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Abstract

Improving the signal-to-noise-ratio (SNR) of magnetic resonance imaging (MRI) using denoising

techniques could enhance their value, provided that signal statistics and image resolution are not

compromised. Here, a new denoising method based on spectral subtraction of the measured noise

power from each signal acquisition is presented. Spectral subtraction denoising (SSD) assumes no

prior knowledge of the acquired signal and does not increase acquisition time. Whereas

conventional denoising/filtering methods are compromised in parallel imaging by spatially

dependent noise statistics, SSD is performed on signals acquired from each coil separately, prior

to reconstruction. Using numerical simulations, we show that SSD can improve SNR by up to

~45% in MRI reconstructed from both single and array coils, without compromising image

resolution. Application of SSD to phantom, human heart, and brain MRI achieved SNR

improvements of ~40% compared to conventional reconstruction. Comparison of SSD with

anisotropic diffusion filtering showed comparable SNR enhancement at low-SNR levels (SNR =

5–15) but improved accuracy and retention of structural detail at a reduced computational load.

Index Terms

Magnetic resonance imaging (MRI) denoising; parallel imaging; spectral subtraction; SENSE

I. Introduction

Improving signal-to-noise ratio (SNR) in magnetic resonance imaging (MRI) without

sacrificing spatial resolution, contrast, or scan-time could improve diagnostic value. While

time averaging increases SNR, with SNR ∝ √(scan-time), extending the scan-time is

expensive, prone to motion artifacts, and unacceptable in many clinical MRI applications.
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Indeed, parallel imaging techniques, such as sensitivity encoding (SENSE) [1] and

generalized autocalibrating partially parallel acquisitions (GRAPPA) [2], are commonly

used to shorten scan-times. Images reconstructed with these techniques exhibit spatially

varying noise statistics, which limit the applicability of conventional denoising techniques.

Several denoising methods have been proposed to enhance the SNR of images acquired

using parallel MRI techniques. One method, anisotropic diffusion filtering (ADF) [3],

effectively improves SNR while preserving edges by averaging the pixels in the direction

orthogonal to the local image signal gradient. ADF can potentially remove small features

and alter the image statistics, although adaptively accounting for MRI’s spatially varying

noise characteristics can offer improvements, this is practically challenged by the

unavailability of the image noise matrix [4]. Wavelet-based filters have also been applied to

MRI [5]–[8]. These are prone to produce edge and blurring artifacts.

Recently, denoising methods employing nonlocal means (NLM) [9] were applied to increase

the MRI SNR by reducing variations among pixels in the image with close similarity indices

[10]. The robustness of the determination of pixel similarity is enhanced by comparing small

image regions centered at each pixel, rather than pixel-by-pixel comparisons. While adaptive

NLM denoising (involving the estimation and incorporation of spatial variations in the noise

power) offers improved performance [11], NLM can still affect image statistics [12] and its

computational burden is high compared to other approaches.

In this study, we introduce a new, time efficient, image de-noising method by applying

spectral subtraction directly to MRI acquisitions in k-space. Spectral subtraction is well

established for the suppression of additive Gaussian noise (AGN) [13] and is commonly

used in speech processing [14]. It has been applied to the time-course of functional MRI

(fMRI) data to facilitate event detection [15], but not the SNR enhancement of routine MRIs

per se. We test spectral subtraction denoising (SSD) on both numerical simulations, as well

as experimental MRI data including parallel SENSE image reconstruction [1], and compare

its performance with ADF.

A preliminary version of this work was submitted to the 6th Cairo International Biomedical

Engineering Conference, 2012 [16].

II. Theory

For Cartesian MRI, the acquired complex signal fills k-space matrix. Each k-space row can

be modeled as an underlying true signal plus Gaussian noise:

(1)

where x(t) is the observed k-space signal, s(t) is the true underlying noiseless k-space signal,

n(t) is the AGN, and subscripts r and i denote real and imaginary components, respectively.

