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Integration of biological data by kernels on 
graph nodes allows prediction of new genes 
involved in mitotic chromosome condensation
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ABSTRACT  The advent of genome-wide RNA interference (RNAi)–based screens puts us in 
the position to identify genes for all functions human cells carry out. However, for many func-
tions, assay complexity and cost make genome-scale knockdown experiments impossible. 
Methods to predict genes required for cell functions are therefore needed to focus RNAi 
screens from the whole genome on the most likely candidates. Although different bioinfor-
matics tools for gene function prediction exist, they lack experimental validation and are 
therefore rarely used by experimentalists. To address this, we developed an effective compu-
tational gene selection strategy that represents public data about genes as graphs and then 
analyzes these graphs using kernels on graph nodes to predict functional relationships. To 
demonstrate its performance, we predicted human genes required for a poorly understood 
cellular function—mitotic chromosome condensation—and experimentally validated the top 
100 candidates with a focused RNAi screen by automated microscopy. Quantitative analysis 
of the images demonstrated that the candidates were indeed strongly enriched in condensa-
tion genes, including the discovery of several new factors. By combining bioinformatics pre-
diction with experimental validation, our study shows that kernels on graph nodes are power-
ful tools to integrate public biological data and predict genes involved in cellular functions of 
interest.
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polynomial kernels, diffusion kernels) and on learning an ad hoc 
combination of kernels for data integration (Lanckriet et al., 2004; 
De Bie et al., 2007; Roth and Fischer, 2007; Yu et al., 2010). These 
approaches require tuning of free parameters using an extensive 
training data set often requiring both positive and negative exam-
ples. For practical applications to guide experimental work, this has 
two drawbacks. First, parameter tuning may have to be done for 
each new query, since a training set appropriate for one biological 
function may not be adequate for another. Second, for new or 
poorly understood biological functions, the training set is typically 
limited to very few genes, and negative examples are often not 
known.

The goal of this study is therefore to demonstrate the perfor-
mance of a parameter-free gene function prediction method using 
kernels on graph nodes to select candidate genes for a focused 
RNAi screen. However, which kernel would provide the most useful 
representation for a particular data set was an open question. To this 
end, we first compared how well different kernels on graph nodes 
derived from various public gene characterization data sources re-
trieve known functional relationships between genes. After identify-
ing the best kernel combination, we then used kernel similarity to 
genes known to be involved in a biological process of interest to 
predict new genes with the same function (Figure 1A). To validate 
experimentally the quality of the kernel prediction, we targeted the 
top 100 ranked genes in a microscopy-based RNAi screen 
(Figure 1B).

As biological process, we chose mitotic chromosome condensa-
tion as an example of an essential yet poorly understood step of cell 
division. Condensation transforms interphase chromatin into rod-
shaped compact mitotic chromosomes that allow faithful genome 
partitioning. The condensation process starts during prophase 
(before nuclear envelope breakdown in the case of open mitosis), 
and the only genes known to be involved belong to the condensin 
protein complex, identified almost 20 years ago (Hirano and 
Mitchison, 1994; Strunnikov et  al., 1995), with two isoforms, con-
densin I and II in metazoans. Condensin I is formed by SMC2, SMC4, 
NCAPD2, NCAPG, and NCAPH and is present in all eukaryotes, 
whereas condensin II is formed by SMC2, SMC4, NCAPD3, NCAPG2, 
and NCAPH2 and is restricted to metazoans (Ono et  al., 2003; 
Hirota et al., 2004). Although depletion of condensin I and II reduces 
chromosome condensation in prophase, chromosomes appear nor-
mally condensed at later stages of mitosis (Hudson et al., 2003; Ono 
et al., 2003; Hirota et al., 2004), and a lack of condensin most promi-
nently affects chromosome segregation (Gerlich et al., 2006; Renshaw 
et al., 2010) rather than condensation. Which factors promote chro-
mosome condensation in the first place therefore remains an open 
question, and new proteins that are required for mitotic chromo-
some condensation in human cells still need to be identified.

RESULTS
Computational validation of the gene function prediction 
method
We represented biological information on gene function from vari-
ous sources as undirected weighted graphs and computed different 
kernels as similarity measures between genes. We mined six sources 
of data: protein interactions (PI), homology-inferred protein interac-
tions (HIPPO), Gene Ontology (GO) biological process (BP), text 
mining (TM), a gene expression network from aggregation of many 
gene expression data sets (MEMP), and ab initio–predicted protein 
interactions from co-occurring protein domain architectures 
(Co-Occurrence Domain Analysis [CODA]), to which we applied 
three different kernel functions—the commute time, random forest, 

INTRODUCTION
Gene knockdowns are typically used to induce cellular phenotypes 
from which gene functions can be inferred. This reverse-genetics ap-
proach to cell biology has long been limited to genetically tractable 
model organisms such as the budding yeast Saccharomyces cerevi-
siae. With the advent of RNA interference (RNAi), reverse genetics 
has become routine also in human cells, and experimentally assign-
ing functions to each human gene is in principle possible. However, 
many cellular functions can only be studied through complex assays 
or require high-content microscopy readouts, and both assay com-
plexity and cost associated with large-scale RNAi screens keep ge-
nome-wide studies beyond the reach of most laboratories. As a con-
sequence, most RNAi screens are conducted with a small set of 
often poorly selected candidate genes. For example, the set of all 
protein kinases is often selected for screening on the basis of the 
lower cost of the corresponding small interfering RNA (siRNA) librar-
ies. This situation leads to a small number of genes being function-
ally overannotated, such as oncogenes and protein kinases, whereas 
most of the human genome contains genes whose functions remain 
to be characterized. In a few cases, candidate genes are identified 
after extensive literature and database searches by association with 
genes already implicated in the process under consideration. Given 
the multiplicity of data sources for gene similarity and the fact that 
links between genes can be indirect, candidate gene selection is a 
difficult task. An efficient data-mining method to select genes rele-
vant to a biological process of interest would allow investigators to 
focus experimental screens on the most likely candidates. In addi-
tion, such a tool would allow the user to fill gaps in hit lists of RNAi 
screens, which in human cells typically do not reach saturation.

Many methods for predicting gene function have been devel-
oped (see Wang and Marcotte, 2010), and some predictions have 
been experimentally tested in different systems (Lee et al. 2008; Qi 
et al. 2008; Hu et al. 2009; Rojas et al. 2012). For human genes, 
methods have mostly focused on finding association with diseases 
(Tranchevent et  al., 2011) rather than basic biological functions. 
Because different studies use different approaches, it is difficult to 
compare performance of the prediction in successfully guiding ex-
periments. However, among the different methods, those that rep-
resent genes as nodes in a graph linked by their functional associa-
tions and then exploit the graph structure to compare genes perform 
well in retrieving known functional annotations in mouse (Peña-
Castillo et al., 2008). These methods can be seen as propagating 
the characteristics of functionally annotated example genes to un-
annotated genes using a similarity measure between genes that 
takes into account the graph structure. One such state-of the art 
algorithm is GeneMANIA (Mostafavi et  al., 2008; Mostafavi and 
Morris, 2010). In this algorithm, different data sources are combined 
into one graph, and then a measure of similarity between genes as 
nodes of the graph is computed, taking into account the global 
structure of the graph.

