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Abstract

Semiparametric methods have been developed to increase efficiency of inferences in randomized

trials by incorporating baseline covariates. Locally efficient estimators of marginal treatment

effects, which achieve minimum variance under an assumed model, are available for settings in

which outcomes are independent. The value of the pursuit of locally efficient estimators in other

settings, such as when outcomes are multivariate, is often debated. We derive and evaluate

semiparametric locally efficient estimators of marginal mean treatment effects when outcomes are

correlated; such outcomes occur in randomized studies with clustered or repeated-measures

responses. The resulting estimating equations modify existing generalized estimating equations

(GEE) by identifying the efficient score under a mean model for marginal effects when data

contain baseline covariates. Locally efficient estimators are implemented for longitudinal data

with continuous outcomes and clustered data with binary outcomes. Methods are illustrated

through application to AIDS Clinical Trial Group Study 398, a longitudinal randomized clinical

trial that compared the effects of various protease inhibitors in HIV-positive subjects who had

experienced antiretroviral therapy failure. In addition, extensive simulation studies characterize

settings in which locally efficient estimators result in efficiency gains over suboptimal estimators

and assess their feasibility in practice. Clinical trials; Correlated outcomes; Covariate adjustment;

Semiparametric efficiency

1 Introduction

Semiparametric estimators are appealing because of their robustness to distributional

assumptions and model misspecification. In the analysis of randomized trials,

semiparametric theory has been used to develop estimators of treatment effects that improve

efficiency of inferences by incorporating baseline covariates, where ‘baseline’ describes data

measured prior to randomization. In this paper, we present a semiparametric locally efficient

estimator to improve efficiency of inferences in randomized experiments with correlated

outcomes when baseline covariates are available. We begin with a review of current
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estimators for multivariate outcomes and then introduce our semiparametric locally efficient

estimator.

Correlated outcomes are often observed in medical research studies, such as those that

randomize clusters of subjects or that randomize individual subjects but collect repeated

measures of the response. We denote the outcome for the ith independent randomized unit, i

= 1, …, m, in such studies by the ni-dimensional response vector ,

which may represent longitudinal measurements from a single subject or a set of responses

from subjects within a cluster defined by a family, hospital, or class. Considering the

substantial costs incurred by such studies, it is of interest to maximize efficiency in the

estimation of treatment effects by using all available data.

In general, studies collect data on i.i.d. observations Oi = (Yi,Ai,Xi), where Ai denotes a

scalar treatment assignment to 1 of K possible treatments, and Xi is a matrix of baseline

covariates. Throughout we allow ni to be fixed or random and assume ignorability when ni is

random. Longitudinal data also include a time variable  denoting time

points at which outcomes are measured. As in the case of unit size ni, we allow ti to be either

fixed or random but ignorable. When repeated measures are taken on the same subject,

baseline covariates are measured at tij = 0; thus Xij = Xi for all j = 1, 2, …, ni, resulting in a

single level of baseline covariate information. Clustered data, however, may include pre-

treatment covariates at the level of the group or the individual, creating two layers of

auxiliary data. In the longitudinal context, we refer to the vector Yi as the subject, or

independent unit and Yij as observation- or measurement-level data. For clustered data, we

refer to Yi as cluster-level and Yij as individual-level observations.

Semiparametric estimation often involves specifying a restricted mean model. When

estimating marginal treatment effects, a model for the expected outcomes given treatment

assignment is usually assumed. Consequently, only data on the treatment and outcome are

used in estimation. For example, in longitudinal studies, the marginal effect of treatment

over time may be measured by assuming the restricted mean model

(1)

where f1(tij) is a function of ti. The main effect βA, which measures imbalance in E(Yij|Ai,tij)

at baseline, is expected to be zero when randomization successfully balances covariate

profiles across treatment arms. The post-baseline effect of treatment is measured by βA,t.

Parameters βt and βA,t may be vector-valued, as the function describing the effect of time on

expected outcomes may be of some polynomial form. Similarly, for clustered data, the

semiparametric model

(2)

may be assumed, with treatment effects determined by inference on β1.

Estimating equations are determined by geometric arguments that distinguish parameters of

interest, such as the treatment-outcome association (β) in the context of randomized studies,
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from other components needed to fully specify the data-generating distribution, which are

represented by η. For parameters of interest, we aim to derive regular asymptotically linear

(RAL) estimators, where an asymptotically linear estimator  is one for which there exists a

function ψ(Oi) such that

(3)

Regularity conditions ensure that variance bounds are well-defined and exclude

superefficient estimators that have undesirable properties under local alternatives (Newey

(1990)). The function ψ(Oi) is called the influence function of  and determines its limiting

distribution. As (3) suggests, any RAL estimator may be obtained by solving an influence

function equation. To derive the class of estimating functions under an assumed model ℳ,

one first defines the nuisance scores ∂log(ℒη)/∂η for the data-generating distribution ℒη; one

then determines the subspace defined by the closed linear span of all scores of smooth

parametric submodels ℒη in model ℳ. This nuisance tangent space is denoted by Λnuis

(Bickel, Klassen, Ritov, and Wellner (1993)). The orthogonal complement of Λnuis, 

defines the set {ψ(h) : h}, indexed by h, which contains the set of influence functions of all

regular asymptotically linear estimators (Bickel et al. (1993); van der Vaart (1998)). For

correlated outcomes, the geometric arguments of semiparametric theory may be viewed as a

generalization of the quasilikelihood approach of Liang and Zeger (1986) in deriving

generalized estimating equations (GEE). We denote as ℳ1 the set of distributions of Wi =

(Yi,Ai) with known treatment process satisfying (1). Under model ℳ1,

 defines the estimating equations

(4)

for estimating the p–dimensional vector β. The index or weight h(Ai,ti) is a p × ni function of

a random treatment variable Ai and time ti, and

. We use bold g(Ai, ti; β) to denote

the vector-valued mean function and g(Ai, tij; β) to represent its scalar components.