For convenience, equations for denoising the real part of any k-space line should be

interpreted hereinafter as applying also to the imaginary part. Assuming that signal and

noise are uncorrelated (which is the case in MRI), the power spectral density (PSD) obtained

from a 1-D Fourier transform (FT) of a k-space line is given by
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(2)

where |Sr (f)|2 is the PSD of the noiseless signal and |Nr (f)|2 is the PSD of the noise; f is the

conjugate variable of t. Because the PSD of the AGN is constant, we can subtract the root-

mean-square noise power, , from the PSD of the acquired signal to get an estimate of

|Sr (f)|2. This reduces the noise bias on the acquired signal, which becomes

(3)

where W (f) is a predefined weighting function of f with real values in the interval [0, 1], and

Yr (f) is the f-spectrum of the denoised signal and estimator of Sr (f). Because the PSD

cannot be negative, subtractions that result in negative values are replaced by the original

PSD at the corresponding f-frequency, according to

(4)

where a is a real, single-valued regulation parameter in the interval [0, 1] [13]. The denoised

signal, Yr (f), is computed from the square root of its PSD, with the phase information

retrieved from the f-spectrum, Xr (f), of the acquired signal:

(5)

Phase information is kept the same as in the original f-spectrum. Taking the inverse FT of Yr

(f) yields the real part of the denoised k-space line.

After applying the same algorithm to the real and imaginary parts of all the k-space lines, a

denoised k-space set, yr (t) + i · yi (t), is produced, from which a conventional 2-D FT image

reconstruction yields the denoised MRI. To reduce directional filtering effects, the same

algorithm is applied on the columns of the k-space and the average of both denoised images

is taken.

III. Methods

A. SSD and ADF Application

The algorithm for performing SSD of MRI uses MATLAB (Mathworks, Inc., Natick, MA)

software on a laptop computer with 2-GHz processor and 8 GB of memory. The algorithm is

separately applied to each k-space row and column, as depicted in Fig. 1, and the two

denoised k-space results averaged. The regulation parameter a was set to 0.2 and the

windowing function W (f) set to 1 for all frequencies to avoid introducing any extra spatial

filtering effects.

ADF is chosen for comparison as it was previously used for denoising MRI, and shown to

overcome the problems of blurring of object boundaries while providing a time-efficient
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implementation [3], [17]. The MATLAB script, “anisodiff2D” (available from MATLAB

Central File Exchange [18]) is applied on magnitude images scaled to a range of [0, 1] (input

parameters: 15 iterations; integration constant = 1/7; gradient modulus = 0.02).

B. Computer Simulations

Numerical simulations are performed using a 1024 × 1024 pixel Shepp–Logan phantom and

a reference 256 × 256 pixel high-SNR brain MRI which was considered noise-free [19].

Gaussian noise of the same amplitude is added to the real and imaginary parts of the 2-D FT

(k-space) of the images. SSD is applied to the complex k-space data, while the ADF is

applied to the magnitude image.

Numerical simulations for SENSE [1] images are based on the 256 × 256 high-SNR brain

image. Eight complex coil sensitivity maps corresponding to the sensitivity profiles of an

eight-channel head coil are simulated [20], and the individual coil data are generated by

multiplying the simulated sensitivity pro-files with the original image. Gaussian noise is

then added to the real and imaginary parts of the 2-D FT of each of the eight images.

Simulated noisy k-space data generated by 2-D FFT of the individual coil images are

subsampled with a reduction factor, R. The SSD method is separately applied to the complex

k-space data from the eight coils. Subsampled and unprocessed k-space data and spectral

subtraction method applied k-space data are then fed into a SENSE reconstruction

employing the simulated coil profiles. For comparison, the ADF is applied to the SENSE

magnitude image generated from unprocessed k-space data. The brain image, simulated

sensitivity profiles, and SENSE reconstruction code is publicly available and was

downloaded from [19].

The average noise power  used for denoising the simulated images is determined by

scaling the variance of the added noise, with the dimension, X, of the 1-D FT (to account for

the FT scaling):

(6)

where  is the average noise power added to k-space to corrupt the image.

Computer simulations are iterated 100 times for each input SNR level and reduction factor.

Pixel-wise SNR values are extracted from the signal mean and standard deviation (SD)

using

(7)

where Ii (x, y) is the magnitude of the pixel at location (x, y) in the image at the ith iteration.

The root-mean-squared error (RMSE) and structural similarity indices (SSIMs) [21] of noisy

and denoised images are quantified by comparing them to the original noiseless image. The

SSIM is computed using
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(8)

where x and y are the images that are compared, μ is the mean of the pixel intensities, σxy is

the cross correlation between the two images, and σx is the standard deviation of pixel

intensities in image x.

