the atomic
details of protein folding. These include long-time MD sim-
ulations (4–6,16), distributed stochastic dynamics simula-
tions (3,17,18), or enhanced sampling techniques such as
replica exchange simulations (9,19,20). These methods
have been applied to small peptides, including the GB1
hairpin (20–22) and Trp-cage (18,19), up to small proteins,
including protein G (4) and ubiquitin (6). Among these is
the well-studied helix-forming peptide acetyl-(AAQAA)3-
NH2 ((AAQAA)3 herein). Pioneering experimental work
by Baldwin and coworkers (23–26) found that short
alanine-based peptides form stable helices and character-
ized the thermodynamics of their helix-coil transition. Sha-
longo and Stellwagen showed the (AAQAA)3 peptide to
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have ~ 20% helical content at 300 K and reported data on
the helical content as a function of residue at several
temperatures (27). Computational studies of this peptide
using replica exchange simulations with the CHARMM22/
CMAP (28,29), AMBER99SB (30), and AMBER03 (31)
force fields revealed large deviations with experimental
data for three force fields (9). CHARMM22/CMAP and
AMBER03 overstabilized the helix (95% and 87% helix
at 300 K, respectively) whereas AMBER99SB understabi-
lized the helix (2% at 300 K). This subsequently lead to
further optimization of these force fields directly using the
helical content of (AAQAA)3 as target data, resulting in
the AMBER03*, AMBER99SB*, and CHARMM36 force
fields (9,32). However, even for these force fields the
experimentally measured helical content is only reproduced
around 300 K (9,11), whereas the overall temperature
dependence of helix formation is significantly underesti-
mated. This was confirmed in a more recent study involving
eight different additive protein force fields (10). The best
performer in that study was the CHARMM22* force field
(5), which overestimated the helical content by ~ 3% at
300 K but underestimated it by ~ 12% at 280 K and reported
more than 10% helix at 370 K whereas experimental data
indicated no helix at 350 K and above. Subsequently, it
was shown that the CHARMM36 force field had improved
temperature dependence, although the extent of the depen-
dence was significantly less than that observed experi-
mentally. The improved cooperativity was suggested to be
attributable to ‘‘many-body effects’’ associated with the
form of the backbone CMAP potential designed to repro-
duce the sampling of the helical region observed in
crystal structures (29). However, given the inability of the
model to reproduce the experimental folding temperature
http://dx.doi.org/10.1016/j.bpj.2014.06.038
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dependence, the many-body effects introduced by CMAP
were still not adequate. Although the lack of cooperativity
in current additive force fields may be associated with lim-
itations in their optimization, it may also be attributable to
the inherent limitation in the fixed-charge (additive) form
of the energy function disallowing variations in the charge
distribution that could contribute to the cooperativity of
(AAQAA)3 helix formation.

In this study we report replica exchange simulations of
(AAQAA)3 using a fully polarizable force field based on
the Drude oscillator model, Drude-2013 (33). We show
that the Drude-2013 polarizable force field, though being
a first-generation model and not specifically optimized
targeting (AAQAA)3 helical content, can satisfactorily
reproduce the experimentally measured helical content.
More importantly, such reproduction is observed for the three
temperatures considered, namely 280, 300, and 340K. Inves-
tigation of the conformational properties reveals the peptide
to have high propensity for either the coil or for long helical
states, indicating a cooperative process in which the helical
conformation is propagated throughout the peptide once it
is nucleated. Such an atomistic picture of helix formation
from a polarizable model contrasts significantly with those
observed from additive force fields, indicating that the
explicit treatment of electronic polarizability in a force field
leads to a fundamentally improved model of the physical
forces dictating polypeptide conformational properties.
MATERIALS AND METHODS