Among the different ways of measuring similarity between genes, 
kernel functions are particularly suited for data mining because they 
can be applied to nonvectorial data such as sequences or nodes of 
interaction graphs. Furthermore, kernels allow integration of many 
data sources because linear combinations of kernel matrices are still 
interpretable as similarity matrices (Shawe-Taylor and Christianini, 
2004). Because most biological data can be viewed as weighted 
undirected graphs with genes as nodes and “interactions” or “func-
tional links” as edges, kernels on graph nodes represent a natural 
measure of similarity between genes.

Previous applications of the kernel concept have generally fo-
cused on kernels with free parameters (e.g., radial basis kernels, 
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the GeneMANIA method (Table 1), which integrates data sources 
first by computing an average graph before applying a single kernel 
function (see Supplemental Information). Although these tests 
showed that most kernels in principle represent gene functional 
similarity well, they are likely to give an overoptimistic view of the 
prediction performance due to the interdependence between the 
Panther pathways and source databases. For example, defining 
pathway genes in Panther relies on functional information from the 
same literature used to establish protein interactions and GO data-
bases. To avoid circularity in biological databases, we tested whether 
we could predict hits from human genome-wide RNAi screens pub-
lished after the establishment of the source data. As example sources 
of phenotypic functional gene relations, we used the outcome of the 
MitoCheck genome-wide RNAi screen (Neumann et  al., 2010), 

and von Neumann diffusion kernels (see Materials and Methods). To 
ensure that the kernels captured relevant relationships between 
genes, we first examined which kernel on which data source gave 
the best performance in retrieving known functional relationships 
between genes as defined in the Panther pathways database (Mi 
et al., 2005). Using a few pathway genes as query, we ranked each 
gene in the genome by the sum of its similarities to the query genes 
and then counted how many genes from the whole pathway were 
found above different thresholds (see Materials and Methods). We 
found that the commute time (CT) kernel gave the best overall per-
formance for all data sources (Figure 2A and Supplemental Figure 
S1) and that combining the best kernels for each data source for 
data integration further improved function retrieval (Table 1 and 
Supplemental Figure S2). This approach only slightly outperformed 

FIGURE 1:  Overview of the data integration, gene selection, and experimental testing procedure. (A) Each data source 
is viewed as an undirected weighted graph whose adjacency matrix is used to derive a kernel matrix representing 
similarities between genes. Data integration is performed by averaging kernels from different data sources. Genes are 
ranked by the sum of their similarities to a list of query genes representing a biological process of interest. (B) Genes 
from the top of the ranked list are targeted by RNA interference, and the resulting phenotypes are captured by 
automated microscopy of live cells, followed by computational image analysis.
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FIGURE 2:  Summary of bioinformatics tests of the gene selection method. (A) Kernels on graph nodes differ in their 
global performance at information retrieval: heatmap view of areas under the curve (AUC) of true positives vs. false 
positives for all kernels and data sources tested. Colors go from blue for low values (<0.2) to red for high values (>0.8). 
Data sources are in columns: BP, semantic similarities across GO biological processes; CODA, predicted interactions 
based on domain co-occurrence; HIPPO, protein interactions from other species mapped to human; MEMP, gene 
coexpression network; PI, protein interactions in human; TM, iHOP-generated interactions. Kernels are in rows: CT, 
commute time; RF, random forest; VN, Von Neumann diffusion; A, adjacency matrix; DB, degree-based similarity. 
(B) Screening of selected genes outperforms genome-wide screening. For each screen, the hit rate is expressed as 
percentage of tested genes having the desired phenotype. For virtual screens, the tested genes are the top 
100 predicted genes, and the numbers represent the fraction of these that were found as hits in the corresponding 
genome-wide screen.
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mosome condensation predictions, the score curve dropped to low 
values and flattened after the top 100 genes (see Supplemental 
Figure S3), which suggested that screening the top 100 genes as 
candidates for chromosome condensation should reveal most true 
positives. We therefore decided to build a custom siRNA library for 
the top 100 genes (two siRNAs per gene; for the full list of the 200 
siRNAs, see Supplemental Table S2). Although used as a query, 
KIF22 had rank 4849, suggesting that there is no functional link be-
tween KIF22 and the condensin genes. To nevertheless represent all 
query genes in the library, we added KIF22 to the list of candidate 
genes.

Validation of chromosome condensation gene predictions 
by microscopy-based RNAi screening
Mitotic chromosome condensation defects have often been inferred 
indirectly from the detection of chromosome segregation defects 
such as the presence of chromatin bridges because this is the domi-
nant phenotype observed in the absence of condensins. However, 
chromosome segregation defects are not an ideal reporter for chro-
mosome condensation defects because segregation defects can be 
independent of condensation, and condensation defects may not 
always result in segregation problems (Cuylen and Haering, 2011; 
Petrova et al., 2013). Therefore we assayed chromosome condensa-
tion more directly by imaging human cells at sufficiently high spatial 
and temporal resolution to analyze the changes in chromatin texture 
during condensation in prophase. HeLa cells stably expressing H2B-
mCherry to mark chromatin and LMNA–enhanced green fluorescent 
protein (eGFP) to mark the nuclear lamina and report on nuclear 
envelope breakdown (NEBD) as an independent temporal refer-
ence for the prophase/prometaphase transition (Mall et al., 2012) 
were transfected with 200 siRNAs targeting the 100 selected candi-
date genes individually, using solid-phase transfection in siRNA-
coated, microscopy-compatible 96-well plates (Erfle et  al., 2008; 
see Materials and Methods). At 24 h after plating, cells were imaged 
at 20× magnification for 44 h with a time lapse of 8.5 min. Four in-
dependent experimental replicates were acquired for each siRNA, 
resulting in a set of 800 time-lapse movies.

To score chromosome condensation phenotypes in this large 
amount (2 TB, >0.5 million images) of time-resolved image data, we 
used the CellCognition software (Held et al., 2010) to automatically 
classify the different cell cycle stages in the recorded movies and 
track single cells through the interphase-to-mitosis transition (see 
Materials and Methods for details). Because our prophase class defi-
nition is based on the morphological changes of chromatin taking 
place before NEBD, a lack of mitotic chromosome condensation in 
prophase would be detected as a shorter prophase. Conversely, pre-
mature or delayed condensation would be detected as a longer pro-
phase. In cells treated with nontargeting siRNAs, the duration of pro-
phase varied with a median of 17 min, in agreement with previous 
measurements (Hirota et al., 2004; Landsverk et al., 2010). Examples 
of the short- and long-prophase phenotypes are shown in Figure 3A. 
To get an overview of the screen, we derived for each gene a short-
prophase score (Figure 3B) and a long-prophase score (Figure 3C) 
(for details see Materials and Methods) whose distributions show that 
knockdowns of more genes result in a shortening rather than a 
lengthening of prophase. For the purpose of validating our gene 
function prediction algorithm and taking genes forward to further 
validation analysis (see later discussion), a gene was considered to 
score if at least two replicates of at least one siRNA resulted in a sig-
nificant change to prophase duration (see Materials and Methods).