A locally efficient estimator of a semiparametric model is defined as an estimator that

achieves the semiparametric efficiency bound (minimum asymptotic variance among all

RAL estimators) at a given submodel for the data-generating law, but remains consistent

outside the data-generating submodel (Bickel et al. (1993)), provided that the marginal

model is correct. More explicity, semiparametric models parametrize specific components of

a data-generating process and leave others unspecified. Estimation may require working

models of unspecified components; a locally efficient estimator achieves the semiparametric

efficiency bound when such working models are correctly specified, but also remains

consistent when only the parametric component is correctly specified. A semiparametric

locally efficient estimator is determined by finding the optimal estimating function, referred

to as the efficient score, which for GEE requires finding the optimal h(·). When no baseline

covariates are observed, Chamberlain (1986) showed that the efficient score of β, is obtained
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by setting , where Vi is the ni × ni variance-covariance matrix of Yi, and

. The estimator remains consistent, however, when a working covariance

other than the true covariance is substituted into the estimating equations, thereby

demonstrating that consistency is achievable outside of the data-generating law.

For model ℳ2, defined by observations Oi, marginal model (1), and known treatment

process, the set of influence functions was derived by Robins, Rotnitzky, and Zhao (1994)

and arises by augmenting the influence functions of β under model ℳ1. Augmented

estimators are constructed by subtracting the orthogonal projection of the standard

estimating function onto the span of the scores of the treatment mechanism from the

standard estimating function (Robins et al. (1994), Robins (1999)). For correlated outcomes,

, and augmented GEE are

(5)

where for K-level treatment Ai, P(Ai = a) = πa. Fixing h(Ai, ti), the most efficient estimating

function sets  (Robins et al.

(1994), Robins (2000); van der Laan and Robins (2003); Zhang, Tsiatis, and Davidian

(2008)). The augmentation therefore involves estimation of the conditional mean outcome

regression model E(Yi|Xi,Ai), which may be related the marginal parameter of interest in the

binary treatment setting by β = E{E(Yi|Xi,Ai = 1) − E(Yi|Xi,Ai = 0)} under an identity link

and β = logit[E {E(Yi|Xi,Ai = 1)}]−logit[E {E(Yi|Xi,Ai = 0)}] under the logit link. When

baseline covariates are predictive of the outcome augmentation reduces variability in

estimated treatment effects, irrespective of the outcome distribution. For the longitudinal

marginal model (1), if outcomes Yij are restricted to post-baseline measurements, the

baseline measurement Yi0 may be utilized as a baseline covariate and included in Xi. The

βA,t term is then no longer required to assess a post-baseline effect of treatment and may be

removed from the model, leaving βA to capture the marginal treatment effect. The interaction

term βA,t may still be required for correct model specification even when the baseline

outcome is included as a covariate if the treatment effect varies in time.

Semiparametric locally efficient estimators of parameters in restricted mean models of

marginal treatment effects have been implemented for univariate data in the presence of

baseline covariates by Robins (2000), Bang and Robins (2005), van der Laan and Rubin

(2006), Tsiatis, Davidian, Zhang, and Lu (2008), Zhang et al. (2008), Moore and van der

Laan (2009b) and Moore and van der Laan (2009a). In these developments, the choice of

h(·) has no impact on the resulting asymptotic variance and is therefore not considered for

deriving efficient estimators. For a univariate outcome, the model gs(Ai;β) = E[Yi|Ai] defined

by a unique parameter for each treatment level is saturated, and the choice of h(·) is

inconsequential. When Yi is multivariate, gs(Ai;β) = E[Yij|Ai] is not saturated because a
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single parameter β is shared across components of the vector E[Yi|Ai]. As a result, 

provides a larger set of estimating functions than the orthogonal complement of the nuisance

tangent space of the corresponding restricted mean model for a univariate outcome. Each

element in  is indexed by h(·); the choice of h(·) impacts efficiency, and the optimal

h(·) must be found to achieve minimum variance. A similar discussion of h(·), model

saturation, and estimating functions was included in Neugebauer and van der Laan (2007).

The efficient score in model ℳ2 does not generally have the same optimal index h(Ai, ti) as

the efficient score in model ℳ1. When incorporating auxiliary covariates in the estimation

of marginal treatment effects via augmented GEE, the choice , while

resulting in a consistent estimator, is no longer optimal in model ℳ2. The efficient score is

determined by optimizing over all p × ni index functions h(Ai, ti) (Robins et al. (1994);

Robins (1999); van der Laan and Robins (2003)). Robins (1999) established general theory

for deriving the efficient score of treatment effects in marginal structural models (MSMs) of

time-dependent exposures, including the case of multivariate outcomes. Application of the

Robins (1999) theory to establish locally efficient estimators in specific settings, such as for

randomized trials with correlated outcomes, requires further derivation. Additionally, the

locally efficient estimators of Robins (1999) were not implemented nor evaluated for

practical use. Models (1) and (2) may be viewed as examples of MSMs for a point exposure;

the Robins (1999) theory therefore equally applies. Although the efficient score may be

obtained theoretically, it is often computationally intensive to calculate. Consequently,

inefficient estimators are typically used. The suboptimal estimator based on augmenting

GEE with  was shown to improve efficiency by Zhang et al. (2008) within

the context of the linear mixed model and Stephens, Tchetgen Tchetgen, and De Gruttola

(2011) for general continuous and binary outcomes. In subsequent text, we refer to

unaugmented GEE (4) under model ℳ1 with the index function  as

standard GEE, and the suboptimal estimator obtained by augmenting standard GEE is

referred to as simple augmented GEE. Here we show how to further improve on simple

augmented GEE by deriving the corresponding semiparametric locally efficient estimator

for model ℳ2. We then evaluate the feasibility of achieving such improvement in practice.