Acetyl-(AAQAA)3-amide was solvated in a 40 Å cubic water box contain-

ing 1943 water molecules and no ions. The starting structure was taken

from previous CHARMM36 simulations (32) where the peptide was in

the folded state. The system for the Drude simulations was generated by

converting TIP3P (34) water molecules into polarizable SWM4 (35) water

molecules and adding Drude particles onto nonhydrogen atoms and lone

pairs on the hydrogen bond acceptors. MD simulations of 1 ns were then

performed in the isothermal-isobaric ensemble (NPT) at the desired temper-

ature T (T ¼ 280, 300, and 340 K) and 1 atmosphere. Hamiltonian replica

exchange molecular dynamics (HREMD) simulations were carried out

in the canonical ensemble (NVT) using the final volumes from the NPT

simulations.

The biasing potential used for HREMD simulations is described by the

following:

Ereplica ¼ bEpp þ
ffiffiffi
b

p
Epw þ Eww; (1)

as proposed by Wang et al. in the context of replica exchange with solute

scaling (36), where E is the peptide intramolecular energy, E is the pep-
pp pw

tide-water interaction energy, Eww is the self-interaction energy within the

water molecules, and b is a biasing parameter exponentially scaled from 1

(no bias at the 0th replica) to 0.5. Simulations of all replicas are carried out

at the same temperature T and exchanged according to the principle of

detailed balance. The decomposition and scaling scheme according to

Eq. 1 is such that the water-water energy term vanishes from the acceptance

criterion. Only the 0th replica (i.e., no modification of the Hamiltonian) is

used for analysis, while higher replicas are equivalent to a situation where

the intramolecular conformational barriers in the solute correspond to a

temperature of T/b emphasizing the Hamiltonian nature of the enhanced

sampling methodology.
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All the simulations were carried out with CHARMM version c37a2 (37),

where the Hamiltonian is biased using the BLOCK facility. Three replica

exchange simulations were carried out with the Drude force field (33) to

90 ns at T ¼ 280, 300, and 340 K, each using 12 replicas. Exchange was

attempted every 5000 steps and the acceptance ratio is between 20% and

50%. The exchanges of individual replicas in the HREMD simulations

are illustrated in Fig. S1 in the Supporting Material. Only the 0th replica

was used for analysis and the first 30 ns was considered equilibration and

discarded. Simulations at 300 K were further extended to 120 ns to examine

the convergence (see Fig. S2). HREMD simulations with the CHARMM36

force field (32) were carried out using the same simulation parameters.

Temperature control is performed based on Nose-Hoover thermostats

(38,39) and pressure control performed with Andersen barostats (40).

For the additive CHARMM36 simulations a thermal piston mass of

2000 kcal/mol � ps2 was used, whereas for the polarizable Drude simula-

tions the characteristic response time for the thermostat coupled to non-

Drude particles (at temperature T) equals 0.1 ps and for the thermostat

coupled to Drude particles (temperature ¼ 1 K) equals 0.005 ps (41). Peri-

odic boundary conditions were applied and Lennard-Jones interactions

were truncated at 12 Å with a smoothing function (force switch smoothing

for the CHARMM36 simulations and switch smoothing for the Drude) from

10 to 12 Å. The nonbonded interaction lists were generated with a distance

cutoff of 16 Å and updated heuristically. Electrostatic interactions were

calculated using the particle mesh Ewald method (42) with a real space cut-

off of 12 Å on an ~ 1 Å grid with a sixth-order spline. Covalent bonds to

hydrogen atoms were constrained by SHAKE (43). The integration time

step equals 1 fs for the Drude and 2 fs for the CHARMM36 simulations,

and coordinates were saved every 1 ps.