As expected, siRNA silencing of all condensin II subunits (SMC2, 
SMC4, NCAPD3, NCAPG2, and NCAPH2) led to a marked 

which scored several cell division–related phenotypes and increased 
motility, as well as a screen on DNA double-strand-break repair 
(Słabicki et  al., 2010) and a screen for NF-κB activation (Gewurz 
et  al., 2012). Suitable query genes representing prior knowledge 
were chosen from genes already annotated with GO terms of the 
biological process targeted by each screen (Supplemental Table S1) 
and were used to query the similarity matrix formed by our best 
kernel combination or by the GeneMANIA approach. To assess the 
performance of the gene function prediction, we performed a virtual 
screen by counting the fraction of hits from the experimental ge-
nome-wide screen found among the top 100 predicted genes and 
compared the resulting hit rate to that of the genome-wide screen 
(Figure 2B). Whereas the genome-wide screens have an average hit 
rate of 3%, the virtual screens produced a hit rate average of 13% 
with our kernel combination and 11% with the GeneMANIA ap-
proach. In all cases, the hit rate of the virtual screen was significantly 
higher than the hit rate of the corresponding genome-wide screen, 
demonstrating that the predicted genes are strongly enriched in 
genes involved in the biological function of interest.

These results showed that the approaches used have the ability 
to predict genes involved in a specific biological function. We were 
therefore confident that graph-derived kernel-based gene ranking 
can be used to predict candidate genes involved in a particular bio-
logical process. Whereas the kernel combination approach and the 
GeneMANIA approach gave roughly similar performances, the ker-
nel combination outperformed GeneMANIA by a small margin, as 
illustrated by the fact that the median number of hits retrieved by 
the GeneMANIA approach that were missed by our approach was 
one whereas the median number of hits retrieved by our approach 
but missed by GeneMANIA was four. We therefore chose to use the 
kernel combination to select candidate genes involved in mitotic 
chromosome condensation and assessed the quality of this selec-
tion by carrying out a new RNAi screen.

Prediction of human chromosome condensation genes 
and construction of siRNA library
The similarity matrix formed by the best kernel combination was 
queried with genes known to function in chromosome condensa-
tion, that is, the eight genes encoding human condensin subunits 
plus KIF22, which was previously shown to contribute to chromo-
some arm compaction in anaphase (Mora-Bermudez et al., 2007; 
Ohsugi et al., 2008). As a result of this query, each gene in the ge-
nome was assigned a score that is the sum of its similarity values to 
the query genes and ranked by decreasing value of this score. Plot-
ting score against rank number is an additional way to help the ex-
perimentalist assess up to which rank there is high predictive power 
for a functional relationship to the query genes. In the case of chro-

Data integration scheme
AUC up to  

25% false-positive rate

KRF(PI) + KCT(HIPPO) + 
KCT(BP) + KCT(TM)

0.88

KCT(averaged graph PI + 
HIPPO + BP + TM)

0.84

GeneMANIA (= KRF(averaged 
graph PI + HIPPO + BP + TM))

0.86

KCT(combined binary graphs 
PI + HIPPO + BP + TM)

0.70

TABLE 1:  Performance of different data integration schemes.
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shorter prophases (Figure 3B and Table 2). In contrast, knockdown 
of 18 genes caused significant delays in prophase (Figure 3C and 
Table 2). In particular, knockdown of MCPH1 and CDK1, two known 

shortening of prophase, indicative of reduced condensation and 
validating our microscopy-based assay and computational scoring. 
In addition, knockdown of 17 other genes caused significantly 

FIGURE 3:  Screen for chromosome condensation genes. (A) Example of nuclei classification outputs for a negative 
control cell (top, control), a cell from NCAPD3 knockdown (middle, NCAPD3), and MCPH1 knockdown (bottom, 
MCPH1). Scale bar, 10 μm. Time is in minutes relative to NEBD. The colored line in the middle of each row represents 
the class assigned to each nucleus of the top showing H2B-mCherry. Bottom, corresponding status of the nuclear 
envelope in the LMNA-eGFP channel. (B) Short-prophase score distribution for all tested genes. The gene score is the 
median of the difference with control in the fraction of mitoses with short prophase over all replicates involving the 
gene. A positive value indicates more mitoses with short prophase than in control. Genes identified as short-prophase 
hits are shown in magenta. (C) Long-prophase score distribution for all tested genes. The gene score is the median of 
the difference with control in the fraction of mitoses with long prophase over all replicates involving the gene. A positive 
value indicates more mitoses with long prophase than in control. Genes identified as long prophase hits are shown in 
magenta.
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whether knockdown of our hits led to increased DNA damage, us-
ing immunostaining for a phosphorylated form of H2AX induced by 
DNA double-strand breaks (Rogakou et al., 1998). Knockdown of 
the condensation genes did not lead to a detectable increase in the 
fraction of γ-H2AX–positive cells above the basal levels of spontane-
ous DNA damage present in HeLa cells (Figure  4), whereas low 
doses of the DNA polymerase inhibitor aphidicolin readily led to 
increased DNA damage, as reported previously (Lukas et al., 2011). 
Therefore the changes in mitotic chromatin texture detected in our 
screen are unlikely to be caused by DNA double-strand breaks.

To characterize the chromosome condensation defects in pro-
phase of several of the hits in more depth, we next used high-reso-
lution three-dimensional (3D) confocal time-lapse imaging of HeLa 
cells expressing H2B-eGFP to quantify changes in chromatin vol-
ume from prophase to anaphase onset. Our previous approaches to 
chromatin volume measurements relied on time-consuming manual 
processing of image stacks (Mora-Bermudez et  al., 2007). To be 
able to process dozens of cells from different gene knockdowns, we 
implemented a computational pipeline to segment the chromatin 
signal in three dimensions and compute its volume. Because 
changes in chromatin compaction cause large variations in intensity, 
which could cause undersegmentation or oversegmentation, seg-
mentation was constrained such that the total intensity of the chro-
matin volume remained constant and equal to the intensity in pro-
metaphase. Segmentation was implemented using a combination 
of image stack–level threshold and slice-specific threshold. The im-
age stack threshold was determined by analyzing the histogram 
constructed from all the pixels within the image stack under consid-
eration, and a slice-specific threshold was determined in a similar 
way using only pixels from the slice under consideration. An iterative 
algorithm was then used to adjust global and local thresholds to 
minimize the deviation between the total intensity in the prometa-
phase image stack and that in the processed stack (see Materials 
and Methods). The absolute volume of chromatin was estimated by 
the number of segmented voxels multiplied by the voxel size. Finally, 
to minimize cell-to-cell variations, we normalized chromatin volumes 
relative to interphase chromatin volume. In control cells, reduction 
in chromatin volume followed a sigmoidal decay curve (Figure 5A) 
consistent with previous measurements of chromatin volume 

regulators of condensin II function (Abe et al., 2011; Yamashita et al., 
2011), showed a considerable lengthening of prophase with both 
siRNAs, which suggests that this phenotypic category also identified 
true regulators of mitotic chromosome condensation. In total, our 
screen validated six of the nine query genes and identified 32 po-
tential new genes that showed defects in chromosome condensa-
tion in early mitosis, corresponding to an 
initial hit rate of 32%. Although this hit rate 
is defined by single siRNA hits and follow-
up experiments are required to confirm indi-
vidual genes as bona fide chromosome con-
densation genes, this definition is adequate 
to demonstrate that the gene selection 
method produced a library strongly en-
riched in genes with the expected pheno-
types. For comparison, similarly defined hit 
rates are typically ∼5% in many other pri-
mary screens of genome-scale or protein 
family–based (e.g., kinome) siRNA libraries 
(Sigoillot and King, 2011).