The following section presents the efficient score and derives a locally efficient estimator of

marginal treatment effects in randomized trials with correlated outcomes when auxiliary

data are available as in model ℳ2. We also discuss an implementation procedure detailing

how to appropriately estimate each component of the efficient score. In Sections 3 and 4 we

compare the derived semiparametric locally efficient estimator to standard and simple

augmented GEE through a simulation study and application to the AIDS Clinical Trial

Group study 398, a randomized longitudinal HIV intervention trial.

2 Methods

2.1 The Efficient Score

We consider the setting of longitudinal data and note that results follow analogously for

clustered data by omitting ti. Before presenting the main result, some additional notation is
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required. Conditioning on ti, the matrix h(Ai, ti) takes K possible values, which may be

denoted by K p×ni constant matrices h0(ti), h1(ti),…, hK−1(ti). For binary treatment, we have

h1 = h1(ti) and h0 = h0(ti), which denote the index functions under treatment (A = 1) and

control (A = 0), respectively. Let , the ni-

dimensional vector of the difference in the conditional and marginal mean outcomes given

time. Using this construction, let h = [h0,h1,…,hK−1], the complete index matrix of

dimension p × Kni. Using a result from Newey and McFadden (1994), we show in the

supplementary material that the optimal index hopt(A, t) and resulting efficient score may be

determined by solving a generalized information equality. Here we present our main result:

Proposition 1—The efficient score for model ℳ2 is

(6)

C = C1 − C2, where

and

As shown above, C is of dimension Kni × Kni and may be decomposed into the difference C
= C1 − C2, where C1 is a block diagonal matrix with diagonal components πaV (Y|A = a, t).

The block diagonal of C2 contains the matrices , and off-

diagonal block components are determined by .

When treatment is binary, C simplifies to

where π0 = 1−π1. Inverting C analytically and letting ,
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(7)

Expressing the optimal index as in (7) demonstrates that hopt incorporates information on

the treatment assignment and auxiliary covariates X through ζa,a′, while the standard index

hstd = DT(A)V(A)−1, does not. The matrix ζa,a′ is by definition the covariance of E(Yi|Xi,a,ti)

and E(Yi|Xi,a′,ti), the expected outcomes given baseline covariates and treatment assignment

to a and a′, respectively. The optimal index hopt therefore boosts efficiency by incorporating

information on the covariance in expected outcomes when weighting the residuals

Yi−g(Ai;β) in the marginal model estimating equations. To implement locally efficient GEE

for model ℳ2, estimates of V(Yi|Ai,ti), E[Yi|Xi,Ai,ti], and ζaa′ for all unique pairs of

treatment levels {a,a′}, including a = a′, are needed. The next section details an estimation

procedure for each component of hopt when Yi is continuous and g(·) is the identity link, or

Yi is binary and g(·) is the inverse logit link.

2.2 Estimation of hopt

The semiparametric locally efficient estimator requires estimates of 3 additional parameters:

1. E[Yi|Xi,Ai,ti]

2. ζa,a′ = Cov{E(Yi|Xi,Ai = a,ti),E(Yi|Xi,Ai = a′,ti)|Ai,ti}

3. V(Yi|Ai,ti).

These quantities may be linked by the law of total variance, V(Yi|Ai,ti) = E[V(Yi|Xi,Ai,ti)|

Ai,ti]+V(E[Yi|Xi,Ai,ti]|Ai,ti). For the ith independent unit, the ni-dimensional vector E[Yi|

Xi,Ai,ti] determines the ni × ni matrix V(E[Yi|Xi,Ai,ti]|Ai,ti) and ultimately impacts the form

of the marginal variance matrix V(Yi|Ai,ti). Observing the relationship among each of these

parameters provides guidance for estimation. For example, the working marginal covariance

selected must be compatible with the working model chosen for E[Yi|Xi,Ai,ti]. More

generally, the models for each component of hopt must be specified so that the model

selected for one component does not preclude the choice of model chosen for another. One

approach that ensures compatibility is to start by estimating E(Yij|Xij,Ai,tij) through an

appropriate regression technique to provide an estimate . The

conditional mean outcome may be modeled by

(8)

where Xij represents the collection of covariates for the jth measurement in the ith unit. The

next step is to estimate the conditional expectation by noting how the model of E(Yij|Xij,Ai =

a,ti) impacts the form of the matrix ζa,a′. The final step is estimation of V(Yi|Ai,ti) by

summing the estimates of E[V(Yi|Xi,Ai,ti)|Ai,ti] and V(E[Yi|Xi,Ai,ti]|Ai,ti).
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2.2.1 General estimation of ζa,a′ and V(Y|A)—Since ζa,a′ is a covariance matrix, it

may generally be estimated in a similar fashion to estimating the correlation parameters in

standard GEE. Let ζa,a′ = R1/2SR1/2, where R is a ni × ni diagonal matrix with the jth

diagonal component Rj,j = Cov(E[Yij|Xij,Ai = a,tij], , the

covariance of the predicted outcomes of element j under treatments a and a′, and S is a ni ×

ni correlation matrix with Sj,j = 1 and Sj, j′ = f (τa,a′) for a function f (·) of correlation

parameter τa,a′ that denotes the correlation in the predicted outcomes of element j under

treatment a and element j′ under treatment a′. The parameters τa,a′, which may be a vector,

and  characterize the covariance in conditional mean outcomes

under treatments a and a′. Letting  where  is

an initial estimate of β obtained, for example, by maximum likelihood inference for

Generalized Linear Models,  may be estimated by

where pξ is the dimension of the outcome regression parameter ξ. The correlation parameter

τa,a′ is then estimated by the moment equations

For a = a′, we obtain an estimate of ζa,a = V(E[Yi|Xi,|Ai = a,ti]|Ai,ti).