A residue is defined as being in the a region if it is in the range -100� <
f < -30� and -67� < c < -7� in the Ramachandran map (Fig. S3). A

region of a-helix is defined as at least three consecutive residues being

in the a region, as previously performed (9–11,32). Best and Hummer

showed that the alternative definition of helix based on helical i, i þ 4

hydrogen bonds leads to equivalent results (9). The fraction of helix for

a given residue is computed as the fraction of time the residue fulfills

the a-helix definition and the fraction of helix for the peptide is computed

as the average over all 15 residues. Statistical uncertainties are estimated

by block averaging using 10-ns blocks, though we note that the proper

derivation of uncertainties from Hamiltonian replica exchange simula-

tions remains an open challenge (44). The peptide is considered to be

in coiled states when it contains no residues fulfilling the a-helix defini-

tion. A residue is defined as being in a coiled state if the residue is outside

the a region in the Ramachandran map as in Lifson-Roig analysis. The aþ
region is a broader region surrounding the a region as defined in Fig. S3.
RESULTS AND DISCUSSION

The helical content from the HREMD simulations as a
function of temperature is depicted in Fig. 1 for both the
Drude-2013 and C36 force fields, together with the experi-
mental NMR data (27) and the previously reported results
for C36 obtained from temperature replica exchange simu-
lations (11). The NMR values are based on the carbonyl
chemical shift measurements at seven temperatures from
269 to 363 K by Shalongo and Stellwagen, and are
computed using Table 1 and Eq. 2 in reference (27). Fraction
helix for the individual systems as a function of time is
shown in Fig. S1. At 300 K, the Drude simulation predicts
a helical content of 25%, which is slightly higher than esti-
mates of 19% and 22% from NMR and circular dichroism
measurements (26), respectively. At 280 K, the helical con-
tent (34%) is smaller than that obtained from NMR
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FIGURE 1 Fraction helix as a function of temperature determined from

NMR experiments and replica exchange simulations with the Drude polar-

izable and the CHARMM36 additive force fields. The C36 T-REMD results

were previously reported (11). To see this figure in color, go online.
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experiments (40%), whereas at the higher temperature (340
K) the deviation is small (4% versus 3%). Qualitatively, the
Drude polarizable force field predicts certain amount of he-
lix at 300 K and almost no helix at the higher temperature of
340 K, whereas most additive force fields lead to either helix
formation at both temperatures or no helix at both tempera-
tures (9–11). We note that obtaining full convergence of the
peptide sampling as required to calculate the helical content
is challenging and acknowledge that our results are not fully
converged; however, the agreement between the present
C36 and previously published temperature replica exchange
results for the helical content indicate that the HREMD
approach has yielded results that have been representative
of the experimental regimen.

The consistency with experimental data is also present on
a per-residue basis, as shown in Fig. 2. For example, the
Drude simulations showing the C-terminal alanine residue
to always be in the coiled state is consistent with the exper-
imental NMR chemical shift measurements (27). The helix
propensity of the N-terminus is higher than that of the C
terminus because of the presence of the acetyl group, which
can form an i to iþ 4 hydrogen bond that stabilizes the helix
as seen in both the simulation and NMR data. This proper
treatment of sequence dependence further indicates the
quality of the Drude model in treating the coil-helix equilib-
rium. With C36 the additional helical propensity at the
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FIGURE 2 Fraction helix per residue from the Drude and CHARMM36

force fields and from the NMR experimental estimation (27) at 280, 300,

and 340 K. To see this figure in color, go online.
N-terminus is not present, although it was observed in the
previous study (32).

Subsequent analysis involved the distribution of the
lengths of the helices during the simulations. Fig. 3 presents
the probabilities of observing n consecutive residues in the a
region. At 340 K, although the Drude model predicts only
4.2% fraction helix, long helical segments are present,
with the probability of observing helices with a length of
nine residues (1.1%) being higher than that for a seven-res-
idue helix. Such a probability distribution is more prominent
at 300 K, with a maximum at 12 residues, which corre-
sponds to the average helix length in proteins (45). At 280
K, the maximum in the helices is slightly shorter than that
at 300 K, though the cooperative nature of folding is still
evident given the prominence of helices of 8 to 10 residues
over shorter helices. In the additive simulations distributions
with higher sampling for longer helices are not observed at
any temperature, with short helices being the most popu-
lated. However, some evidence of cooperativity is present
at 280 and 300 K as indicated by presence of small peaks
in the distributions at n ¼ 10. These results indicate that
the Drude model has a significantly greater amount of
folding cooperativity than the additive C36 model.

