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Abstract

Proton beam radiotherapy unavoidably exposes healthy tissue to stray radiation emanating from

the treatment unit and secondary radiation produced within the patient. These exposures provide

no known benefit and may increase a patient's risk of developing a radiogenic cancer. The aims of

this study were to calculate doses to major organs and tissues and to estimate second cancer risk

from stray radiation following craniospinal irradiation (CSI) with proton therapy. This was

accomplished using detailed Monte Carlo simulations of a passive-scattering proton treatment unit

and a voxelized phantom to represent the patient. Equivalent doses, effective dose and

corresponding risk for developing a fatal second cancer were calculated for a 10-year-old boy who

received proton therapy. The proton treatment comprised CSI at 30.6 Gy plus a boost of 23.4 Gy

to the clinical target volume. The predicted effective dose from stray radiation was 418 mSv, of

which 344 mSv was from neutrons originating outside the patient; the remaining 74 mSv was

caused by neutrons originating within the patient. This effective dose corresponds to an

attributable lifetime risk of a fatal second cancer of 3.4%. The equivalent doses that predominated

the effective dose from stray radiation were in the lungs, stomach and colon. These results

establish a baseline estimate of the stray radiation dose and corresponding risk for a pediatric

patient undergoing proton CSI and support the suitability of passively-scattered proton beams for

the treatment of central nervous system tumors in pediatric patients.

1. Introduction

Proton therapy is a promising treatment modality for some central nervous system tumors in

pediatric patients. Protons have several depth–dose characteristics, such as a sharp distal

fall-off versus depth in tissue, which give proton therapy a theoretical dosimetric advantage

over photon radiotherapy in the sparing of nearby tissues and organs (Krejcarek et al 2007).

This dosimetric advantage is especially important for children because they are more

susceptible to radiation carcinogenesis, which is the radiation late effect of greatest concern.

The increased susceptibility is mainly because children generally have longer expected

survival times, higher relative biological effectiveness (RBE) for a given type of radiation

and endpoint and smaller bodies than adults and, thus, organs that are closer to the proton

field. Hence, interest in the potential use of proton therapy for children with cancer is

increasing (cf Archambeau et al 1992, Miralbell et al 1997, 2002, Lin et al 2000, Noel et al
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2003, Kirsch and Tarbell 2004, St Clair et al 2004, Yuh et al 2004, Lee et al 2005,

Lundkvist et al 2005, Mu et al 2005).

Several studies have examined the stray radiation exposures associated with proton therapy

(Agosteo et al 1998, Schneider et al 2002, Yan et al 2002, Jiang et al 2005, Polf and

Newhauser 2005, Polf et al 2005, Hall 2006, Wroe et al 2007, Zheng et al 2007a, 2007b,

2008), and a few investigations have estimated stray neutron exposures in humanoid

phantoms (Fontenot et al 2008, Zacharatou Jarlskog et al 2008, Taddei et al 2008). Miralbell

et al (2002) reported a treatment planning study in which the risks of second cancer were

compared for proton therapy versus photon therapy following craniospinal irradiation (CSI);

the risks from neutron radiation were neglected. Newhauser et al (2009) supplemented the

analysis from Miralbell et al to include neutron radiation. Absorbed dose from neutrons is of

particular concern because, although absorbed dose is less, RBE of neutrons (including their

secondary particles) is generally greater than that of protons, photons and electrons. They

predicted stray radiation dose using an adult-sized anthropomorphic phantom. Miralbell et al

found that proton therapy carried lower predicted risk of second cancer; Newhauser et al

reported that consideration of neutrons increased the risk of second cancer, but proton

therapy still carried a lower risk than photon therapy. The results of Miralbell et al and

Newhauser et al were based on one patient, a 6-year-old boy, and the dosimetric

uncertainties were large and difficult to estimate. Hence, there is a need for additional,

independent investigations, particularly with more realistic dose predictions and for patients

of other ages.

The aim of this study was to perform a realistic and accurate calculation of the equivalent

dose in major organs and tissues and the effective dose from stray radiation for a complete

proton CSI treatment. The geometric model comprised a passive-scattering proton therapy

treatment unit and a voxelized phantom based on computed tomography (CT) images of a

pediatric patient who underwent proton CSI at our institution. The Monte Carlo simulation

method was used to calculate absorbed dose from primary (therapeutic) protons, stray

neutrons originating in the treatment unit and stray neutrons originating within the patient.