As an alternative approach, one may also derive an expression of , the j, j′ element of

ζa,a′, that depends on  and the covariance in baseline

covariates. An empirical estimate of Cov(Xi) may then be substituted into this expression.

After estimating ζa,a, the conditional variance of Yi, V(Yi|Xi,Ai,ti), may be estimated using

the correlation parameters from GEE based on the conditional mean model (8). Under

homoscedasticity V(Yi|Xi,Ai,ti) = λ for all i. To ensure compatibility of all parameters, the

marginal variance V(Yi|Ai,ti) is then estimated by , where  and 

are estimates of ζa,a and λ, respectively.

2.2.2 Estimation of ζa,a′ for clustered data or longitudinal data with ξX,t = 0—
For clustered data and longitudinal data with ξX,t = 0 in (8), calculating ζa,a′ is

straightforward. When data are clustered, ξt = ξA,t = ξX,t = 0, leaving

. In this setting,  is calculated as

. If auxiliary

covariates Xij,Xij′ are equally correlated among subjects within a cluster  for all j, j
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′. This holds for all link functions g(·). For longitudinal data when ξX,t = 0 (i.e. the effects of

baseline covariates on the conditional mean outcome do not vary over time)

If g(·) is the identity link, this reduces to

 for all j, j′. For clustered data ρa,a′ is a

constant that depends on Cov(Xij, Xij′),  and ξA,X, whereas for longitudinal data, Cov(Xij,

Xij′) is replaced by Var(Xi) since Xij = Xi for all j.

2.2.3 Estimation of V(Yi|Ai = a) under a compatible standard form—In some

special cases where summing E[V(Yi|Xi,Ai,ti)|Ai,ti] and V(E[Yi|Xi,Ai,ti]|Ai,ti) results in a

marginal covariance matrix V(Yi|Ai,ti) with a standard form, e.g., exchangeable, V(Yi|Ai,ti)

may be estimated directly while maintaining compatibility with E[Yi|Xi,Ai,ti|Ai,ti] and ζa,a.

As stated above, if individual-level covariates Xij are equally correlated among subjects

within the ith cluster, the model E[Yij|Xij,Ai = a] imposes compound symmetry on ζa,a′,

where diagonal components depend on Var(Xij) and off-diagonal components are

determined by Cov(Xij,Xij′). If the conditional variance V(Yi|Xi,Ai) is also exchangeable,

V(Yi|A,ti) is the sum of two exchangeable matrices and therefore also has an exchangeable

structure. The optimal index hopt may then be calculated by estimating V(Yi|Ai,ti) directly as

in standard or simple augmented GEE and using the above procedure to estimate ζa,a′.

A consistent estimator of the asymptotic variance of , the solution to the augmented

estimating equations (5) evaluated under (6), may be calculated using the sandwich variance

formula of Huber (1964).

3 Simulation Study

Semiparametric locally efficient GEE for model ℳ2 were compared to standard and simple

augmented GEE through a simulation study. Simulations were completed for clustered data

with continuous and binary outcomes and longitudinal data with continuous outcomes.

Results are based on 1,000 Monte Carlo datasets.

3.1 Continuous outcomes

3.1.1 Clustered Data—Data for m = 500 clusters were generated, with ni=2,4,6,8,10,12

with equal probability for the first set of simulations and ni=10,20,30,40,50 in the second

set. Auxiliary covariates Xij1, Xij2, and Xij3 were each generated from a multivariate normal

distribution with Var(Xij1)=2, Var(Xij2)=6, and Var(Xij3)=5. Correlation was induced among

individual-level covariates within the same cluster by setting

, and Cov(Xij3,Xij′3)=1. Covariance terms  and

 were varied from 0.5 to 2 and 1.5 to 6, respectively, to evaluate the effect of auxiliary

covariate correlation on the performance of locally efficient augmented GEE. At 

and  covariates were weakly correlated among individuals in the same cluster, while

at  and , covariates were perfectly correlated, thereby becoming cluster-level.

The exact values considered for  and  were (0.5, 1, 1.5, 2) and (1.5, 3, 4.5, 6), for
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simulation sets 1–4 at each set of cluster sizes. Within the jth individual in the ith cluster,

auxiliary covariates were independent. The treatment variable Ai was drawn from the

Bernoulli distribution with p=1/2. Clustered responses were generated from the following

model, with individual-level error terms εij ~ N(0,40) and cluster-level effects

. The proportion of

variability in Yij explained by auxiliary covariates Xij was held fixed at roughly 25%.

Simulations were completed with  and , representing the case in which covariates

account for all between-cluster heterogeneity (V(Y|X,A) independent) and the alternative of

some intracluster correlation caused by an unmeasured variable (V(Y|X,A) exchangeable),

respectively.

For each dataset, the marginal effect of treatment was estimated by fitting model (2) through

standard, simple augmented, and locally efficient GEE for ℳ2. The impact of

misspecification on the locally efficient estimator and its efficiency relative to simple

augmented and standard GEE was evaluated by fitting various models to estimate E(Y|X,A).

The correct model for E(Y|X,A), denoted by ‘C’ in tables and figures, was

, and two additional models Model 1, ‘M1’=E(Yij|

Xij,Ai) = ξ0 + ξ1Xij1 + ξ2Xij2 + ξ3Ai and Model 2,

. ‘Model 1’ evaluated the impact of

misspecifying the functional form of Xij1, while ‘Model 2’ examined the effect of adding

noise to the outcome regression model. All working covariance matrices were fit under

exchangeable structure.