Quantitative analysis of chromosome 
condensation phenotypes
Some of our hits—for example, condensin II 
and MCPH1—have also been implicated in 
DNA double-strand-break repair (Wood 
et al., 2008). To rule out that our mitotic con-
densation assay detected indirect effects of 
a primary function in DNA repair, we tested 

Hits with short prophase Hits with long prophase

SMC2 MCPH1

NCAPH2 DNMT3B

NCAPD3 CDK1

NCAPG2 PAPD5

RAN GINS1

CDCA5 NAA10

SMC4 TOP2A

TRAF3IP1 RUVBL2

CBX5 NEK6

HDAC1 MYC

AKAP8 SIAH1

TAL1 SMC1A

KIF22 POLR3C

HILS1 H1FNT

NUTF2 PTP4A3

BRF1 INTS1

PJA1 BRCA2

TOP1 MYST3

SEP15_HUMAN

NAA10

CHFR

INTS1

TABLE 2:  Genes with chromosome condensation phenotypes.

FIGURE 4:  Fraction of cells showing signs of DNA damage. The fraction of γ-H2AX–positive 
cells is expressed as the average percentage of the total number of cells from three 
experiments. Error bars represent SDs of the means.
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(Mora-Bermudez et al., 2007) and similar to 
the diminution of the distance between two 
loci observed during chromosome conden-
sation in Schizosaccharomyces pombe 
(Petrova et  al., 2013). Therefore, as in this 
study, we fitted the changes in chromatin 
volume over time with a sigmoidal function 
to derive parameters for the duration of 
condensation, the compaction ratio, and 
the time of the midpoint of condensation 
relative to prometaphase (Figure  5B; see 
Materials and Methods). All knockdowns 
showed differences from control cells in sev-
eral parameters (Figure  5C; representative 
curves in Supplemental Figure S4). In con-
trol cells, most of the chromatin compaction 
proceeded over 10–11 min, resulting in an 
about twofold reduction in volume (Supple-
mental Table S3). In contrast, chromatin 
compaction required only 5–7 min in knock-
downs with short prophase and 12–23 min 
in knockdowns with long prophase (Supple-
mental Table S3). Shortened prophase con-
densation correlated with a time of mid-
condensation closer to NEBD, whereas 
longer prophase correlated with mid-con-
densation time much before NEBD. As pre-
viously observed (Petrova et al., 2013), cells 
with a strong phenotype gave aberrant 
curves that were poorly fitted with the cho-
sen sigmoid function (see example in Sup-
plemental Figure S6), resulting in underesti-
mation of the deviation from normal cells. 
Of interest, we noticed that in some knock-
down cells with reduced prophase, NEBD 
was accompanied by a transient increase in 
chromatin volume. To investigate this fur-
ther, we analyzed 25 NCAPD3-knockdown 
cells. Of these, 10 exhibited a small increase 
in chromatin volume at NEBD (Figure  5D) 

FIGURE 5:  Quantification of chromosome condensation. (A) Evolution of normalized chromatin 
volume in control cells. Top, maximum intensity projection images (top) and isosurface 
reconstruction (bottom) of the chromatin from a representative scrambled siRNA–treated 
control cell at different time points. Occasionally cell rounding in metaphase brings chromatin 
slightly out of imaging range, resulting in a missing image slice. The missing part is then 
estimated (see Materials and Methods). The curve represents the average of 10 control cells 
from four independent experiments. Error bars represent SDs of the means. (B) Definition of 

chromosome condensation parameters. A 
sigmoidal decay curve (blue line) is fitted to 
normalized chromatin volume over time. The 
fit defines the maximum and minimum 
volumes, the compaction ratio, and the 
duration and timing of condensation relative 
to prometaphase. (C) Heatmap of 
chromosome condensation parameters in 
gene-knockdown experiments. The color 
scale encodes the number of pooled SDs 
away from the negative control mean. Values 
smaller than in control are in blue, and values 
higher than in control are in red. (D) Absence 
of prophase condensation correlates with 
chromatin expansion before NEBD. 
NCAPD3-knockdown cells with almost no 
prophase (red curve) show transient 
chromatin decondensation at the time of 
NEBD (arrowhead), whereas this is never 
seen in control cells (blue curve). Error bars 
show SDs of the means (n = 25 for control 
cells, n = 10 for NCAPD3-knockdown cells).
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DISCUSSION
Combined kernels on graphs of biological information are 
effective at information retrieval
We chose to view individual data types on gene function as graphs 
and measure functional similarity between genes as nodes of these 
graphs using kernels because of their attractive properties for data 
integration and mining. We limited our study to a few kernel func-
tions with a preference for those that are parameter free. We dem-
onstrated that the commute time was a powerful and parameter-
free measure of similarity between genes across various biological 
data types viewed as graphs. It performed well in retrieving known 
functional relationships from various data sets, and among all ker-
nels tested, it appeared the most robust, since it always gave the 
best or close to the best performance for each data type. In con-
trast, performance varied more widely for the other kernels depend-
ing on the data type. In particular, the diffusion kernel performed 
poorly for some values of its parameter, illustrating the importance 
of parameter choice for kernels with free parameters. Except for the 
diffusion kernel, the graph-derived kernels we used were less sensi-
tive to bias introduced by highly connected genes. To our knowl-
edge, our approach is the first to compare performances of different 

associated with very short or undetectable 
prophase. This effect is significant, as it is 
never observed in control cells (10 of 25 
NCAPD3 knockdowns vs. 0 of 25 control 
cells; Fisher exact test, p < 0.003) or in 
NCAPD3-knockdown cells with weaker or 
no phenotype, revealing that chromatin 
would expand in the absence of a confining 
nuclear envelope unless mitotic condensa-
tion compacts it before NEBD.

Independent validation of 
chromosome condensation genes
siRNA-mediated gene silencing has the 
potential of hitting other genes than the 
intended targets. We used two different 
approaches to validate the gene targets of 
the siRNAs that scored in our chromosome 
condensation assay. First, we checked 
whether the same phenotype could be re-
produced by both independent siRNA se-
quences targeting the same gene. Several 
genes scored as hits with two siRNAs 
(shorter prophase: BRF1, CBX5, RAN, and 
TRAF3IP1, in addition to NCAPD3, 
NCAPG2, NCAPH2, and SMC2; longer 
prophase: CDK1, H1FNT, and MCPH1) and 
can therefore be considered high-confi-
dence hits. Second, to test some of the hits 
that scored with one siRNA—that is, 
DNMT3B and PAPD5 from the “longer-
prophase” and HDAC1 and TOP1 from the 
“shorter-prophase” category, we assayed 
the condensation phenotype in a genetic 
mutant of the orthologous genes in the fis-
sion yeast S. pombe. For this, we took ad-
vantage of a recently developed chromo-
some condensation assay that measures 
the distance of two fluorescently labeled 
loci located ∼1 Mb apart on the same chro-
mosome arm (Petrova et  al., 2013). As 
wild-type cells enter mitosis, the 3D distance between the two loci 
decreases as a consequence of condensation until the onset of 
anaphase (Figure 6A). By fitting of the condensation kinetics with 
a sigmoidal function, the maximum and minimal distances be-
tween the loci, the corresponding compaction ratio, and the dura-
tion and timing of compaction can be determined in a similar man-
ner to our chromatin volume measurements. We introduced 
mutations in the S. pombe orthologues of these genes (pmt1Δ, 
cid14Δ, clr6-ts, and top1Δ, respectively) into the yeast strain with 
the fluorescently marked chromosome arm loci and analyzed their 
condensation behavior. In all mutants, we could observe signifi-
cant differences from wild-type cells for several condensation pa-
rameters (Figure 6B, Supplemental Information, and Supplemen-
tal Table S4), demonstrating that they affect mitotic chromosome 
condensation. This is consistent with the phenotype of their ortho-
logues in HeLa cells (Supplemental Figure S5; see Supplemental 
Information for a more detailed comparison). We therefore con-
sider them also high-confidence hits. In total we could thus vali-
date 11of 32 new chromosome condensation genes as high-confi-
dence hits and expect that the remaining 21 new genes contain a 
number of additional high-confidence hits.