The reported SNR and RMSE for images reconstructed in computer simulations are pixel-

wise averages over each entire image, excluding the background.

C. MRI Experiments

Imaging experiments are performed on a mineral oil phantom, and on healthy volunteers in

studies approved by our Institutional Review Board. Experiments are conducted on a 3 T

Philips Achieva scanner (Philips Medical Systems, Cleveland, OH), and the raw data are

exported for processing. Spin-lattice relaxation time (T1)-weighted multislice (24 slices) fast

field echo (FFE) sequences with a flip angle of 80° are used for both phantom and brain

studies. Single coil phantom images are acquired with the Philips body coil. The FFE

sequence is used in phantom experiments with a repetition period TR = 30 ms, and echo

time TE = 4.6 ms.

Parallel MRI data from the brain are acquired using a Philips eight-channel 3 T head coil

with TR/TE = 385/9.2 ms and a 576 × 575 matrix size (with no reduction factor). A six-

channel Philips cardiac coil is used for cardiac cine MRI, which is performed with two

SNRs realized by varying the bandwidth per pixel from 1.63 to 0.86 kHz. The change in

bandwidth affects the sequence timing slightly: we use single breath-hold, ECG-triggered 2-

D turbo field echo sequences (turbo factor, 8; TR/TE = 2.7/1.35, 3.2/1.53 ms; cardiac

phases: 30, 25; matrix size: 256 × 256) for cardiac studies.

The average noise power in the MRI experiments is accurately determined from data

acquired during the preparation phase of the scanner with both RF power and gradients

turned off. The receiver bandwidth and gain are identical for each set of experiments.

Samples for each coil element are stored (as “.raw” files) and exported from the scanner.

This does not affect exam time because the information is already acquired by the scanner,

but the noise could also be estimated from the image data by other statistical and/or spectral

analyses [22], [23]. We observed that the noise power of the highest noise-contributing coil

element was 90% higher than the coil element with the lowest noise contribution. The MRI

signal from each coil element is denoised separately using their corresponding additive noise

level estimates determined from the “.raw” data.  is calculated using (6), where  is

the variance of the acquired noise samples.

The sensitivity profile for the SENSE reconstruction is separately estimated for each coil by

polynomial fitting of the complete acquired dataset [24]. The effect of denoising on parallel

imaging was tested with SENSE reconstruction reduction factors of R = 1.5–3. The SNR

reported for brain images was taken as the average of pixel-wise SNR values computed

using given by [6], including all the image pixels and CSF, except the background.
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IV. Results

A. Single-Channel Denoising

Simulation results of the Shepp–Logan phantom with different SNR values are shown in

Fig. 2(a) and (b). The magnitude images reconstructed from the original and the denoised k-

space data are shown in columns I and II, respectively. Column III shows the absolute

difference between the images of columns I and II (residual), while column IV plots the

noiseless, noisy, and SSD signal across a horizontal line through the phantom. SSD provides

an SNR improvement versus the noisy image of 50% without any significant artifacts

apparent.

Experimental MRI results from a phantom imaged with the body coil and using the

background to calculate noise power are shown in Fig. 2(c) and (d). Column I shows the

original images, column II shows the processed images, and column III shows the residuals.

Here, SSD results in a mean pixel SNR improvement of 45%.

A high-SNR brain image polluted with AGN, and then filtered with ADF or SSD, is

displayed in Fig. 3, row I. The differences between the processed and the original image [see

Fig. 3(a.I)] are shown in row II. Both denoising methods effectively increase SNR by about

40% without removing high spatial-frequency information, as evidenced by the residual

images.

The results from filtering and denoising as a function of noise level are plotted in Fig. 4. As

suggested by the higher SNR for ADF in Fig. 4(a) , ADF can provide a greater SNR gain at

high SNR. However, the ADF and SSD gains are comparable at low SNR [see Fig. 4(a)],

and SSD has a much more homogeneous SNR improvement in the presence of varying

signal SNR than ADF [see Fig. 4(a)]. This means that it is much better at preserving the

original contrast between signals that vary in intensity, spatially, especially at higher SNR

values. The SNR gain for SSD approaches unity as the SNR of the acquisition improves and

the noise has a diminishing affect on the signal. This is not the case for ADF. The accuracy

or RMSE of the two approaches, as compared to the original image, is plotted in Fig. 4(b).