Efficiency comparisons relative to standard GEE are summarized in Figures 1a–1b, while

the Monte Carlo Relative Efficiency (MCRE) of the locally efficient estimator for ℳ2 to

simple augmented GEE may be found in Table 1. Small cluster figures are included in the

supplementary material. Across all levels of correlation, augmented estimators resulted in

increased efficiency compared to the unaugmented estimator (MCRE 1.25–11.6). For low

correlation among Xij simple augmented and locally efficient augmented estimators

performed similarly. Simple augmented GEE and locally efficient GEE for ℳ2 also resulted

in similar efficiency when the conditional mean model did not include the data-generating

quadratic term  or the true conditional variance was exchangeable (MCRE locally

efficient to simple augmented GEE 0.99–1.01). When correlation was increased among Xij

within a cluster, the assumed conditional mean model included all important covariates in

the correct functional form, and baseline covariates accounted for all within-subject

correlation, locally efficient GEE for ℳ2 gained in efficiency over the simple augmented

GEE (MCRE locally efficient to simple augmented GEE 1.04–1.22). Increased covariance

among auxiliary covariates also resulted in greater efficiency gains for any augmented GEE

relative to the standard estimator. Trends were more pronounced for large average cluster

size (average ni=30 vs. average ni=7).

3.1.2 Longitudinal Responses—For each Monte Carlo dataset, m=500 longitudinal

response vectors Yi were generated from the model

, where , and Cov(εij, εij′) had an

Stephens et al. Page 10

Int J Biostat. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



AR-1 structure with correlation parameter α = 0.1,0.3, or 0.5 for different sets of

simulations. Covariates Xi1 and Xi2 were normally distributed with mean 0 and variance 

and , respectively. Variance parameters , , and  were varied so that baseline

covariates accounted for 10–60% of the variability in Y|A in increments of 10%. Subjects

were randomly assigned to treatment (Ai=1) with probability 1/2. For each subject

, where ni varied from 1 to 8, as might be the case in a

longitudinal study with staggered entry.

Standard GEE, simple augmented GEE, and locally efficient GEE for ℳ2 were applied to

each Monte Carlo dataset to estimate marginal treatment effects. All GEE were fit based on

the marginal mean model E(Yij|Ai) = β0 + β1Ai + β2tij with inferences on the treatment effect

completed through β1. Standard and simple augmented GEE were applied to each Monte

Carlo dataset with AR-1, exchangeable, and true working covariance structures, with the

true structure under the marginal model being a summation of AR-1 and exchangeable

matrices as described in section 2. Locally efficient GEE for ℳ2 were fit under the true

covariance structure and a misspecified marginal AR-1 working covariance. Baseline

covariates were incorporated fitting several outcome regression models. We use ‘C’ to

denote the correct model , which

corresponds to the true data generating mechanism; ‘M1’ indicates the model E(Yij|Xi,Ai,tij)

= ξ0 + ξ1Ai + ξ2tij + ξ3Xi1 + ξ4Xi2, omitting the exponent on Xi1; and ‘M2’ is the model that

includes a noisy covariate Xi3, such that

.

Efficiency comparisons are summarized in Figure 2 and Table 2. Additional figures may be

found in the supplementary material. For well-specified variance components and

conditional mean models, the locally efficient GEE for ℳ2 was more efficient than the

simple augmented GEE, with the difference in efficiency increasing with the percent

variability explained by Xi (MCRE of locally efficient to simple augmented GEE 1.0–1.27).

Similarly, all augmented estimators were more efficient than standard GEE, with efficiency

gains from augmenting increasing with correlation in Y and X (MCRE of Augmented GEE

to Standard GEE 1.36–5.28). For poorly specified conditional mean models, locally efficient

GEE for ℳ2 and simple augmented GEE were nearly equally efficient (MCRE of locally

efficient to simple augmented GEE 0.97–1.0), but when the marginal variance was also

misspecified locally efficient GEE were less efficient than simple augmented GEE (MCRE

0.88–0.99). This demonstrates that the locally efficient GEE for ℳ2 is a bit more sensitive

to working marginal covariance misspecification than simple augmented GEE. Among the

simple augmented estimators, the estimator with the incorrect marginal AR-1 working

covariance resulted in the β1 estimate with the lowest variability. This illustrates an

important distinction between locally efficient and suboptimal estimating functions.

Considering estimators using a suboptimal index, misspecified models for parameters in the

index may result in more efficient inferences than correctly specified models. For the locally

efficient estimator, semiparametric asymptotic efficiency is achieved only in the absence of

model misspecification of all parameters in hopt(·).
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3.2 Clustered Binary Data

As for continuous outcomes, data for m=500 clusters of variable size were generated with

ni=2,4,6,8,10,12 for small cluster settings and ni=10,20,30,40,50 for the large cluster

scenario. The binary treatment variable Ai was simulated from the Bernoulli(1/2)

distribution. Individual-level covariates Xij1, Xij2, and Xij3 were each generated from a

multivariate normal distribution with

, inducing marginal

correlation among individuals within the same cluster. Covariance parameters  were

varied to evaluate the impact of covariance in auxiliary covariates on the performance of

augmented estimators, with  and , for

different sets of simulations. For low levels of , covariates were weakly correlated, while

for , covariates were cluster-level. Binary outcomes were simulated from the

model logit[E(Yij|Xij,Ai,bi)] = 0.7Xij1
2+0.4Xij2−0.5Ai+bi, where bi was drawn from the

bridge distribution for the logit link (Wang and Louis (2003)) with scale parameter θ.

Simulations were completed with two values of the bridge distribution scale parameter, θ =

1 and θ = 0.8, representing settings in which all sources of between-cluster heterogeneity are

measured through auxiliary covariates, or when unmeasured sources of between-cluster

heterogeneity are present. A total of 16 sets of simulations were done, varying cluster size,

correlation in X, and θ.