The excess risk of second cancer mortality was estimated based on the effective dose from

stray radiation.

2. Methods

2.1. Proton treatment technique

A proton radiotherapy plan was created for a 10-year-old male patient with supratentorial

primitive neuroectodermal tumor (PNET) who underwent proton CSI using a commercial

treatment planning system (TPS) (Eclipse Proton; Varian Medical Systems, Inc., Palo Alto,

CA) and whole-body kilovoltage CT images (Newhauser et al 2007a). His stature was

representative of a typical 10-year-old boy. As part of the treatment planning process, organ

and tissue structures were contoured using the TPS. The plan prescribed 30.6 Gy to the brain

and the spinal cord and 23.4 Gy boost dose to the clinical target volume, which was the

gross tumor volume in the brain with an additional margin. The patient was treated in the

supine position. The plan called for proton fields that included those that were otherwise

identical except that the aperture edges were modified slightly to provide feathering of the
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junctions of the proton fields. For the purposes of this study, the feathering of field junctions

was unimportant. Therefore, the feathering was eliminated, and the plan was simplified to

six fields: two inferior and superior posterior–anterior spinal fields (IPA and SPA), two right

and left posterior oblique cranial fields (RPO and LPO) and two left posterior oblique and

left lateral boost fields (LPOB and LLB) to the clinical target volume. Field characteristics

are listed in table 1, including proton beam energies at the entrance of the treatment unit and

residual water-equivalent ranges at the surface of the patient. The dose distributions were

conformed to the target volume of each field using the beam modifiers available in the

commercial passive-scattering proton therapy treatment unit (PROBEAT; Hitachi America,

Ltd, Tarrytown, NY) in service at The University of Texas M D Anderson Cancer Center

(Newhauser et al 2007a), which included a range-modulator wheel (Koehler et al 1975),

scattering foils, range shifter, collimator block and range compensator (Wagner 1982). A 6

cm thick collimator block was used to define the proton field for the 180 MeV beams, and a

4 cm collimator was used for the 140 and 160 MeV beams. The snout was set for a large

field size (i.e. up to 25 × 25 cm2) for the spinal and cranial fields and for a medium field size

(i.e. up to 18 × 18 cm2) for the boost fields. The plan was exported from the TPS for Monte

Carlo simulation (see below).

Nominal air gaps from the treatment plan are presented in table 1. The air gap between the

downstream face of the range compensator and the proximal surface of the patient for the

cranial and boost fields was 2 cm; the spinal fields had an air gap of 10 cm to allow for

additional displacement from the treatment couch. Because the absorbed dose from stray

radiation rapidly increases with decreasing air gap (Zheng et al 2007b), an additional

simulation was performed where the model was adjusted for an air gap of 2 cm for the spinal

fields. The results of this additional simulation may be used to estimate the effective dose

from stray radiation if the patient were treated in the prone position.

2.2. Modeling the treatment unit and voxelized phantom

Monte Carlo simulations were performed using the Monte Carlo N-Particle eXtended

(MCNPX) code version 2.6b (Pelowitz 2005) with parallel processing on 2.6 GHz, 64 bit

processors (AMD Opteron; Advanced Micro Devices, Inc., Sunnyvale, CA). The suitability

of the MCNPX code for simulating therapeutic absorbed dose distributions and secondary

neutrons associated with proton therapy has been well established (cf Olsher et al 2000,

Fontenot et al 2005, 2007, Herault et al 2005, 2007, Koch and Newhauser 2005, Newhauser

et al 2005, 2007a, 2007c, Polf and Newhauser 2005, Polf et al 2005, Tayama et al 2006,

Zheng et al 2007b, 2008, Koch et al 2008, Titt et al 2008). Figure 1 shows the MCNPX

model of the treatment unit used in this work. The model included an elliptical source of

protons positioned immediately upstream of the treatment unit (3.29 m from the isocenter)

with a lateral Gaussian intensity distribution (horizontal FWHM = 5.4 mm, vertical FWHM

= 12.2 mm) that simulated the entrance of the parallel beam into the treatment head. The

proton sources were modeled as Gaussian energy distributions with initial mean energies of

140 MeV, 160 MeV and 180 MeV (FWHM = 0.23 MeV, 0.25 MeV and 0.27 MeV,

respectively). For simplicity, the treatment plans and simulations were calculated without a

treatment couch. Each component of the treatment unit was modeled in detail. The other
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features of the Monte Carlo model were described elsewhere (Newhauser et al 2007a, Zheng

et al 2007b).