Both methods show a comparable improvement in accuracy at low SNR compared to the

noise image. However, at higher SNR (>25), the accuracy of ADF is inferior to not using

any filter, while the performance of the SSD method tracks the accuracy of the input image.

Fig. 4(c) shows the SSIM [21]. This illustrates that the SSD method is superior to ADF in

preserving the structural information of the image.

B. SENSE Reconstruction Denoising

Fig. 5 depicts a reconstructed eight-channel SENSE image with a reduction factor (R) of 1.5

and an unfiltered mean image SNR of 16.3, zoomed-in to reveal fine detail without filtering

[see Fig. 5(a)], with ADF [see Fig. 5(b)], and with SSD [see Fig. 5(c)] applied. Fig. 5(d)

shows the pixel-wise SNR improvement map provided by the ADF method. For ADF, the

spatial performance is inhomogeneous, with a salt-and-pepper-type noise pattern that is also

evident in Fig. 5(b). Conversely, because the SSD method operates in the frequency domain

of the acquired data, its pixel-wise SNR improvement map in Fig. 5(e) is uniform

throughout the signal-bearing regions of the image, demonstrating that the acquisition
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statistics are preserved. This is further evidenced by histograms of the pixel intensities of the

two SNR improvement maps [from Fig. 5(d) and (e)] in Fig. 5(f), which are sharply

clustered for SSD, but not ADF. RMSE, SSIM, and SNR improvement are plotted as a

function of reduction factor and input SNR in Fig. 6 for both filtering methods. The SSD

method’s performance is comparable to ADF up to a reduction factor of ~2, and better than

ADF at higher reduction factors. The SNR improvement for SSD is inversely related to the

input SNR.

SENSE reconstructed, ADF, and SSD-processed images from acquired parallel imaging data

with reduction factor of 2 are shown in row I of Fig. 7, with their corresponding zoomed-in

views in row II. The ADF performance is spatially heterogeneous, with best results in high-

SNR regions and pixilation effects in the middle of the image with low SNR. On the other

hand, the SSD method is unaffected by local noise variations and acts homogeneously on the

image. Fig. 7(c.II) shows better delineation of the superior sagittal sinus compared to the

original and ADF applied images.

SENSE cardiac images reconstructed with R = 1.5 and two different acquisition bandwidths

are shown in Fig. 8(a) and (c). Five cardiac phases are depicted, four of which are zoomed

in. To assess the SNR improvement realized by SSD in the septum, the mean signal intensity

is divided by the noise level in the square volumes marked in Fig. 8. The apparent SNR in

the septum is 3.06 ± 0.4 and 8.25 ± 1.0 for the unfiltered images acquired with 1.63 and 0.86

kHz bandwidth per pixel, respectively [see Fig. 8(a) and (c)]. SSD provides average SNR

improvements of 40 ± 3 and 42 ± 3% calculated and averaged over the 30 and 25 cardiac

phases of each scan, respectively [see Fig. 8(b) and (d)], consistent with the numerical

results. No significant blurring effects are noticed in comparing the filtered and unfiltered

cardiac cine images acquired at the two different SNR levels (see Fig. 8).

SSD using MATLAB took 0.4 s for a 512 × 512 image, compared to 1.3 s for ADF on the 2-

GHz computer.

V. Discussion

Spectral subtraction methods are commonly used in automated speech recognition [14] to

improve the estimation efficiency, and in many other applications including the temporal

denoising of fMRI data streams for event detection [15]. However, at least to our

knowledge, they have not been used in standard MRI for the spatial denoising of individual

images. SSD methods work on data corrupted by AGN that is uncorrelated with the

underlying data and has a constant power spectrum. Noise in the complex data acquired

from each coil element in an NMR experiment generally satisfies these assumptions, but is

not immune from non-Gaussian events such as physiologic motion or noise spikes, for

example. The computational load for denoising an N × N image using SSD is of the order

O(N2 log(N)) [13], much less than that of denoising by NLM, O(N4) [25].