Standard, simple augmented, and locally efficient GEE for ℳ2 were applied to each dataset

and compared for efficiency. For each estimator, the restricted mean model of interest was

model (2) with g(·) the inverse logit link and β1 measuring the marginal effect of treatment.

Among augmented estimators, four outcome regression models were considered: 1) ‘C’-

Correct, ; 2) ‘M1’-Model 1, E(Yij|Xij,Ai) =

g(ξ0+ξ1Xij1+ξ2Xij2+ξ3Ai); 3) ‘M2’-Model 2,

; and 4) ‘M1 OLS’-Model 1 OLS,

E(Yij|Xij,Ai) = ξ0+ξ1Xij1+ξ2Xij2+ξ3Xij3+ξ4Ai. With the exception of model 4, which was fit

through ordinary least squares (OLS), all outcome regression models were fit by logistic

regression. All estimators were fit with exchangeable working covariances.

Large cluster results are shown in figures 3a–3b and Table 3, while small cluster results are

included in the supplementary material. Conclusions are similar to those obtained for

continuous outcomes. Efficiency improvement with augmented estimators relative to

standard GEE increased with correlation in auxiliary covariates (MCRE 1.10–10.54), as did

the additional efficiency gains for the locally efficient GEE for ℳ2 over simple augmented

GEE (MCRE 1.0–1.23). Simple and locally efficient augmented estimators were equally

efficient for θ = 0.8 or when conditional mean models left out important transformations, but

differences in efficiency favoring the optimal estimator were observed for θ = 1 and well-

specified covariate-adjusted models.
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3.3 Simulation Study Summary

Results from the various simulation settings provide insight into the performance of the

locally efficient GEE for model ℳ2 and its practical value. The locally efficient estimator

theoretically achieves minimum asymptotic variance when all components of hopt(·) and the

augmentation are correctly specified. The results show that achieving the efficiency bound is

not robust to model misspecification of working covariances and conditional means; the

locally efficient GEE for ℳ2 was only more efficient than simple augmented GEE when all

mean models included important covariates in the correct polynomial form, and the correct

structure was specified for working covariances. Even under well-specified models, the

locally efficient GEE only improved over the simple augmented GEE when the data-

generating mechanism was such that the underlying conditional variance, V(Y|X,A) had a

sparse structure, such as AR1 or independence. The difficulty of correctly specifying models

for nuisance parameters, particularly covariances, as well as measuring all sources of

correlation so that V(Y|X,A) is sparse present challenges for successfully implementing

locally efficient estimators in real-world analysis. This challenge is further illustrated in the

following section with application to AIDS Clinical Trial Group Study 398.

4 Application

The semiparametric locally efficient estimator of marginal treatment effects for correlated

outcomes was applied to data from AIDS Clinical Trial Group Study 398 (ACTG 398)

(Hammer, Vaida, Bennett, Holohan, Sheiner, Eron, Wheat, Mitsuyasu, Gulick, Valentine,

Aberg, Rogers, Karol, Saah, Lewis, Bessen, Brosgart, De Gruttola, and Mellors (2002)).

ACTG 398 was a multicenter, double-blind trial, in which 481 HIV-infected patients were

randomized to one of four arms, A) saquinavir, B) indinavir, C) nelfinavir, or D) placebo

based on their past protease inhibitor (PI) treatment. Patients were only randomized to drugs

to which they had no prior exposure. Randomized treatments were added to a common

antiviral regimen for all subjects. Subjects’ CD4 counts were measured at weeks 0

(baseline), 4, 8, and every 8 weeks thereafter until 48 weeks or dropout. Here, we apply the

GEE estimators to compare the nelfinavir and placebo arms among patients who were

eligible for both according to the stratified randomization scheme. Additional baseline

covariates were age, sex, past PI use, past non-nucleoside reverse transcriptase inhibitor

(NNRTI) exposure, weight, Karnofsky score, intravenous drug use, and race/ethnicity.

Weeks 4–32 of followup were included for analysis, with CD4 measurements at week 4 and

beyond included as outcomes and week 0 CD4 included as a baseline covariate. Data were

approximately 90% complete through week 32. In evaluating the effect of treatment on

CD4, the marginal model was E(Yij|Ai) = β0+β1Ai+β2tij, where tij indicates the week of the

jth measurement on the ith individual, and Ai was an indicator for the placebo arm. This

model was chosen by minimizing the prediction error from 10-fold cross validation of

several candidate parametric models that included categorical time, quadratic time, or an

interaction of time and treatment. Since only follow-up measurements were modeled as

outcomes and no interaction was detected between treatment and time, the effect of

treatment was captured by β1.
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Standard, simple augmented, and locally efficient GEE for ℳ2 were applied to estimate β1.

Several candidate outcome regression models for augmented GEE were identified through

model selection procedures. Cross validation was used to select the final model,

, where CD40 is baseline CD4. The QIC

goodness-of-fit statistic (Pan (2001)) was compared among GEE fit to unaugmented

marginal and conditional models to guide the choice of working covariance structures. To

enforce compatibility of the marginal variance, conditional variance, and outcome

regression in fitting locally efficient augmented GEE, the additive estimate of the marginal

covariance was used. The working conditional variance was chosen by selecting the

covariance structure resulting in the lowest QIC when fitting GEE on the conditional mean

model. Simple augmented GEE were computed under all possible working marginal

covariance structures, including the additive estimator motivated by the locally efficient

GEE.