It should also be emphasized that the total average frac-
tion helix equals the sum of the probabilities (as presented
in Fig. 3) multiplied by the respective helix lengths, such
that longer helices make a much larger contribution to the
reported helical content in the polarizable model. For
example, for the Drude model at 300 K helical segments
with a length of 10 residues or more account for 78% of
the helix observed, whereas these long helices only
contribute 25% with the C36 force field. These results
further supports a situation with the polarizable force field
in which once a helix is nucleated it has higher tendency
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FIGURE 3 Probabilities of observing n consecutive residues in the a

region (as a helix of length n) during the polarizable Drude and additive

CHARMM36 simulations at 280, 300, and 340 K.
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FIGURE 4 Distributions of backbone f, c dihedral angles of residues in

a-helical segments of three or more residues from the 300 K simulations

with the Drude and CHARMM36 force fields. Results are presented as

–kTlnP where P is the probability density plotted in contour lines relative

to the lowest value in the region of interest shown. The contour lines are

draw from 0 to 2 kcal/mol with an interval of 0.2 kcal/mol.

TABLE 2 Backbone peptide dipole moments for residues in

different conformational regions from the 300 K simulations

with Drude polarizable and CHARMM36 additive force fields

Dipole moment (D) a-helix a (not in helix) aþ (not in a) PPII b

Drude Total 4.91 4.93 5.09 5.07 5.40

Intrinsic 3.87 3.92 4.28 4.49 4.86

Enhancement 1.04 1.01 0.81 0.58 0.54

Intramolecular 0.76 0.52 0.39 0.27 0.21
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to elongate, yielding the more pronounced increase in the
sampling of long helices shown in Fig. 3.

Although the Drude model has a higher propensity to
form helical states as compared with the additive model,
it also favors more extended unfolded states. This is indi-
cated by the average radius of gyration of (AAQAA)3 for
coiled states (i.e., those that do not contain any a-helix) be-
ing 10.9 Å and 10.0 Å for the Drude and C36 simulations
at 300 K, respectively. This is associated with the Drude
model yielding a more pronounced bimodal distribution
of the radius of gyration compared with the C36 model,
as shown in Fig. S4. These results further indicate the co-
operativity of helix formation in the polarizable Drude
force field.

To understand the strong folding cooperativity with the
Drude polarizable force field at a microscopic level, we
analyzed the backbone f, c distributions for the helical res-
idues, as this sampling was used to explain the enhanced
temperature dependence brought by C36’s CMAP potential
as compared with other additive force fields (11,32). The
average population of residues in the broad aR region, aþ
(see Fig. S2), in the more strict a region, and in helical seg-
ments (%a-helix), as defined by three consecutive helical
residues, are listed in Table 1 for the 300 K simulations.
Although the polarizable force field yields the highest frac-
tion helix based on both %a and %a-helix, it has lowest
population of residues in the broad aþ region. Accordingly,
the ratios of the a/aþ and a-helix/a populations are higher
in the Drude than in the C36 simulation, indicating that
once a residue is in the aþ region it has a larger probability
of sampling the more strict, helix-forming a region. Further-
more, once a residue is in the a region it has larger probabil-
ity of participating in a stretch of three or more consecutive
residues in the a region, i.e., forming a helical structure.
This indicates a steep funnel-like energy landscape. Similar
trends are observed at both the lower and higher temperature
as shown in Table S1.