The planning CT image of the patient included the entire body except the feet and was the

basis of the voxelized phantom. Before the treatment plan was started, the CT images were

down sampled into 4 × 4 × 5 mm3 pixels due to constraints on the electronic memory in the

TPS and Monte Carlo system. The Hounsfield unit (HU) in each voxel was converted to

mass density and material composition using the following approach. The assignment of

mass density, ρv, in each voxel, v, was made based on a tri-linear calibration curve similar to

that described by Schneider et al (2000) and Newhauser et al (2008). The mass density

values from the calibration curve were then discretized into one of 300 density bins in order

to conserve memory in the Monte Carlo system. The density bins were of three sizes in

order to minimize range errors from discretization effects. Specifically, there were 100 bins

for − 1000 ≤ HU < −100, 100 bins for −100 ≤ HU < 100 and 100 bins for 100 ≤ HU < 2500.

The material composition chosen for each voxel was assigned based on a nearest-neighbor

lookup in a table that listed 48 HU intervals with 48 discrete material compositions (mostly

biological materials) (Woodard and White 1986, White et al 1987, 1991). Although a more

exact method has been reported that allows for continuously variable material compositions

(Van Riper 2005), the number of materials was limited to 48 because of memory constraints

in the Monte Carlo system. The HU values used for assignment of mass density and material

composition were taken from measurements of the scanner used to image the patient in this

study (Newhauser et al 2008). In the MCNPX code, a lattice of over 2 × 106 elements was

used to represent the patient. A detailed explanation of this procedure is provided elsewhere

(Newhauser et al 2007b).

2.3. Effective dose, equivalent dose and absorbed dose from stray radiation

Following the recommendations of the International Commission on Radiological Protection

(ICRP) Publication 92 (2003), the effective dose from stray radiation, E, was calculated as

the sum over a specified organ or tissue, T,

(1)

where wT is the tissue weighting factor and HT is the equivalent dose in organs and tissues

from stray radiation. The wT values were taken from ICRP Publication 60 (1991), which

were developed to take into account the differences in the radiosensitivity of various organs

and tissues. The values of wT were provided for radiological protection purposes, where the

biological effect of an increased risk of attributable fatal cancer was the chief concern. The

wT value for the gonads represents a special case because it takes into account the

probability of hereditary effects.

HT was calculated as the product of the mean radiation weighting factor, , and the mean

absorbed dose for each organ or tissue, DT,
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(2)

HT values were calculated separately for each component of stray radiation and for each

treatment field. The methods used to calculate  values for stray radiation are described in

section 2.5.

In equation (2), DT was the mass-weighted average value of the absorbed dose. In this work,

the organs and tissues were subdivided into volume elements, or ‘voxels’, of fixed size.

Therefore, the mass averaging for DT was performed using ρv values and the density-

weighted average,

(3)

where Dv is the absorbed dose from stray radiation in each voxel in an organ or tissue, T. A

voxel was associated with an organ or tissue if all or part of it was within the contoured

surface of that organ. The larger the organ, the more voxels it contained; for example, the

lungs had 19 600 voxels whereas the thyroid had only 156 voxels. In principle, this inclusive

association method meant that the organ dose in equation (3) was averaged over a volume

that was slightly larger than the organ. However, this approximation was of little practical

consequence because the absorbed dose from stray neutrons decreases gradually with

increasing depth in tissue.

DT was calculated for each contoured organ and tissue, including the target volume of each

therapeutic field and organs and tissues associated with every tissue weighting factor, except

for the skin and remainder organs and tissues. Instead, an average DT for all voxels within

the phantom was applied as an approximate absorbed dose to the skin and the remainder

organs and tissues for each field.

As described in section 2.2, the patient anatomy was modeled using a lattice, where each

anatomical voxel was represented by an element within the lattice. The absorbed dose in a

voxel was calculated as the quotient of the energy deposited per volume and the mass

density. The energy deposition per volume (MeV cm−3 per source particle) was obtained

from an MCNPX type 3 rectangular mesh tally that exactly coincided with the lattice of

anatomical voxels. The mass density was obtained using the method described in section

2.2. The mass-averaged absorbed dose from the therapeutic proton beam in the target

volume of each field, DT=target, per source particle was calculated according to equation (3).