Results are shown in Table 4. Regarding covariance selection, unstructured working

covariance resulted in the lowest QIC for the conditional model (supplementary material),

suggesting the semiparametric locally efficient estimator should be fit assuming an

unstructured form of V(Yi|Xi,Ai). Several other covariance structures were also implemented

for the locally efficient estimator to explore variance misspecification. Among simple

augmented estimators, the additive marginal covariance obtained by summing the

unstructured V(Y|X,A,t) and V(E[Y|X,A,t]|A,t) induced by the chosen conditional mean

model resulted in lower variability than estimators using standard marginal covariance

structures. Estimated treatment effects exhibited variability across estimators but fell within

a range of one standard deviation within the class of estimator considered (standard, simple

augmented, or semiparametric locally efficient). Comparing standard GEE with different

working covariance models, the estimated difference in average CD4 for the placebo arm

versus nelfinavir ranged from 9.9 to 20.17. The direction of the effect was reversed for

estimators that incorporated baseline co-variates, with average CD4 on the placebo arm 0.07

to 8.11 units lower than the nelfinavir arm. Treatment did not have a significant impact on

CD4 at the 0.05 level for any of the estimators considered.

Estimators that incorporated baseline covariates greatly increased efficiency, with

 for standard GEE and  among augmented estimators (Relative

efficiency augmented to standard GEE ≈ 5.0). Simple augmented and locally efficient GEE

for ℳ2 resulted in similar efficiency-a result that may be explained by several factors: 1)

Subjects had the same number of follow-up visits. For GEE, the index impacts efficiency

most when the number of observations per unit is variable, 2) The unstructured conditional

variance is not sparse, and 3) The components of hopt may be misspecified. As a benchmark

for efficiency, we also fit unaugmented GEE assuming the conditional mean model

 with an unstructured working

covariance. This estimator represents the most efficient estimator of β1 that may be obtained

using Xi, which requires assuming that the more restrictive conditional mean model is

correct. From this estimator, we can determine that for this particular case, there is little

additional efficiency to be gained by locally efficient GEE if simple augmented GEE are fit

under the best working covariance (Table 4).
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5 Discussion

We derived and implemented a closed-form expression of the efficient score and a

semiparametric locally efficient estimator in model ℳ2 for correlated outcomes. This

estimator requires correct specification of the marginal mean model, but is consistent and

asymptotically normal under misspecification of the variance or conditional mean working

models. To avoid misspecification of the marginal mean model, we recommend several

modeling approaches. In cluster randomized studies misspecification of the marginal mean

model may be avoided by including a unique parameter for each treatment level. Under

exchangeable correlation structures, which are typically assumed, the marginal mean model

is then correct. In longitudinal studies with a small number of visits, fixed effects for each

visit time and an interaction of time and treatment may be used to avoid misspecification.

When continuous time measurement prevents such a strategy, nonparametric methods may

be used to suggest appropriate functional forms. Through simulation, we demonstrated that

the semiparametric locally efficient estimator is more efficient than corresponding

suboptimal estimators in certain settings, particularly when randomized units vary in size,

baseline covariates account for a large portion of the within-unit correlation, and baseline

covariates are at least moderately predictive of the outcome. In longitudinal studies, variable

size may occur when studies have staggered entry or as subjects are lost to follow-up. The

estimator derived is only semiparametric locally efficient in the first case, as the locally

efficient estimator for incomplete data incorporates information on the missingness process.

There are several challenges to achieving semiparametric local efficiency, some of which

stem from the parametric nature of the model of the marginal treatment effect parameter.

Assuming the mean model is correct, accounting for correlation through measured

covariates and correctly specifying the form of correlation can be difficult in practice. This

challenge may be addressed through the use of scientific knowledge and covariance

structure diagnostic tools, but is still likely to make local efficiency unachievable in most

practical settings, rendering the simple augmented GEE the more useful option. When the

marginal mean model is not correct, the semiparametric locally efficient estimator does not

yield a consistent treatment parameter, regardless of the index used. The need for correct

specification is yet another challenge to the presented estimator, but this challenge is

common across all GEE estimators. Although theoretically possible, the prize of

implementing semiparametric local efficiency for restricted mean models of marginal

treatment effects with baseline covariates in the context of correlated outcomes is typically

not worth the chase. The correlated outcome setting gives rise to the possibility of multiple

estimators; the semiparametric locally efficient estimator does not offer much practical gain

compared to the augmented estimator using the index function from standard GEE after

taking into account the possibility of model misspecification of nuisance parameters.

There are several alternatives to the semiparametric locally efficient and suboptimal

augmented estimators we consider. A nonparametric approach to modeling marginal

treatment effects in longitudinal designs was shown in Neugebauer and van der Laan (2007).

Compared to our semiparametric locally efficient estimator the non-parametric strategy has

the advantage of providing an interpretable causal parameter when the marginal mean model

is possibly misspecified, but it does not utilize information on the correlation in outcomes
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and therefore would not be locally efficient in the setting of a time-fixed treatment with a

correctly specified marginal model for the mean. Another semiparametric approach

considers estimation of the conditional mean model followed by marginalization (the G-

formula), but this relies on correct specification of the conditional mean model, whereas

augmented estimators do not. Despite the shortcomings of the optimal augmented estimator,

large efficiency gains were shown for longitudinal analysis when the baseline level of the

outcome was incorporated in estimation as an auxiliary covariate. Baseline levels of

outcomes can be highly predictive of followup levels, suggesting that in the analysis of data

from longitudinal studies, failing to incorporate baseline covariates can be highly inefficient.

These results suggest the value of incorporating baseline covariates in both interim and final

analyses of data from randomized clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
MCRE of Locally Efficient and Simple Augmented GEE Relative to Standard

(Unaugmented) GEE. Continuous clustered outcomes. Estimators corresponding to each

curve are denoted by ‘Estimator-Outcome Regression’ using the abbreviations: Loc Eff-

Locally Efficient, Simp-Simple Augmented, Std-Standard; C-Correct, M1-Model 1, M2-

Model 2. All estimators use exchangable working covariance for V(Y|A) and V{E(Y|X,A)}.

