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Four-way DNA intermediates, called Holliday junctions (HJs), can form during meiotic and
mitotic recombination, and their removal is crucial for chromosome segregation. A group of
ubiquitous and highly specialized structure-selective endonucleases catalyze the cleavage
of HJs into two disconnected DNA duplexes in a reaction called HJ resolution. These
enzymes, called HJ resolvases, have been identified in bacteria and their bacteriophages,
archaea, and eukaryotes. In this review, we discuss fundamental aspects of the HJ structure
and their interaction with junction-resolving enzymes. This is followed by a brief discussion
of the eubacterial RuvABC enzymes, which provide the paradigm for HJ resolvases in other
organisms. Finally, we review the biochemical and structural properties of some well-char-
acterized resolvases from archaea, bacteriophage, and eukaryotes.

Homologous recombination (HR) is an es-
sential process that promotes genetic di-

versity during meiosis (see Lam and Keeney
2014; Zickler and Kleckner 2014). However, in
somatic cells, HR plays a key role in conserv-
ing genetic information by facilitating DNA re-
pair, thereby ensuring faithful genome dupli-
cation and limiting the divergence of repetitive
DNA sequences (see Mehta and Haber 2014).
As shown in Figure 1, HR is initiated by a
DNA double-strand break, the ends of which
are resected to produce single-stranded (ss) 30-
overhangs (see Symington 2014). Homologous
strand invasion by one of the 30 overhangs (e.g.,
one catalyzed by Escherichia coli RecA or human
RAD51) leads to the formation of a displace-
ment loop (D-loop) (see Morrical 2014). The
invading 30 end of the D-loop can then be ex-
tended by a DNA polymerase, which uses the

homologous strand as a template for DNA syn-
thesis. Recombination then proceeds in one of
several different ways, some of which involve
second-end capture, such that the other resect-
ed 30 end anneals to the displaced strand of the
D-loop (Szostak et al. 1983). In the resulting
recombination intermediate, the two interact-
ing DNAs are linked by nicked Holliday junc-
tions (HJs). Additional DNA synthesis and nick
ligation lead to the formation of a double Holli-
day junction (dHJ) intermediate. In eukaryotes,
dHJs are removed primarily by “dissolution”
(Fig. 1, bottom left) (see Bizard and Hickson
2014). This pathway involves the combined ac-
tivities of a DNA helicase and a type IA topo-
isomerase, which catalyze branch migration and
decatenation of the dHJ into noncrossover
products (Manthei and Keck 2014). In somatic
cells, this is essential for the avoidance of sister-
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Figure 1. Pathways for the formation and processing of Holliday junctions. Resected DNA double-strand breaks
invade homologous duplex DNA to create a joint molecule, or displacement-loop structure. The invading 30 end
then serves as a primer for DNA synthesis, leading to second end capture and the formation of a double Holliday
junction. In eukaryotes, these structures are removed by “dissolution” (bottom left panel) or “resolution”
(bottom middle and right panels). Canonical Holliday junction resolvases introduce a pair of symmetrical
and coordinated nicks across one of the helical axes (bottom middle panel) to generate nicked DNA duplexes
that can be directly ligated. Alternatively, noncanonical resolvases cleave Holliday junctions with asymmetric
nicks to produce gapped and flapped DNA duplexes that require further processing prior to ligation (bottom
right panel). �Mitochondrial Holliday junction resolvase.
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chromatid exchanges (SCEs) and loss of hetero-
zygosity. Alternatively, dHJs can be processed by
“resolution” in reactions mediated by canonical
or noncanonical mechanisms of endonuclease-
mediated cleavage into either crossover or non-
crossover products (Fig. 1, bottom middle and
right).