Values of Dv per source particle from a given treatment field were normalized using the

DT=target associated with that field, or

(4)

so that Dv for stray radiation was calculated in terms of stray radiation mGy per therapeutic

Gy. The normalization in equation (4) to therapeutic absorbed dose is convenient, eliminates
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dependence on the prescribed target dose and is customary in the literature (cf Yan et al

2002). Similarly, E and HT were reported per therapeutic absorbed dose for each field. In

addition, E, HT and Dv were also calculated for the prescribed treatment dose of 30.6 Gy for

the spinal and cranial fields to the brain and spinal cord and 23.4 Gy for the boost fields to

the cranium. E was used to estimate the absolute lifetime risk of attributable second cancer

fatality for the prescribed treatment.

2.4. Distinguishing absorbed dose from therapeutic protons, external neutrons and
internal neutrons

In this work, stray radiation was defined as the undesirable radiation produced from

interactions between the proton beam and the components in the treatment unit or the

patient. Secondary neutrons emanating from the treatment unit (or ‘external neutrons’) and

within the patient (or ‘internal neutrons’) have been shown to be the primary contributor to

absorbed dose from stray radiation (Agosteo et al 1998, Fontenot et al 2008, Zheng et al

2008). E, HT and Dv were calculated separately for both external and internal neutrons.

However, because the MCNPX code does not directly differentiate between the absorbed

dose from external versus internal radiation, the following method was used to separate the

absorbed dose from each of these two components.

To isolate the absorbed dose from external neutrons, Dv,ext, the Monte Carlo system was

configured to track neutrons and protons throughout the entire geometry (mode n h; imp:h, n

> 0). However, all proton trajectories were terminated immediately upstream of the patient

by a proton stopping plane (imp:h = 0), modeled as very thin slab of air. Thus, in

simulations with the stopping plane, only external neutrons were incident upon the patient.

A type 3 mesh tally (keyword ‘total’) was used to calculate energy deposition in each

anatomic voxel of the patient, and Dv,ext was calculated according to the methods described

in section 2.3.

Isolating the contribution to absorbed dose from internal neutrons, Dv,int, required a slightly

more complex procedure. The additional complexity was necessary because MCNPX tallies

did not discriminate between therapeutic (primary) protons and protons that were liberated

from inelastic nuclear reactions. First, the absorbed dose from primary protons was

calculated by tracking only protons (and not neutrons) throughout the geometry (mode n h;

imp:h > 0; imp:n = 0). In this case, secondary neutrons were generated, but their trajectories

were immediately terminated at their points of origin. Absorbed dose was calculated in each

voxel for primary protons, Dv[p1], using a type 1 mesh tally (keyword ‘pedep’). Second, a

simulation was performed in which protons were tracked throughout the model but neutrons

were tracked only within the patient (i.e. external neutrons were not allowed to contribute to

absorbed dose). This model was identical to the previous one except that the secondary

neutrons were tracked within the voxelized anatomy (imp:n > 0 in the phantom). Absorbed

dose was calculated in each voxel separately for protons, Dv[p2], and neutrons, Dv[n], using

type 1 rectangular mesh tallies (card ‘rmesh’, keyword ‘pedep’). In the MCNPX code, the

type 1 mesh tally included energy deposition only from particles that were explicitly

specified on the RMESH card (e.g. ‘rmesh21:n pedep’ for neutrons). Thus, the tally

excluded the proportion of energy that was deposited by other particles that were being
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transported, where the list of particles transported was specified on the ‘mode’ card, for

example recoil protons (Pelowitz 2005). Therefore, the absorbed dose from recoil protons

that originated from interactions with internal neutrons was added to Dv[n] using the

methods described by Taddei et al (2008), which was based on the assumption that the ratio

of neutron dose to secondary proton dose is constant throughout the body. An average of Dv

[p2]/Dv [n] for all voxels outside the treatment field, A, was calculated, including

contributions from all treatment fields. This average value was then used to estimate the

contribution to absorbed dose from secondary protons for each voxel inside the treatment

field, and this contribution was added to the absorbed dose from internal neutrons for that

voxel,

(5)

Dv,int was calculated in terms of mGy from internal neutrons per therapeutic Gy according to

the methods described in section 2.3.