The order of curves in the legend follows the order curves on the figure, with sets of

superimposed curves denoted by ‘()’, ‘[]’, or ‘{}’.
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Figure 2.
MCRE of Locally Efficient and Simple Augmented GEE Relative to Standard

(Unaugmented) GEE. Continuous longitudinal outcomes. Estimators corresponding to each

curve are denoted by ‘Estimator (Marginal Working Covariance) Outcome Regression’

using the abbreviations: Loc Eff-Locally Efficient, Simp-Simple Augmented, Std-Standard;

AR1-Autoregressive(1) V(Y|A), True-Exchangeable/AR1 for V{E(Y|X,A)} and V(Y|X,A),

respectively; C-Correct, M1-Model 1;α=0.3. The order of curves in the legend follows the

order of curves on the figure, with the set of superimposed curves denoted by ‘[]’.
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Figure 3.
MCRE of Locally Efficient and Simple Augmented GEE Relative to Standard

(Unaugmented) GEE. Binary clustered outcomes. Estimators corresponding to each curve

are denoted by ‘Estimator-Outcome Regression’ using the abbreviations: Loc Eff-Locally

Efficient, Simp-Simple Augmented, Std-Standard; C-Correct, M1-Model 1, M1 OLS-Model

1 OLS. All estimators use exchangable working covariance for V(Y|A) and V{E(Y|X,A)}. The
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order of curves in the legend follows the order of curves on the figure, with sets of

superimposed curves denoted by ‘()’and ‘[]’.
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Table 1
Monte Carlo Relative Efficiency of Locally Efficient Augmented GEE to Suboptimal
Augmented GEE

Continuous clustered outcomes. Working Marginal Covariance (WMCov): Exchangeable (Exch). Outcome

Regression (OR): Correct (C), Model 1(M1), Model 2 (M2). First entry , second entry . All

estimators use exchangable working covariance for V(Y|A) and V{(Y|X,A)}.

Cluster Size = 2,4,6,8,10,12

Correlation among Xij

WMCov/OR 0.25 0.50 0.75 1.00

Exch/C 1.0115 1.0450 1.0907 1.1464

1.0036 0.9991 1.0010 1.0085

Exch/M1 1.0062 1.0089 1.0064 1.0038

1.0006 1.0008 1.0018 1.0019

Exch/M2 1.0114 1.0448 1.0905 1.1462

1.0036 0.9990 1.0009 1.0083

Cluster Size =10,20,30,40,50

Correlation among Xij

Cov/OR 0.25 0.50 0.75 1.00

Exch C 1.0356 1.1096 1.1563 1.2259

1.0005 0.9999 1.0002 1.0011

Exch M1 1.0126 1.0081 1.0050 1.0032

1.0000 1.0000 1.0001 1.0003

Exch M2 1.0352 1.1090 1.1556 1.2247

1.0006 0.9998 1.0001 1.0009
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Table 3
Monte Carlo Relative Efficiency of Locally Efficient Augmented GEE to Suboptimal
Augmented GEE

Binary clustered outcomes. Working Marginal Covariance (WMCov): Exch-Exchangeable. Outcome

Regression (OR): Correct (C), Model 1 (M1), Model 2 (M2), Model 1 OLS (M1 OLS). First entry θ = 1,

second entry θ = 0.8. All estimators use exchangable working covariance for V(Y|A) and V{E(Y|X,A)}.

Correlation between Y and X

WMCov/OR 0.25 0.50 0.75 1.00

Exch/C 1.0624 1.1068 1.2113 1.2329

0.9996 1.0009 1.0025 1.0057

Exch/M1 1.0247 1.0179 1.0025 1.0015

1.0001 1.0003 1.0002 1.0001

Exch/M2 1.0630 1.1072 1.2080 1.2353

0.9995 1.0009 1.0024 1.0056

Exch/M1 OLS 1.0238 1.0171 1.0016 1.0008

1.0001 1.0003 1.0001 1.0000
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Table 4
Application of Standard, Simple Augmented, and Locally Efficient Augmented GEE to
AIDS Clinical Trial Group Study 398

Estimator (Working Marginal Covariance). Estimator: Unaugmented GEE (Standard), Simple Augmented

GEE (Simple Aug. GEE), Locally Efficient Augmented GEE (Loc. Eff.). Working Marginal Covariance:

Independence (Ind), Exchangeable (Exch), Autoregressive(1) (AR1), Unstructured (Un), Exchangeable for

V(E(Y|X,A)|A) and Unstructured for V(Y|X,A)(Exch/Un), Exchangeable for V(E(Y|X,A)|A) and AR1 for V(Y|

X,A)(Exch/AR1). Sandwich Standard Error (SE). Relative Efficiency (RE)

Estimator SE RE

Standard (Ind) 9.971 20.772 0.942

Standard (Exch) 14.182 20.593 0.958

Standard (AR1) 16.977 20.222 0.993

Standard (Un) 20.173 20.156 1.000

Standard (Exch/Un) 14.615 20.347 0.981

Simple Aug. (Ind) −8.110 9.203 4.797

Simple Aug. (Exch) −6.385 8.904 5.124

Simple Aug. (AR1) −3.059 9.244 4.754

Simple Aug. (Un) −0.079 9.411 4.587

Simple Aug. (Exch/Un) −5.972 8.571 5.530

Simple Aug. (Exch/AR1) −5.048 8.920 5.106

Loc. Eff. (Ind) −8.110 9.203 4.797

Loc. Eff. (Exch) −6.821 8.953 5.068

Loc. Eff. (Exch/AR1) −5.715 9.073 4.936

Loc. Eff. (Exch/Un) −6.277 8.601 5.492

Adjusted (Un) −6.649 8.621 5.467
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