THE STRUCTURE OF THE HOLLIDAY
JUNCTION

In 1964, Robin Holliday proposed a model to
explain three important events that occur dur-
ing meiosis in fungi: crossing-over, gene conver-
sion, and postmeiotic segregation (Holliday
1964). A central tenet of this model is that after
DNA replication, DNA breaks allow pairing
between complementary sequences in the two
homologous chromosomes, leading to the for-
mation of a cross-stranded structure that phys-
ically links the two component helices. The four-
way structure at the point of strand exchange
later became known as the “Holliday junction”
and is now widely accepted to represent a cen-
tral intermediate in recombination. Our current
knowledge regarding the structure of HJs has
been obtained using multiple complementary
techniques including gel electrophoresis, chem-
ical and enzymatic probing, fluorescence energy
transfer, nuclear magnetic resonance, and sin-
gle-crystal X-ray diffraction studies. These ap-
proaches have led to the definition of three
general features that are applicable to four-way
DNA junctions, each of which are briefly dis-
cussed below.

HJs Exist in Open and Stacked
Conformations

Synthetic HJs, made by annealing four com-
plementary oligonucleotides, adopt two global
conformations, open and stacked (or unfolded
and folded), dependent on the availability and
type of divalent metal ions. An excellent in-
depth review of HJ structure can be found else-
where (Lilley 2000). Briefly, in the absence of
cations, the negatively charged phosphates are
unshielded; this electrostatic repulsion directs
the four arms of the junction toward the cor-

ners of a square and the junction adopts an
unstacked, fully extended conformation with
fourfold symmetry (Fig. 2A). The presence of
divalent metal ions, however, minimizes elec-
trostatic repulsion, allowing the arms to under-
go pairwise coaxial stacking to form a compact
X-shaped structure with a twofold symmetry
(Fig. 2B–D).

Stacked HJs Have Two Crossover Isomers

In the presence of divalent metal ions, stacked
HJs can exist in two alternative conformations
(termed crossover isomers), distinguished by
which duplex arms stack on each other (Fig.
2B,C) (Chen et al. 1988, 1993; Duckett et al.
1988). Each isomer comprises two continuous
strands on the outer edge of the junction and
two exchanging strands on the inner face. This
generates two sides with different character; one
face has minor groove features and the other
has major groove characteristics. The relative
stability of the two isomers is generally depen-
dent on the local DNA sequence at the junction
(Carlstrom and Chazin 1996; Miick et al. 1997;
Grainger et al. 1998).

HJs Exhibit an Antiparallel Geometry

It was initially believed that HJs would exist in
the parallel configuration (Fig. 2B) (Sigal and
Alberts 1972). However, biochemical and struc-
tural studies revealed that they actually adopt a
right-handed antiparallel configuration (Mur-
chie et al. 1989; Clegg et al. 1992; Nowakowski
et al. 1999; Ortiz-Lombardia et al. 1999; Eich-
man et al. 2000). In this orientation, two kinds
of strands can be distinguished: (1) two non-
exchanging strands of opposite polarity that
define the outer face of the HJ, and (2) two ex-
changing strands that run in opposite directions
and pass from one helical axis to the other with-
out physically crossing each other (Fig. 2C,D).
The component helices closely resemble B-
form DNA, with the exception of a local struc-
tural distortion at the point of strand exchange.
Base pairing is maintained up to, and includ-
ing, the point of strand exchange (Wemmer et
al. 1985; Chen et al. 1993; Pikkemaat et al. 1994;
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Carlstrom and Chazin 1996; Overmars and Al-
tona 1997; Overmars et al. 1997). In summary,
the HJ is a dynamic structure that can adopt
various conformations. As discussed below, en-
zymes that promote HJ resolution exploit this
malleability to process the structure into two
disconnected DNA duplexes.