Because of computer memory constraints, photons, alpha particles and other secondary

particles were not tracked, and their energy was deposited locally at their points of origin.

This was not a limitation of the study because in proton therapy equivalent dose from stray

radiation is predominated by neutrons (Agosteo et al 1998, Fontenot et al 2008, Zheng et al

2008).

2.5. Radiation weighting factor

The values of  were calculated separately for external and internal neutrons. For external

neutrons, the values of  were determined for each field following the recommendations

specified in ICRP Publication 92 (2003). For external neutrons,  was calculated as

(6)

where ϕ(En) was the probability density function of the spatially averaged neutron spectral

fluence incident upon the voxelized phantom. The energy-dependent expression of the

neutron radiation weighting factor was

(7)

where En was the neutron energy in MeV. ϕ(En) was tallied in a plane immediately

downstream of the treatment unit with lateral dimensions that spanned those of the voxelized

phantom in the treatment position. This was performed separately for each treatment field.

The values of  for internal neutrons were taken from a study by Newhauser et al (2009)

in which organ-specific  values were estimated using equations (6) and (7) above, but

where the neutron spectral fluence values of the moderated neutrons were tallied within the

internal organs of an anthropomorphic phantom receiving craniospinal proton irradiation.
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They found that  values averaged over all organs were 9.75 for the inferior spinal field,

9.42 for the superior spinal field and 7.86 for the cranial field; these values were applied to

the values of DT for internal neutrons for the IPA, SPA and the cranial and boost fields,

respectively. As shown in section 3.1, the internal neutrons made a relatively small

contribution to equivalent dose compared to external neutrons. Furthermore, the variation

between organs in radiation weighting factor for internal neutrons was small. Hence, the

methods utilized to estimate  values were adequate and appropriate for the intents and

purposes of this work.

2.6. Attributable lifetime risk of second cancer fatality

The National Council on Radiation Protection and Measurements (NCRP) has

recommended a risk coefficient of 8.1% per Sv of effective dose for low-dose-rate,

exposure-induced death for males between the ages of 0 and 19 years (1997). This value

provides a reasonable estimate of radiation detriment to a general population because it takes

into account stochastic effects in various organs as well as hereditary effects. This risk

coefficient was used to estimate the excess lifetime risk of second cancer fatality due to stray

radiation.

2.7. Uncertainty

To minimize statistical uncertainties in DT, 1 × 109, 5 × 108 and 5 × 108 source particles and

their secondary protons and neutrons were tracked for each spinal field, cranial field and

boost field simulation, respectively, for a total of 1.2 × 1010 histories. The uncertainties in

DT, HT and E were estimated considering only statistical uncertainties and on the

assumption that component uncertainties were uncorrelated. Statistical uncertainties in the

Dv values were based on the coefficients of variation calculated by the MCNPX code and

were reported at the 68% confidence interval. Because the uncertainty in ϕ(En) was less than

1% for neutron energy bins greater than 200 eV and less than 130 MeV, the uncertainty in

 values was taken as zero. The systematic uncertainties in values of wR(En) and wT were

large and difficult to estimate for this patient. However, in the uncertainty analysis, they

were assumed to have zero uncertainty. The effects of the uncertainty in wr were discussed

in detail by Newhauser et al (2009).

3. Results

3.1. Effective dose from stray radiation

The effective dose from stray radiation, E, for the entire treatment was 418.2 ± 0.7 mSv.

This value of E is equivalent to the effective dose associated with approximately 20 whole-

body CT scans. The two spinal fields contributed 302.2 ± 0.6 mSv (72%) to E, the two

cranial fields contributed 93.5 ± 0.4 mSv (22%) and the boost fields contributed 22.47 ±

0.13 mSv (5%). For the entire set of treatment fields, external neutrons contributed 343.7 ±

0.6 mSv (82%) to E, and internal neutrons contributed 74.4 ± 0.3 mSv (18%). The latter

closely approximates the minimum effective dose from stray radiation that may be achieved

by enhancements to the treatment unit, for example what might be possible with a spot-

scanning treatment unit that emits relatively few neutrons.
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Table 2 lists the effective dose from external and internal neutrons for each field. External

neutrons were the predominant contributors to E for each field. For external neutrons, the

spinal, cranial and boost fields accounted for 69%, 25% and 6% of effective dose,

respectively. For the internal neutrons, the spinal, cranial and boost fields accounted for

88%, 11% and 1% of effective dose, respectively.