The extent of cooperativity with the additive C36 force
field was attributed to many-body effects associated with
the CMAP potential that allows for cooperativity of the f
and c dihedrals to be explicitly parametrized into the model.
For the residues in the helical segments, simulations with
C36 results in a much narrower free energy basin in their
f, c distributions (Fig. 4). This tight helical minimum is
related to the empirical adjustment of the CMAP term
directly targeting a PDB distribution (29) with subsequent
optimization of CMAP yielding C36 based on shifting over-
all regions of CMAP to improve the overall fraction helix of
TABLE 1 Population of selected conformational regions with

the Drude and CHARMM36 force fields at 300 K

%aþ %a %a-helix a/aþ a-helix/a

Drude 36.3 33.0 25.1 0.91 0.76

C36 40.2 30.0 19.8 0.75 0.66
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(AAQAA)3 (11). Imposing such specific optimization in the
sampling off, c phase space may be a necessity for additive
force fields, whereas this is not required in the Drude force
field, as evidenced by the broader f, c distribution (Fig. 4)
because the additional, electronic degrees of freedom
incorporated in the polarizable model yield the observed
cooperativity.

Verification of the contribution of the electrostatic polar-
izability to cooperativity involved analysis of peptide back-
bone dipole moments, computed as the ensemble average
from the simulations for the different conformational
ranges. The results in Table 2, in the rows labeled ‘‘Total,’’
show that the polarizable Drude model leads to much
larger dipole moments than the additive C36 model, as
previously observed in MD simulations of proteins and
other peptide systems, with the extended conformations
having larger dipoles than the helical conformations in
the polarizable model (33). To illustrate how the environ-
ment affects the dipoles, intrinsic dipoles were obtained
for the gas-phase alanine tripeptide as detailed in the
supporting information. These values are reported in
Table 2 as ‘‘Intrinsic,’’ with the difference between the total
and intrinsic dipoles yielding the ‘‘Enhancement’’ of the
enhancement

C36 Total 3.87 3.91 3.77 3.88 3.75

Intrinsic 3.84 3.88 3.71 3.84 3.72

Enhancement 0.03 0.03 0.06 0.04 0.03

Values of aþ are reported for residues in the aþ but not in the a conforma-

tion (aþ (not in a)), and of a for those in the a conformation but not forming

helices (a (not in a-helix)). The statistical errors are below 0.01 D in all the

cases. See the text for more details.
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peptide dipoles because of the full environment comprised
of the remainder of the peptide and the surrounding sol-
vent. As is evident, the dipole moments of peptide groups
are enhanced significantly with Drude-2013 whereas for
the additive force field, as expected, there is no significance
difference between condensed and gas phases. The slight
enhancement of peptide dipoles observed in the C36 simu-
lations (~ 0.03 D) is associated with the elongation of
peptide C ¼ O bonds because of hydrogen bonding inter-
actions. In the Drude simulations the enhanced dipole is
larger for those residues in the a conformation (~ 1.0 D)
than outside that region (~ 0.6 D). To separate the induc-
tion effects of solvent from intrapeptide interactions, we
computed the average dipole moments after removing all
water molecules from the MD trajectories and then
relaxing the Drude particles yielding the ‘‘intramolecular
enhancement’’ values. Comparing those with the overall
enhancement values shows a significant difference in the
intrapeptide enhancement when a residue occupies coiled
states (~ 0.25 D) versus the ‘‘a (not in a-helix)’’states
(0.52 D) versus the a-helical states (0.76 D). If we assume
the induction from adjacent residues (i - 1 and i þ 1) con-
tributes a 0.39 D enhancement, based on the ‘‘aþ (not in
a)’’ value, then for helical residues the remaining 0.37 D
may be attributed to the hydrogen bonding between the i
and iþ4 residues, which is the unique feature of helical
structure. Interestingly, quantum chemistry calculations of
model systems indicate that electron density redistribution
accounts for half of the helix formation cooperativity (46)
and the cooperative stabilizing effect within a helix
because of the intrahelical hydrogen bonds is stronger
than that between the helix and water associated with
hydrogen bonds between the carbonyl groups and water
(47), consistent with the present observation.