FIGURE 6:  Mitotic chromosome condensation in S. pombe mutants. (A) Chromosome 
condensation assay in S. pombe. Images of S. pombe cell in which two loci are labeled by 
binding of TetR fused to tdTomato (red) and LacR fused to GFP (green), respectively, to TetO 
and LacI tandem arrays integrated ∼1 Mb apart on the same arm of chromosome I. (B) Heatmap 
of chromosome condensation parameters in tested S. pombe mutants. The color scale encodes 
the number of SDs away from the wild-type mean. Values smaller than in wild type are in blue 
and values higher than in wild type are in red.
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Kernels predict new genes that function in chromosome 
condensation
Finding new chromosome condensation genes has proven to be 
difficult for many years. This is possibly because condensation re-
quires multiple contributing activities that, when singly inactivated, 
would produce only minor and transient condensation defects. Cap-
turing these subtle phenotypes therefore requires quantitative mon-
itoring of chromosome condensation in living cells, which is very 
difficult to do on the genome scale but is feasible with a candidate 
gene set. We therefore used this very sensitive phenotypic readout 
to screen the top-100-ranked kernel-predicted genes involved in mi-
totic chromosome condensation. Strikingly, these contained 32 new 
genes that caused a reproducible mitotic chromosome condensa-
tion phenotype upon knockdown that had not been previously 
described in mammalian cells. Eleven of the 32 genes score as 
high-confidence positives and therefore open new avenues for ex-
periments. For example, TRAF3IP1 is involved in primary cilium for-
mation (Berbari et al., 2011) and has also been implicated in signal 
transduction pathways (Niu et al., 2003; Ng et al., 2011) but not in 
chromosome condensation. Our study also clarifies several leads 
from the literature that had not been followed up. For example, his-
tone deacetylases have been implicated in chromosome condensa-
tion with conflicting results (e.g., Cimini et al., 2003; Dowling et al., 
2005) and without resolving the identity of the HDAC(s) involved. 
Similarly, DNA methylase DNMT3B was found associated with chro-
matin genes, including several condensin subunits (Geiman et al., 
2004), but its role in mitotic chromosome condensation had not 
been demonstrated. Our work also highlights how a computational 
approach can find indirect connections between genes that would 
otherwise be difficult to find manually. For example, whereas PAPD5 
is postulated to be a component of the human TRAMP complex in-
volved in polyadenylation of RNAs and their subsequent targeting 
for degradation by the exosome (Schmidt and Butler, 2013), a muta-
tion in trf4, a PAPD5 homologue in Saccharomyces cerevisiae, 
genetically interacts with top1 deletion to cause defects in ribosomal 
DNA condensation (Castaño et al., 1996).

Quantitative analysis of prophase chromosome 
condensation reveals a new functional aspect
Although mitotic chromosome condensation is inherently a dynamic 
process, very few studies have quantified it in live cells with a high 
temporal resolution, and, to our knowledge, no live-cell analyses of 
perturbations of the condensation process have been reported. 
Changes in the texture of fluorescently labeled chromatin between 
interphase and prometaphase are commonly used to define pro-
phase. Our screen was based on the assumption that this definition 
of prophase reflects changes in chromatin volume. To test this as-
sumption and further characterize chromosome condensation, we 
computationally analyzed high-resolution images from 3D time-
lapse confocal microscopy to quantify chromatin volume during mi-
tosis in control cells and in knockdowns of several hits from the 
screen. The observed variations in chromatin volume correlated well 
with the length of prophase as defined by texture classification un-
der all conditions, confirming that chromatin texture is a good indi-
cator of chromosome condensation. The volume measurements 
showed that gene knockdowns affected primarily the kinetics of 
compaction rather than the final compaction state of chromatin, 
consistent with the assumption of subtle phenotypes due to addi-
tive requirements of multiple factors. Volume analysis furthermore 
revealed that in the absence of prophase condensation, chromatin 
transiently expanded when the constraint of the nuclear envelope 
boundary was released by its breakdown at the end of prophase. 

kernels and identify the best kernel for a particular data set before 
integrating it with other data. We furthermore showed that integra-
tion of several data types improved information retrieval power and 
that these data types were best integrated by combining the graph-
derived kernels using the best kernel function for each data type 
rather than the graphs themselves as in GeneMANIA (Mostafavi and 
Morris, 2010). Therefore our approach compares favorably with 
state-of-the-art algorithms on information retrieval.

Combined kernels are powerful predictors of gene function
The interdependent nature of biological databases can lead to a 
good performance of computational methods in information re-
trieval but makes it difficult to assess performance for predicting 
new genes for biological functions. To test the kernel performance, 
we therefore tested new gene function predictions more stringently 
using data from genome-scale RNAi screens that were not included 
in our data sources. We could show that the top-ranked kernel-pre-
dicted genes are significantly enriched in the expected phenotypes 
for all five phenotypes queried with example genes (mitosis defect, 
cytokinesis defect, increased cell motility, DNA damage response, 
and NF-κ B activation). Nevertheless, many of the top kernel-pre-
dicted genes did not score as hits in the screens examined. This can 
be explained by either false positives in the predictions or false neg-
atives in the screens. False-positive predictions could be produced 
if most of the genes in the query are not relevant. Therefore care has 
to be taken in the selection of query genes, and there may be better 
ways of selecting query genes for a particular process than using 
annotations from Gene Ontology as used here. In addition, it is 
likely that a significant fraction of the kernel-predicted genes that 
did not score correspond to false negatives in the screens. Indeed, 
false-negative rates between 8 and 34% have been reported in 
Drosophila (Liu et al., 2009; Booker et al., 2011) and human cells 
(Neumann et al., 2010). It is therefore likely that our virtual screen 
validation underestimated the kernel prediction power and instead 
provides a lower bound on the prediction performance.

It should also be noted that genes not represented in the source 
data are not accessible to the method. To be able to select com-
pletely uncharacterized genes, genome-wide experimental data 
sets or ab initio (e.g., sequence-derived) data would have to be in-
cluded. However, our preliminary tests of genome-wide microarray 
data and sequence-based predicted interactions led us to exclude 
these data sets for making predictions because of poor 
performance.