In the simulations run with an air gap of 2 cm for the spinal fields, E increased by 13% to

473.7 ± 0.7 mSv. This case approximated the effective dose from stray radiation if the

patient were treated in the prone position for the posterior–anterior fields, thus eliminating

the couch from the path of the therapeutic proton beam.

The product HTwT was the contribution of the equivalent dose from an organ or tissue to

effective dose and is an indicator of the risk of stochastic effects. HTwT values are listed in

table 3, summed over all fields and multiplied by the prescribed doses of 30.6 Gy for the

cranial and spinal fields and 23.4 Gy for the boost fields. As shown, the lungs were the

predominant contributors to E, accounting for 86 mSv or 21% of E. The stomach, colon,

thyroid and esophagus each contributed between 42 and 61 mSv to E, or between 10% and

14% of E. The liver, breasts, gonads, red bone marrow and remainder each contributed over

20 mSv to E, or 5% of E.

3.2. Equivalent dose from stray radiation

The values of HT with non-zero values of wT are shown in the upper portion of table 3.

Values are listed separately for each treatment field. The results shown are a sum of the

contributions from external and internal neutrons. The values, which are the quantity of

equivalent dose from stray radiation per absorbed dose of therapeutic radiation, are given in

units of millisieverts per gray (mSv Gy−1). For the IPA field, the stomach, liver and colon

received the highest equivalent doses, approximately 8 mSv Gy−1 each. For the SPA field,

the esophagus, thyroid and lungs received the highest equivalent doses, in the interval of 11

to 14 mSv Gy−1. For the cranial fields, the bone surface and thyroid received the highest

equivalent doses, each over 10 mSv Gy−1. The HT values for the boost fields were small

compared to those for the spinal and cranial fields, with the thyroid and bone surface

receiving the highest equivalent doses because of the reduced field size and, consequently,

snout setting. For the organs with non-zero values of wT, HT values ranged between 0.35 and

14.0 mSv Gy−1 for each treatment field. After multiplying the HT values for each treatment

field by the prescribed therapeutic absorbed dose for that field and summing over all fields,

the thyroid had the largest summed HT value, 884 mSv, and the gonads had the smallest

summed HT value, 122 mSv for these organs and tissues.

The HT values for other organs and tissues are listed in the lower portion of table 3. The

clinical target volume was the gross tumor volume in the brain with an additional margin.

Organs and tissues near the brain had the largest HT values; however, these HT values from

stray radiation were small compared to the therapeutic absorbed dose to these organs.

Organs and tissues in the lower abdomen and below had the lowest HT values. The

contributions from these tissues and organs were aggregated and weighted using the wT

value for remainder in the traditional manner (ICRP 1991). The statistical uncertainty in the
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summed HT for the entire treatment ranged from 0.05% to 4.0% for all organs and from

0.07% to 1.7% for organs with non-zero wT values.

The  values associated with each field were determined separately for internal and

external neutrons. For external neutrons, values of  were calculated from the neutron

spectral fluence of external neutrons for each field and were applied to the external neutron

absorbed doses. The external neutron spectral fluences, ϕ(En), and those weighted by the

analytical expression of wr, ϕ(En)wR(En), are shown in figure 2 for each field. Mean 

values are listed in table 4. The  values for external neutrons calculated in this study

(range, 9.1−10.0) were similar to those calculated by Zheng et al (2008) at isocenter for

similar beam specifications (range, 9.5−9.8). For internal neutrons, values of  were taken

from the results of similar fields in a study by Newhauser et al (2009) as described in section

2.5.

3.3. Absorbed dose from stray radiation

The absorbed dose from stray radiation was calculated in each anatomic voxel. Figure 3

shows the mid-sagittal, mid-coronal and axial planes near the junction of IPA and SPA of

the absorbed dose distribution from stray radiation for the entire treatment. This figure thus

provides a visual representation of the pervasive dose from stray radiation throughout the

body. Because the brain received the highest therapeutic dose, the brain and surrounding

organs and tissues received the largest stray radiation dose.

Table 4 contains intermediate and final dosimetric quantities that were used to calculate the

absorbed dose distributions in the voxelized patient anatomy (see equation (4) in section

2.3). The values of the reciprocal of DT=target, i.e. the number of source particles per

absorbed dose from therapeutic protons, are listed. Since the proton fields were roughly

similar in energy and size, the number of source particle histories that were required per

gray of therapeutic dose to the target volume of each field was also similar (∼2 × 1012).