The replica exchange simulation results can be discussed
in the context of helix-coil theory using the Lifson-Roig
model. Following the protocol outlined by Best and Hum-
mer (9), the Lifson-Roig w, v parameters were computed
for both the Drude and C36 simulations. The resulting
values are listed in Table 3 together with the experimental
values determined from by Rohl and Baldwin (25,26). The
temperature independent parameter v describes the propen-
sity for helix nucleation, and the simulations result in
values of 0.11 and 0.17 for the Drude and C36 force fields,
respectively, compared with the experimental estimation of
TABLE 3 Lifson-Roig coefficientsw and v from the Drude and

CHARMM36 simulations, compared with experimental data

Drude C36 Experimental data

w at 280 K 1.24 1.11 1.49

w at 300 K 1.17 1.03 1.28

w at 340 K 0.70 0.87 0.99

v 0.11 0.17 0.04

Experimental data taken from previous studies (25,26).
0.04. The differences indicate that in the MD simulations
residues too readily convert from a coil conformation to
an a conformation, though the results with the Drude
model are improved over the additive model. The overesti-
mation of the v parameter in simulations is compensated by
their underestimation of the w parameter, which describes
helix extension, to achieve similar fraction helix observed
in experiments. The w parameter for the Drude model are
larger than the C36 model at 280 and 300 K, being in better
agreement with the experimental data. However, the values
at 340 K are smaller than with C36, and in poorer agree-
ment with experiment. Thus, the Drude model is in better
agreement for the majority of the analyzed Lifson-Roig
terms, consistent with the improved cooperativity in the
model.
CONCLUSIONS

In this study atomistic simulations of solvated (AAQAA)3
were performed using the first-generation Drude polarizable
and additive C36 protein force fields. The fraction helix
at 300 K is comparable with experimental data for both
force fields, indicating that both satisfactorily balance the
helix-coil equilibrium at this temperature. The result is
particularly encouraging as the polarizable force field was
not optimized targeting the (AAQAA)3 data as was C36.
More importantly, almost no helix is observed at the higher
temperature of 340 K in the Drude model, consistent with
the experimental measurement. With the polarizable force
field, relatively low populations of the short helices are
observed whereas higher populations of longer helices are
observed, a feature typical of a highly cooperative process
(13). Analysis of the simulations indicates that the ability
to capture folding cooperativity is attributable to the polariz-
able model itself instead of the particular parametrization.
This is in contrast with the C36 force field, which has
been previously shown to yield the largest amount of coop-
erativity of the additive force fields tested to date because of
the many-body effects incorporated by empirical adjustment
in its CMAP potential (11). However, it is anticipated that
further optimization of the Drude model will lead to
improved agreement with experiment on the folding of
(AAQAA)3.

The presented results cumulatively includemore than 3ms
of simulation time performed with the Drude-2013 force
field. This and the presented results illustrate that the Drude
force field represents a more physically valid yet still compu-
tationally efficientmodel for the study of polypeptide folding
as well as other phenomena (33). In conclusion, the polariz-
able Drude force field represent a significant improvement in
the reproduction of the temperature dependence and cooper-
ativity of peptide folding over available additive force fields
and highlights the advantage of using polarizable force fields
in general (48–50) because of their microscopically more
physical treatment of electrostatics.
Biophysical Journal 107(4) 991–997



996 Huang and MacKerell
SUPPORTING MATERIAL

Four figures and one table are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(14)00684-5.

Financial support from the NIH (GM051501 and GM072558) and compu-

tational support from the University of Maryland Computer-Aided Drug

Design Center, and the Extreme Science and Engineering Discovery Envi-

ronment (XSEDE), which is supported by National Science Foundation

grant number OCI-1053575, are acknowledged. J. H. is supported by a

SNSF Fellowship (PBBSP2_144301).