Although the kernel combination approach slightly but consis-
tently outperformed GeneMANIA, we note that it is difficult to dem-
onstrate that any approach is the best possible without extensive 
experimental validation of all alternative methods. Nevertheless, 
the success rate of our predictions represents a fivefold increase 
over genome-wide screening, which in this context makes graph-
derived, kernel-based gene ranking of practical value. For example, 
scaling up our high-resolution time-lapse imaging assay to cover the 
∼21,000 protein-coding genes identified in the human genome 
would require more than 200 TB of disk space just to store the mi-
croscopy images, and the cost in reagents and consumables alone 
would reach several hundred thousand dollars. Therefore in silico 
genome-wide prescreening of genes to focus experimental testing 
on the top-ranked candidates can be an excellent alternative to 
costly and labor-intensive genome-wide experiments. Kernels on 
graph nodes represent a powerful method for gene function predic-
tion, representing an easy-to-use “funnel” for the selection of candi-
date genes, and we therefore make our software freely available to 
the community at http://funl.org.
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CODA: CODA is a reliable fused domain prediction method. 
This method looks for and scores protein pairs in a given target ge-
nome (e.g., human) found as fused (co-occurring) domain architec-
tures in homologues from genomes of other species (Reid et al., 
2010). The CODA method was run against all sequences in the hu-
man proteome using CATH and Pfam protein domain annotations, 
and both (CODAcath and pfam) were combined into one single 
data set (Morilla et al., 2010). CODA predictions were benchmarked 
using the BP data set as positive examples and randomizations of 
this data set as negative examples. The CODA data set used in this 
work was formed by CODA-predicted interactions at a cut-off preci-
sion of at least 80%.

Kernels
Kernel methods work by mapping data points (e.g., genes) into 
some high-dimensional space (called feature space) and computing 
the dot product of the corresponding vectors. That is, for a mapping 
function Φ and two genes x and y, the kernel function K computes 
K(x, y) = Φ(x), Φ(y). A kernel matrix contains the evaluation of a 
kernel function for all pairs of data points under consideration and 
can be viewed as a similarity matrix. It can be shown that any sym-
metric, positive-semidefinite matrix represents a kernel correspond-
ing to a dot product in some feature space (Shawe-Taylor and 
Christianini, 2004). So, if we can compute the kernel matrix directly, 
we do not need to know the mapping function or the feature space. 
This property makes kernel methods applicable to nonvectorial data 
such as nodes of graphs or sequences as long as some similarity 
matrix that is symmetric and has no negative eigenvalues can be 
computed. An additional property of kernels that is of interest for 
data integration is that various mathematical operations on kernels 
produce a valid kernel. In particular, a linear combination of several 
kernels is a kernel (Shawe-Taylor and Christianini, 2004). This means 
that a combination of similarity matrices can still be interpreted as a 
matrix of similarities if the combined matrices are valid kernels. This 
property makes kernels particularly attractive for data integration 
because it provides a principled way of combining information from 
different sources into one similarity matrix.

In this work, each data set is viewed as the adjacency matrix A of 
a weighted undirected graph, and a value Aij of 0 indicates no edge 
between i and j. In the following, D denotes the diagonal degree 
matrix, I the identity matrix, and L the graph Laplacian (L = D − A). 
The following kernels on graph nodes were computed.

Kernelized adjacency matrix (A).  Our data sources already 
represent a measure of similarity between genes. To compare them 
with the derived kernels, we ensure that the original matrix is positive 
semidefinite by shifting its eigenvalues. This is accomplished by 
adding a sufficiently large constant to the diagonal of each matrix. 
Here we use λ, the absolute value of the smallest eigenvalue of A:

= + λK A IA

Commute time kernel (CT).  This kernel arises from the computation 
of the average number of steps a random walker on a graph needs 
to go from one node to another and back (Fouss et al., 2007; Qiu 
and Hancock, 2007). It also has an interpretation in terms of electrical 
networks, as the commute time is equal to the effective resistance 
between two nodes (Xiao and Gutman, 2003). Note that the 
commute time kernel does not represent the commute time itself 
but corresponds to the dot product of the vectors representing the 
nodes in a space where these nodes are exactly separated by their 
commute time:

Although the prompt prometaphase chromosome compaction rap-
idly reversed this expansion, this observation suggests a potential 
new function for prophase condensation, that is, to prevent chroma-
tin leakage from the nucleus at NEBD.

MATERIALS AND METHODS
Reference genome
For building graphs and evaluating the kernels, we considered only 
human protein-coding genes from the Ensembl 56 release (Septem-
ber 2009). In preparing the data sources and pathways for evalua-
tion, any identifier that could not be unambiguously assigned to an 
Ensembl56 protein-coding gene was discarded.

Ensembl 61 (February 2011) was used for the inference of siRNA 
target genes.

Data sources of gene interactions
BP: GO similarities across biological processes were calculated us-
ing the Ensembl56 GO assignments, computed as root term fre-
quency/frequency of the most informative common ancestor term 
and discarding pairs with score less than some threshold to remove 
unspecific connections through high-level GO terms. Here the 
threshold is arbitrarily set as the information content of the term 
“chromosome condensation.” Similarities between genes were cal-
culated using the maximum GO similarity between them.

HIPPO: iRefIndex (Razick et al., 2008; accessed 29 June 2010) 
binary interactions from other organisms mapped to human using 
Ensembl orthology information. Edge weights are set to 1 over the 
product of the number of human orthologues of each interaction 
partner to reflect confidence of association. In this scheme, interac-
tions whose partners both have a unique orthologue in human get 
a weight of 1.

MEMP: Gene coexpression network using absolute Pearson cor-
relation and rank aggregation across many data sets. All-against-all 
coexpression was calculated from 764 public data sets and aggre-
gated using the MEM tool with default parameters (Adler et  al., 
2009). Probe sets were mapped to Ensembl 56, and ambiguous 
probe sets were removed. In case of multiple probe sets mapping 
to the same Ensembl ID, median score was used. To construct the 
graph, edge weights were taken as negative log of the best cor-
rected p value associated with each edge.

PI: compilation of physical protein–protein interactions from the 
following databases: IntAct, MINT, MIPS, STRING, BIOGRID, DIP, 
HPRD, and Reactome (accessed 11 October 2010). Each protein 
was assigned to an Ensembl56 gene using Ensembl56’s external 
references if the gene was not already identified by an Ensembl ID 
in the source database. We noticed that some genes considered 
common contaminants in pull-down experiments analyzed by mass 
spectrometry (e.g., UBC) have a high number of interactors. In 
an attempt to reduce nonspecific interactions, eight genes with 
>300 interaction partners were removed: ENSG00000078369 
(GNB1), ENSG00000150991 (UBC), ENSG00000170027 (YWHAG), 
ENSG00000164924 (YWHAZ), ENSG00000141510 (TP53), 
ENSG00000197122 (SRC), ENSG00000146648 (EGFR), 
ENSG00000177885 (GRB2), and ENSG00000127928 (GNGT1).