The SSD method can be likened to a Wiener filter. An optimum Wiener filter modifies each

component in the power spectrum of the input according to the noise power at the

corresponding frequency, which may not be constant throughout the spectrum. However, the

SSD method denoises the data using the mean of the power spectrum to provide an unbiased
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estimate of the signal and a variance depending on the signal and noise characteristics [13],

[15]. SSD does not account for the variations in the phase caused by the additive noise. The

phase of the complex Gaussian noise is uniformly distributed in the interval [−π, π] which

cannot be estimated statistically in either the image or its transformed domains. However,

the power spectrum of finite samples of complex Gaussian noise is scattered at a constant

level, enabling its estimation and subtraction from the power spectrum of the complex

received signal.

The response of the SSD filter depends on the input signal. It is an SNR-dependent filter

wherein lower SNR components are attenuated more than higher SNR components, which

may introduce subtle image blurring for low-level signals. Any de-noising method applied to

parallel MRI data is challenged by the spatially varying noise statistics that result from the

coils’ sensitivity profiles and reconstruction algorithm. The SSD method is immune to such

effects when the data acquired from each coil element are separately denoised using its

measured average noise power spectrum, which can vary significantly between elements.

The present results also suggest that SSD can be applied in situations where there is inherent

physiological noise and motion such as in the heart (see Fig. 8).

In conclusion, we have shown SNR improvements of up to 45% for MRI using SSD in both

single and array coils reconstruction while preserving image details in simulations and, in

practice, in phantoms and multichannel brain and cardiac MRI. The SSD method performs

comparably to ADF in terms of SNR improvement, and superior to ADF with respect to

accuracy and the retention of structural detail, at a reduced computational load.
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Fig. 1.
Flowchart of the spectral subtraction algorithm along the row direction of k-space.
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Fig. 2.
Simulated Shepp–Logan phantom (rows a and b) and MRI phantom magnitude images

(rows c and d) are shown. Original noisy images (column I), processed images (column II),

and the residuals (column III) are displayed. Pro-files of the image along the dotted lines in

(a.I), (a.II) and (b.I), (b.II) are plotted in (a.IV) and (b.IV), respectively. SNR improvement

of ~40% is observed. Noise level is calculated from the background and signal intensity is

calculated by averaging the pixels in a uniform region as indicated by the square box.
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Fig. 3.
(a.I) Original noiseless image, (b.I) noise added image with SNR = 11.8, (c.I) ADF, and (d.I)

SSD method applied images are shown on top row. Residual images with respect to (a.I) are

displayed on row II.
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Fig. 4.
(a) SNR improvement, (b) RMSE, and (c) SSIM are plotted against input image SNR for

computer simulation results, where dotted curves are anisotropic diffusion filter results

while dashed ones represent the spectral subtraction method.
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Fig. 5.
(a) SENSE reconstruction from noise added data with reduction factor of 1.5 and SNR of

each coil image equal to 12, (b) anisotropic diffusion filtered image, and (c) spectral

subtraction method applied image are zoomed in. (d) Pixel-wise SNR improvement rate of

anisotropic diffusion filter, and (e) spectral subtraction method are displayed along with

their histograms (f, gray: anisotropic diffusion filter, black: spectral subtraction method).

Background of the image is not used in SNR calculations. Despite the higher SNR

improvement of ADF, pixilation effects are visible in the image.
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Fig. 6.
(a) RMSE, (b) SSIM, and (c) SNR improvement rates on SENSE images with different

reduction factors and input SNRs (light gray: SSD, dark gray: ADF, black: original

reconstruction). It is noted that the SSD outperforms both the original SENSE reconstruction

and ADF in terms of the SSIM.
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Fig. 7.
(a.I) Brain MR image of a healthy volunteer reconstructed from an eight-channel coil using

SENSE reconstruction with a reduction factor of 2, (b.I) denoised image using ADF, and

(c.I) SSD. (row II) Superior sagittal sinus surrounded by white boxes in images in row I are

zoomed in to show the image quality improvement.
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Fig. 8.
Displayed in panels (a), (c) are SENSE (R = 1.5) reconstructed short-axis cardiac images

acquired at different cardiac phases, and the corresponding SSD images are shown in panels

(b), (d). SNR calculations from septum and background (white boxes) show an average

improvement of 40 ± 3% and 42 ± 3% (b and d, respectively).
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