SUPPORTING CITATIONS

Reference (51) appears in the Supporting Material.
REFERENCES

1. Dobson, C. M. 2003. Protein folding and misfolding. Nature.
426:884–890.

2. Baldwin, R. L. 2007. Energetics of protein folding. J. Mol. Biol.
371:283–301.

3. Snow, C. D., H. Nguyen,., M. Gruebele. 2002. Absolute comparison
of simulated and experimental protein-folding dynamics. Nature.
420:102–106.

4. Lindorff-Larsen, K., S. Piana, ., D. E. Shaw. 2011. How fast-folding
proteins fold. Science. 334:517–520.

5. Piana, S., K. Lindorff-Larsen, and D. E. Shaw. 2011. How robust are
protein folding simulations with respect to force field parameteriza-
tion? Biophys. J. 100:L47–L49.

6. Piana, S., K. Lindorff-Larsen, and D. E. Shaw. 2013. Atomic-level
description of ubiquitin folding. Proc. Natl. Acad. Sci. USA.
110:5915–5920.

7. Freddolino, P. L., C. B. Harrison, ., K. Schulten. 2010. Challenges in
protein-folding simulations. Nat. Phys. 6:751–758.

8. Thirumalai, D., Z. Liu, ., G. Reddy. 2013. Protein folding: from
theory to practice. Curr. Opin. Struct. Biol. 23:22–29.

9. Best, R. B., and G. Hummer. 2009. Optimized molecular dynamics
force fields applied to the helix-coil transition of polypeptides.
J. Phys. Chem. B. 113:9004–9015.

10. Lindorff-Larsen, K., P. Maragakis, ., D. E. Shaw. 2012. Systematic
validation of protein force fields against experimental data. PLoS
ONE. 7:e32131.

11. Best, R. B., J. Mittal,., A. D. MacKerell, Jr. 2012. Inclusion of many-
body effects in the additive CHARMM protein CMAP potential results
in enhanced cooperativity of a-helix and b-hairpin formation.
Biophys. J. 103:1045–1051.

12. Miranker, A. D., and C. M. Dobson. 1996. Collapse and cooperativity
in protein folding. Curr. Opin. Struct. Biol. 6:31–42.

13. Hunter, C. A., and H. L. Anderson. 2009. What is cooperativity?
Angew. Chem. Int. Ed. Engl. 48:7488–7499.

14. Booth, D. R., M. Sunde, ., M. B. Pepys. 1997. Instability, unfolding
and aggregation of human lysozyme variants underlying amyloid fibril-
logenesis. Nature. 385:787–793.

15. Dumoulin, M., A. M. Last, ., C. M. Dobson. 2003. A camelid anti-
body fragment inhibits the formation of amyloid fibrils by human
lysozyme. Nature. 424:783–788.

16. Shaw, D. E., P. Maragakis, ., W. Wriggers. 2010. Atomic-level char-
acterization of the structural dynamics of proteins. Science.
330:341–346.

17. Sorin, E. J., and V. S. Pande. 2005. Exploring the helix-coil transition
via all-atom equilibrium ensemble simulations. Biophys. J.
88:2472–2493.
Biophysical Journal 107(4) 991–997
18. Snow, C. D., B. Zagrovic, and V. S. Pande. 2002. The Trp cage: folding
kinetics and unfolded state topology via molecular dynamics simula-
tions. J. Am. Chem. Soc. 124:14548–14549.

19. Day, R., D. Paschek, and A. E. Garcia. 2010. Microsecond simulations
of the folding/unfolding thermodynamics of the Trp-cage miniprotein.
Proteins Struct. Funct. Bioinf. 78:1889–1899.

20. Best, R. B., and J. Mittal. 2011. Free-energy landscape of the GB1
hairpin in all-atom explicit solvent simulations with different force
fields: similarities and differences. Proteins Struct. Funct. Bioinf.
79:1318–1328.

21. Best, R. B., and J. Mittal. 2011. Microscopic events in b-hairpin folding
from alternative unfolded ensembles. Proc. Natl. Acad. Sci. USA.
108:11087–11092.