TM: An interaction graph was generated using the iHOP natural 
language processing protocol (Hoffmann and Valencia, 2004, 2005). 
Genes were identified in abstracts in September 2010 using iHOP 
by mapping to their HGNC names. A physical interaction link was 
created between two genes if they were connected by a verb imply-
ing physical binding (e.g., AURKB binds INCENP). Each identified 
interaction was given a weight corresponding to the confidence of 
the genes in the interaction being the correct HGNC genes.
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about a diverse range of biological functions, we chose to use all 
Panther pathways (Mi et al., 2005; from version 3.01) with ≥12 genes 
(79 pathways). Each pathway is evaluated using the leave-one-out 
cross-validation procedure. Similar results were obtained using a 
simple holdout method in which, for each pathway, 10 genes were 
randomly selected as targets and the rest used as query. Sensitivity 
is defined as the fraction of target genes from the pathway such that 
rank[target] ≤ N. Because different kernels can return a different 
number of ranked genes for a given query, a kernel that ranks more 
genes is more likely to rank some as-yet-unknown true positives bet-
ter than the known ones. This means that test genes could get a 
worse rank with a kernel that retrieves more genes than with a kernel 
that returns fewer genes. To account for this and obtain a fairer com-
parison, ranks are normalized by the percentage of the genes re-
turned. To estimate the false-positive rate, we assume that random 
selection yields unrelated genes and apply leave-one-out cross-val-
idation to randomly formed lists of genes of the same sizes as the 
Panther pathways.

RNAi screen in HeLa cells
We prepared siRNA-coated 96-well plates as described previously 
(Neumann et al., 2010). We seeded 4000 HeLa cells stably expressing 
HIST1H2BJ-mCherry and LMNA-eGFP in each well and incubated 
them for 17 h at 37 C and 5% CO2. After 17 h of incubation, the me-
dium was replaced by preheated CO2-independent imaging medium 
(Invitrogen; containing 10% heat-inactivated fetal calf serum, 2 mM 
glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin). Gas ex-
change was prevented by sealing the plates with Baysilone paste 
(Bayer, Leverkusen, Germany). Plates were then kept at least 1 h in 
the preheated incubation chamber of the microscope before imag-
ing. Images were acquired with an automated epifluorescence micro-
scope (IX-81; Olympus-Europe, Hamburg, Germany) with a 20× ob-
jective and a time interval of 8.5 min for 44 h. Four independent 
replicates were acquired for each siRNA treatment.

Screen image analysis
Images were processed using the CellCognition software (Held 
et al., 2010). Only the H2B-mCherry channel was used. After seg-
mentation, a training set was assembled by manually assigning 
∼1800 nuclei from negative control wells to one of the following 10 
classes based on the morphological aspect of the nuclei: interphase, 
early prophase, late prophase, prometaphase, metaphase, early 
anaphase, late anaphase, apoptosis, artifact, and out of focus. Early 
prophase was defined as the first visually detectable changes in the 
texture of chromatin after interphase, and late prophase was de-
fined as the first appearance of clearly condensed chromatin before 
prometaphase. This late-prophase definition corresponds to events 
preceding complete disassembly of the nuclear envelope as judged 
by the LMNA-eGFP marker. All nuclei were then automatically as-
signed by a multiclass support vector machine to one of these 
classes. Mitoses were detected as any transition from interphase to 
one or more of prophase, prometaphase, or metaphase followed by 
at least one of either metaphase or anaphase. Mitotic nuclei were 
then tracked for 22 frames (eight before the detected transition and 
14 after). Mitoses with too-dark nuclei or for which the first eight 
frames before the transition were not classified as interphase (e.g., 
out-of-focus nuclei) were discarded. Wells with fewer than five valid 
mitoses were discarded.

Hit detection
Lack of condensin function, which results in absence of condensa-
tion in prophase, translated in our screen as a shorter prophase 

= +K L L(pseudoinverseof )CT

Random forest kernel (RF).  This kernel arises from the enumeration 
of the spanning rooted forests in the graph and measures the 
relative “forest accessibility” between nodes (Chebotarev and 
Shamis, 1997). It also has an interpretation in terms of probabilities 
of reaching a node in a random walk with a random number of steps 
(Chebotarev, 2008). This kernel is used by the GeneMANIA algorithm 
in the context of Gaussian random field label propagation (Mostafavi 
and Morris, 2010):

= + −K I L( )RF
1

von Neumann diffusion kernel (VN).  This kernel enumerates all 
paths between two nodes while penalizing the longer paths and has 
an interpretation in terms of diffusion on the graph (Shawe-Taylor 
and Christianini, 2004):

∑= α = − α −K A I A( )k k
kVN

1

The penalizing factor is αk (k being the length of the path). and 
the kernel is defined for 0 < α < ρ−1, with ρ being the spectral radius 
of A. Although α could be learned from the data, we chose here to 
explore three values toward the lowest, middle, and highest point of 
the valid range. We compare three VN kernels:

α = + κ ρ− −VN , with (1 )max
1 1

α = ρ−VN , with 0.5mid
1

α = ρ−VN , with 0.1low
1

which correspond, respectively, to upper, middle, and lower values 
of the admissible range for α, ρ being the spectral radius of A and κ 
the proportion of nonzero elements in A (κ is very low, and so for 
VNmax, α ≈ ρ−1).

Each kernel is computed separately for each connected compo-
nent of the graph.

Genes with multiple functions or that are more studied tend to 
have more links to other genes. To compensate for this effect, each 
kernel is normalized by diag(K)−1/2K diag(K)−1/2 (which corresponds 
to computing the cosine of the vectors in the feature space of the 
kernel).

Degree-based similarity (DB).  We also computed a similarity 
matrix based only on node degree as in Gillis and Pavlidis (2011):

ee ee ee = = =K BB B D, where and is the all - one vector ( (1, 1, , 1))DB
T T

Ranking algorithm.  For a kernel K and a given pathway, we 
compute the score s = Ky, where y(x) = 1 if gene x is part of the query 
and is 0 otherwise. Genes are then ranked by s(x), which is the sum 
of the similarities between gene x and all query genes. For a given 
gene, the higher the score, the more similar this gene is to the query. 
We note that this procedure does not use the fact that the matrices 
are valid kernels, only that they encode some notion of similarity. 
Unlike in supervised classification (e.g., using support vector 
machines), the similarity depends on the distribution of the unlabeled 
points because the kernels are computed over the whole graph.

Kernel performance evaluation
We want to evaluate how well the kernels recapitulate current bio-
logical knowledge. As representation of established knowledge 
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and processed first. A global threshold was determined by analyzing 
the histogram constructed from all the pixels within the stack. This 
threshold was adapted for each slice by combining a second (local) 
threshold determined similarly for which only pixels within a particu-
lar slice were considered to construct the histogram. This combina-
tion of local and global thresholds within a stack significantly avoided 
oversegmentation and undersegmentation. To segment the stacks 
at other time points, the intensity sum contained in the segmented 
chromatin volume in the prometaphase stack was used as a refer-
ence. This also allowed estimation of small missing parts of chroma-
tin in metaphase when cell rounding occasionally pushed the chro-
matin mass slightly out of imaging range. Highly compacted 
chromatin sometimes resulted in sections with saturated pixels. Loss 
of intensity due to saturation was estimated based on a logarithmic 
function of the number of saturated pixels. Then an iterative ap-
proach was applied that increased/decreased the global threshold 
and readjusted the local thresholds proportionally in order to obtain 
a refined segmentation that minimized the deviation between the 
total intensity in the reference stack and that in the processed stack. 
The absolute volume of chromatin was estimated by the number of 
segmented voxels multiplied by the voxel size.