For the simulations used to determine the absorbed dose from internal neutrons, the mean of

the ratio of the type 1 mesh tally for protons, Dv [p2], to that of neutrons, Dv [n], was 2.732

with a standard deviation of 0.5 and a statistical uncertainty of 0.002. This ratio was used to

account for the absorbed dose from recoil protons for all fields, as described in section 2.4.

The total computing time for all 20 simulations was 43.9 cpu•years (product of the number

of processors used and total elapsed wall clock time, summed over all simulations).

3.4. Attributable lifetime risk of second cancer fatality

Based on the risk coefficient from the NCRP (see section 2.6) and the effective dose

calculations from this work (see section 3.1), the corresponding excess attributable lifetime

risk of second cancer fatality was estimated at 3.4%.

4. Discussion

Stray radiation doses were calculated for a 10-year-old boy who received craniospinal

irradiation with proton beams for the treatment of supratentorial PNET The Monte Carlo
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calculations were based on a complete proton CSI simulation of a treatment plan and CT

images from an actual pediatric patient. The calculated quantities included effective dose

from stray radiation, E, and equivalent dose in organs and tissues from stray radiation, HT,

and an estimate was made of the corresponding excess attributable lifetime risk of second

cancer fatality.

For the entire treatment, E was 418 mSv. The corresponding excess attributable lifetime risk

of second cancer fatality from stray radiation for a population of pediatric male patients who

receive this treatment was estimated at 3.4%. That is, the risk estimate suggests that

approximately 34 out of every 1000 male children treated in this way will die from second

cancers that were caused by stray radiation. Although this risk is small in comparison with

benefits of the radiotherapy treatment, it is not negligible. The risk coefficients

recommended by the NCRP were based on data from a healthy population. The RBE of

neutrons for radiogenic second cancer mortality is likely to be higher for a cancer population

than for the general public. Thus, the actual risk of second cancer mortality for 10-year-old

male patients undergoing proton CSI may be underestimated, which underscores the

importance of improving proton beam delivery techniques to reduce the patients' exposures

to stray radiation. For example, simply increasing the air gap for the spinal fields may

significantly reduce the stray radiation exposure. Moving the snout away from the patient

distances the patient from the primary source of external neutrons, i.e. the field-defining

collimator, and thus reduces the patient's exposure to external neutrons. In this study,

increasing the air gap by a small amount, from 2 cm to 10 cm, reduced E from external

neutrons from 399 mSv to 344 mSv, which was a decrease of 14%. A follow-up study is

currently under way to explore methods to reduce stray radiation exposures and their risks.

The main clinical implication of this study is that stray radiation emanating from a passive-

scattering treatment unit carries a small incremental risk for the development of a fatal

radiogenic second cancer. Nonetheless, stray radiation exposures should be reduced as low

as is reasonably achievable by utilizing methods suggested in this and previous

investigations for passive-scattering treatment units or by utilizing scanned-beam treatment

delivery techniques (Hall 2006, Brenner and Hall 2008, Taddei et al 2008, 2009). At

present, the role of scanned-beam proton therapy is constrained by a paucity of clinical

experience, potential safety issues associated with interplay effects between moving organs

and a scanning beam, and an extremely limited availability of scanned treatments worldwide

(Pedroni et al 1995, 2004). In fact, at the time of this writing, only one institution in the

United States was treating with scanned beams (Anferov et al 2006). Thus, there is a strong

impetus for improving the existing proton treatment units that utilize passive-scattering

beam spreading.

A second clinical implication of this work is that the predicted incremental risk from

passively spreading versus scanning is acceptable in light of the benefits of proton

radiotherapy. It is a well established fact that photon craniospinal irradiation provides a

substantial benefit to the patient, and it is a key component in the contemporary standard of

care, along with surgery and chemotherapy, for medulloblastoma and supratentorial PNET

(cf Jereb et al 1982, Timmermann et al 2002, 2006). Miralbell et al (2002) suggested that

scanned-beam proton CSI would provide similar tumor control while reducing second
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cancer risks to approximately 1/15th of those associated with photon therapy. However, that

study neglected the risks associated with stray neutron radiation, which some have

speculated may cause passive-scattering proton therapy to carry much higher, potentially

unacceptable risks (Hall 2006). Importantly, the findings of this work suggest that even

passive-scattering proton therapy provides lower second cancer risks than those predicted by

Miralbell et al for 6 MV photon IMRT.