22. Bonomi, M., D. Branduardi, ., M. Parrinello. 2008. The unfolded
ensemble and folding mechanism of the C-terminal GB1 b-hairpin.
J. Am. Chem. Soc. 130:13938–13944.

23. Marqusee, S., V. H. Robbins, and R. L. Baldwin. 1989. Unusually
stable helix formation in short alanine-based peptides. Proc. Natl.
Acad. Sci. USA. 86:5286–5290.

24. Chakrabartty, A., T. Kortemme, and R. L. Baldwin. 1994. Helix pro-
pensities of the amino acids measured in alanine-based peptides
without helix-stabilizing side-chain interactions. Protein Sci.
3:843–852.

25. Rohl, C. A., A. Chakrabartty, and R. L. Baldwin. 1996. Helix propaga-
tion and N-cap propensities of the amino acids measured in alanine-
based peptides in 40 volume percent trifluoroethanol. Protein Sci.
5:2623–2637.

26. Rohl, C. A., and R. L. Baldwin. 1997. Comparison of NH exchange and
circular dichroism as techniques for measuring the parameters of the
helix-coil transition in peptides. Biochemistry. 36:8435–8442.

27. Shalongo, W., L. Dugad, and E. Stellwagen. 1994. Distribution of
helicity within the model peptide acetyl (AAQAA)3 amide. J. Am.
Chem. Soc. 116:8288–8293.

28. MacKerell, Jr., A. D., D. Bashford, ., M. Karplus. 1998. All-atom
empirical potential for molecular modeling and dynamics studies of
proteins. J. Phys. Chem. B. 102:3586–3616.

29. Mackerell, Jr., A. D., M. Feig, and C. L. Brooks, 3rd. 2004. Extending
the treatment of backbone energetics in protein force fields: limitations
of gas-phase quantum mechanics in reproducing protein conforma-
tional distributions in molecular dynamics simulations. J. Comput.
Chem. 25:1400–1415.

30. Hornak, V., R. Abel,., C. Simmerling. 2006. Comparison of multiple
Amber force fields and development of improved protein backbone
parameters. Proteins Struct. Funct. Bioinf. 65:712–725.

31. Duan, Y., C. Wu, ., P. Kollman. 2003. A point-charge force field for
molecular mechanics simulations of proteins based on condensed-
phase quantum mechanical calculations. J. Comput. Chem.
24:1999–2012.

32. Best, R. B., X. Zhu,., A. D. Mackerell, Jr. 2012. Optimization of the
additive CHARMM all-atom protein force field targeting improved
sampling of the backbone 4, c and side-chain c(1) and c(2) dihedral
angles. J. Chem. Theory Comput. 8:3257–3273.

33. Lopes, P. E. M., J. Huang, ., A. D. Mackerell, Jr. 2013. Polarizable
force field for peptides and proteins based on the classical Drude oscil-
lator. J. Chem. Theory Comput. 9:5430–5449.

34. Jorgensen, W. L., J. Chandrasekhar,., M. L. Klein. 1983. Comparison
of simple potential functions for simulating liquid water. J. Chem.
Phys. 79:926–935.

35. Lamoureux, G., E. Harder,., A. D. MacKerell, Jr. 2006. A polarizable
model of water for molecular dynamics simulations of biomolecules.
Chem. Phys. Lett. 418:245–249.

36. Wang, L., R. A. Friesner, and B. J. Berne. 2011. Replica exchange with
solute scaling: a more efficient version of replica exchange with solute
tempering (REST2). J. Phys. Chem. B. 115:9431–9438.

37. Brooks, B. R., C. L. Brooks, 3rd,., M. Karplus. 2009. CHARMM: the
biomolecular simulation program. J. Comput. Chem. 30:1545–1614.

http://www.biophysj.org/biophysj/supplemental/S0006-3495(14)00684-5
http://www.biophysj.org/biophysj/supplemental/S0006-3495(14)00684-5


Cooperativity in Helical Peptide Formation 997
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