For compaction analysis, chromatin volumes were normalized 
relative to interphase chromatin volume, defined as the average of 
the volumes at the first three time points starting 1 h before ana-
phase onset. Curves were then aligned on the first prometaphase 
image taken as time t = 0 min. The curves of volumes over time were 
fitted (as in Petrova et  al., 2013) with the following sigmoidal 
function:

= + ++V c e V/ (1 )axt b
max

where V is the chromatin volume and t the time relative to prometa-
phase. From this, we derived the following parameters:

Compaction ratio: r = Vmax/Vmin.
Duration: Δt = t95% – t5% (where t95% and t5% represent the time 

points at which the volume has decreased by 95 and 5% of the total 
compaction, respectively).

Time to prometaphase: tprometa = t(0) – t50% (where t50% represent 
the time point at which the distance has reached 50% of the total 
compaction).

Average values of these parameters for different gene knock-
downs are given in Supplemental Table S3. Parameters from poorly 
fitted curves to MCPH1 knockdown data were discarded (see ex-
ample in Supplemental Figure S6).

γ-H2AX immunostaining and analysis
We prepared 96-well plates as for the screen (Neumann et al., 2010) 
with the following siRNAs: Neg9 (negative control), s25157 
(TRAF3IP1), s74 (HDAC1), s4223 (DNMT3B), s23531 (NCAPD3), 
s6323 (BRF1), s14304 (TOP1), s36005 (MCPH1), and s34602 (PAPD5). 
In addition, three wells were treated with 0.2, 0.4, and 0.8 μM 
aphidicolin to serve as positive controls.

HeLa cells stably expressing H2B-mCherry were grown on the 
siRNAs for 48 h and then fixed with a solution of 3.7% paraformal-
dehyde in phosphate-buffered saline (PBS) for 15 min at room tem-
perature, permeabilized with 0.5% Triton X-100 in PBS for 10 min, 
incubated with a mouse monoclonal antibody against phosphory-
lated H2AX (ab22551; Abcam, Cambridge, UK) in PBS plus 0.1% 
Tween 20 plus 2% bovine serum albumin, washed three times, incu-
bated with an Alexa 488–conjugated anti-mouse antibody, washed 
three times, and incubated 5 min with 0.1 mg/ml Hoechst 33342 in 
PBS and washed twice. Images were acquired from four fields in 
each well with an automated epifluorescence microscope (IX-81; 

because the prophase class definition is based on the visual appear-
ance of condensation before nuclear envelope breakdown. In 
negative control cells (i.e., treated with nontargeting siRNAs), the 
mode of duration of prophase was two frames (17 min). To get an 
overview of the screen, we derived a short prophase score for each 
gene as the median of the difference in the fraction of shorter pro-
phase between all replicates involving the gene and corresponding 
negative controls (i.e., nontargeting siRNA). Similarly, we defined a 
long-prophase score by looking at the fraction of mitoses with pro-
phase lasting >17 min. Then for each well, we tested whether the 
fraction of mitoses with prophase less (respectively more) than two 
frames was significantly different from the corresponding plate’s 
pooled negative controls (Fisher’s exact test with p < 0.1). A siRNA 
was then considered to affect mitotic chromosome condensation if 
it produced the same significant change in prophase duration in at 
least two replicates. A combined p value over replicates was calcu-
lated using the QFAST algorithm (Bailey and Gribskov, 1998), and 
siRNAs with combined p > 0.05 were not considered as hits.

Confocal microscopy
HeLa cells stably expressing H2B-eGFP were seeded in siRNA-
coated wells of 96-well plates as for the screen 48 h before imaging. 
For imaging, culture medium was replaced by prewarmed, CO2-in-
dependent imaging medium; the plate was then sealed with silicon 
grease and set in the confocal microscope incubation chamber at 
37°C. Imaging was performed with a Zeiss LSM 780 confocal micro-
scope (Carl Zeiss Microscopy, Jena, Germay) using a 63×/1.4 nu-
merical aperture (NA) objective with a resolution of 0.132 × 0.132 × 
0.9 μm × 4 min over a period of 18 h during which three cells were 
imaged for each of the following siRNAs: Neg9 (negative control), 
s25157 (TRAF3IP1), s74 (HDAC1), s4223 (DNMT3B), s23531 
(NCAPD3), s6323 (BRF1), s14304 (TOP1), s36005 (MCPH1), and 
s34602 (PAPD5). Four such imaging rounds were carried out, except 
for NCAPD3 and negative control, for which images were acquired 
over additional rounds to image a total of 25 mitotic cells for each 
siRNA treatment. Under these conditions, no significant cell death 
or eGFP photobleaching was observed, and mitosis was not af-
fected. Images of cells not entering mitosis were discarded. To ac-
count for variable phenotypic penetrance in gene knockdowns, cells 
were manually annotated for prophase duration using maximum in-
tensity projection images, and cells with the same phenotype (i.e., 
shorter or longer prophase) as in the screen were kept for further 
processing.

Chromatin volume quantification
A fully automated computational pipeline to derive chromatin 
volume from confocal image stacks was implemented in Matlab and 
is described below.

Intensity decay with increasing distance from the coverslip sur-
face was modeled as an exponential function of distance from the 
surface (Kervrann et al., 2004). Intensity-corrected stacks were inter-
polated to have an isotropic resolution along xy and z to provide 
greater flexibility in 3D image analysis. A 3D Gaussian filter was then 
applied on the interpolated stacks to reduce the effects of noise. 
Large variations in chromatin compaction in different mitotic phases 
lead to highly variable intensity/brightness of the chromatin area, 
which can cause undersegmentation or oversegmentation, depend-
ing on the mitotic phase. To deal with this, segmentation was con-
strained such that the intensity sum contained in the segmented 
chromatin volume within a 3D stack remained constant for all time 
points (Mora-Bermudez et al., 2007). To enforce this constraint, the 
stack containing the first prometaphase was selected as a reference 
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Olympus-Europe) with a 40× objective. Using the CellCognition 
software, nuclei were segmented in the Hoechst channel, and a clas-
sifier was trained on a set of nuclei with positive and negative γ-
H2AX staining.

S. pombe experiments
We give here a brief summary of the procedure described in Petrova 
et al. (2013). A yeast strain with two fluorescently labeled loci was 
constructed by integrating a tandem array of lactose operators and 
a tandem array of tetracycline operators ∼1 Mb apart on the arm of 
chromosome I and expressing a tetracycline repressor fused to td-
Tomato and a lactose repressor fused to GFP. Mutations for the 
tested genes were then introduced into this strain. For live-cell im-
aging, cells enriched for G2 phase were attached onto lectin-coated 
microscopy dishes, and images were taken on a DeltaVision 
(Applied Precision, Issaquah, WA) microscope using an Olympus 
UPlanApo (100×, NA 1.35) objective. Z-stacks with a step size of 
0.4 μm were recorded every 40 s for a period of 60 min using a dual-
band filter set for GFP or tdTomato fluorescence. Image processing 
to determine the distance between the marked loci was imple-
mented in ImageJ (Schneider et al., 2012). For each experiment, 
distances measured from at least 14 cells were averaged, and 
the resulting curve was fitted with the same function used for chro-
matin volume. Average values and SDs for all parameters in wild-
type yeast cells were computed from four different experiments. 
Parameter values are listed in Supplemental Table S4, and Supple-
mental Table S5 lists the genotypes of the yeast strains used.
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