Our results were generally consistent with previous investigations. For example, our finding

that an increase in air gap reduced the effective dose from external neutrons by 14% is

consistent with the findings reported by Zheng et al (2008) and Fontenot et al (2008).

Equivalent dose values from the boost fields in this study were only slightly higher than

those reported recently by Zacharatou Jarlskog et al (2008), who simulated fields for a

passive-scattering treatment unit at a different facility that were roughly similar to our boost

fields. In our study, the average equivalent doses for the two boost fields in the thyroid,

lungs and stomach were 3.09, 1.23 and 0.855 mSv Gy−1, respectively, whereas the values

averaged over all fields from their study were 2.37, 0.781 and 0.193 mSv Gy−1, respectively.

A limitation of the current study was that only protons and neutrons were tracked in the

simulations. Other particles were stopped at their origins. In the case of stray photons, this

may have caused a slight underestimation in absorbed dose from stray radiation. This is not

a serious limitation, however, because the contribution to equivalent dose and effective dose

from stray neutrons has been shown to overwhelm the contribution from stray photons

(Fontenot et al 2008, Zheng et al 2008).

In conclusion, our Monte Carlo study establishes a baseline estimate of the effective dose

from and corresponding risk for a pediatric patient, undergoing proton CSI. These results are

unique in their dosimetric accuracy and realism, and they add to the body of evidence

supporting the suitability of passively scattered proton beams for the treatment of central

nervous system tumors in pediatric patients.
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Figure 1.
Diagram of the passive-scattering treatment unit and voxelized phantom, oriented for the

left-lateral boost field, overlaid on top of a proton flux tally (logarithmic scale). In the beam

line from left to right in the diagram are the (a) range-modulator wheel, (b) scattering foils,

(c) range shifting plates, (d) block (aperture), (e) range compensator and (f) voxelized

phantom. Also shown are the collimators and structural materials composed of stainless steel

and brass. The vacuum window and beam monitors (air-filled) are not shown.
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Figure 2.
External neutron spectral fluence (a) and external neutron spectral fluence weighted by the

analytical expression of the radiation weighting factor (b) for each field. Abbreviations used

are the same as those in table 1.
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Figure 3.
Absorbed dose for the entire CSI and boost treatment superimposed on the patient's CT

images. The coronal plane is shown for external neutrons (a), internal neutrons (b) and all

neutrons (c). The mid-sagittal plane is shown for external neutrons (d), internal neutrons (e)

and all neutrons (f). The axial plane through the upper spine is shown for external neutrons

(g), internal neutrons (h) and all neutrons (i).
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Table 2

Contribution to effective dose from stray radiation for a 30.6 Gy CSI and a 23.4 Gy boost from each field and

from external and internal neutron stray radiation.

E (mSv)

Field External Internal Total

Spinal (IPA) 119.2 ± 0.3 30.08 ± 0.11 149.3 ± 0.4

Spinal (SPA) 117.3 ± 0.4 35.7 ± 0.3 152.9 ± 0.5

Cranial (LPO) 45.1 ± 0.3 3.95 ± 0.05 49.0 ± 0.3

Cranial (RPO) 40.4 ± 0.3 4.07 ± 0.05 44.5 ± 0.3

Boost (LPOB) 12.23 ± 0.10 0.397 ± 0.007 12.63 ± 0.10

Boost (LLB) 9.53 ± 0.09 0.313 ± 0.007 9.84 ± 0.09

Total 338.6 ± 0.6 78.6 ± 0.3 418.2 ± 0.7

Abbreviations used are the same as those in table 1.
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Table 4

Fluence-weighted average energies, , and mean radiation weighting factors, , for external neutrons, and

number of source particles (sp) per therapeutic dose (Gy) in the target volume for each field

Field sp Gy−1

Spinal (IPA) 7.9 9.93 1.99 × 1012

Spinal (SPA) 7.8 10.03 2.49 × 1012

Cranial (LPO) 14.1 9.17 2.41 × 1012

Cranial (RPO) 13.9 9.13 2.43 × 1012

Boost (LPOB) 8.7 9.54 1.71 × 1012

Boost (LLB) 8.1 9.73 1.56 × 1012

Abbreviations used are the same as those in table 1.
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