JUNCTION RESOLVING ENZYMES

Hallmark Characteristics

Holliday junction cleavage, which generates
two unconnected DNA duplexes, is catalyzed
by a group of structure-selective endonucleases
called HJ resolvases. These nucleases have been
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Figure 2. Global conformations of DNA Holliday junctions. The component helices are drawn in different colors
and labeled 1 to 4 in a clockwise manner. (A) In the absence of divalent cations, four-way junctions adopt a fully
extended conformation with no coaxial stacking between the component helices (planar open-X form). Elec-
trostatic repulsion between phosphates keeps the junction in an unstacked conformation with the four arms
directed toward the corners of a square. (B,C) In the presence of divalent cations, the helices undergo coaxial
stacking such that the symmetry is lowered from fourfold in the fully extended form to twofold in the stacked
forms. Pairwise coaxial stacking can occur in two different ways, characterized by the stacking of helices 2 on 1
and 3 on 4 (left) or 1 on 4 and 3 on 2 (right). The stacked X junction can adopt either parallel (B), or antiparallel
(C) conformations. (D) Crystal structure of a Holliday junction (Eichman et al. 2000) in the right-handed
antiparallel stacked-X conformation (Protein Data Bank, PDB, ID 1dcw), showing the continuous strands in
yellow and green and exchanging strands in red and blue.
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isolated from bacteria, bacteriophages, archaea,
viruses, yeasts, plants, and mammals (Table 1)
and share a number of common properties.
First, they contain a high proportion of positive-
ly charged amino acids, consistent with their
ability to bind DNA with high affinity. Second,
their active sites generally contain three or four
acidic residues required for metal binding and
catalysis. Third, a divalent metal ion, usually
magnesium (Mg2þ) or manganese (Mn2þ), is
essential for DNA cleavage, but not for DNA
binding. Fourth, HJ resolvases are dimeric en-
zymes that use twin active sites to catalyze two
coordinated incisions within the lifetime of
a single protein–HJ complex (Fig. 3). Finally,
these enzymes exhibit a preference for binding
and cleaving four-way DNA junctions. All rec-
ognize the structural distortion that occurs near
the helical junction and, on substrate binding,
further manipulate the HJ and open the core to
different extents (Fig. 4). This ultimately ensures
that the HJ is resolved into two disconnected
DNA duplexes.

General Mechanisms of HJ Resolution

Recognition of the structural distortion at the
helical junction and subsequent opening of the
HJ core is thought to facilitate the placement of
DNA in the active sites for subsequent hydroly-
sis of the phosphodiester backbone (Fig. 3). Ca-
nonical HJ resolvases, such as E. coli RuvC, in-
troduce a pair of coordinated and symmetrical
nicks across the helical branch point (Figs. 1 and
3). The two nicks occur within the lifetime of
a single protein–DNA complex and involve ei-
ther two simultaneous cleavages or two sequen-
tial nicks that occur in rapid succession. Kinetic
analyses indicate that first-strand cleavage is rate
limiting, whereas second-strand cleavage is ac-
celerated severalfold. It is thought that the first
nick relaxes the structure of the HJ and facili-
tates placement in the second active site, thus
accelerating the second cleavage event. The re-
sult of symmetrical resolution is a pair of nicked
DNA duplexes, each of which can be directly
repaired by the action of a DNA ligase.

In addition to canonical HJ resolvases, eu-
karyotes also contain enzymes that catalyze

junction resolution by alternative or nonca-
nonical mechanisms. Similar to canonical re-
solvases, the noncanonical enzymes cleave HJs
into duplex DNA via the introduction of two
single-stranded incisions. In this case, however,
the two nicks are asymmetric and can be located
several nucleotides from the branchpoint. In
most cases, it is not clear whether these reac-
tions occur within the lifetime of a single pro-
tein–DNA complex. The end products are one
gapped and one flapped DNA duplex, which
require subsequent processing prior to ligation.

HJ Resolvases in Eubacteria

The RuvABC Proteins

In E. coli, the ruv locus contains three ruv genes,
designated ruvA, ruvB, and ruvC (Sharples et al.
1990; Takahagi et al. 1991). Mutations in any
one of these genes elicit the ruv phenotype: (1)
increased sensitivity to ultraviolet (UV) light
and mitomycin C (MMC), (2) formation of
long, multinucleated filaments after treatment
with UV, and (3) moderate defects in HR. This
phenotype indicates that the RuvA, RuvB,
and RuvC proteins are important for HR and
DNA repair. Indeed, these three proteins form
a sophisticated molecular machine, termed the
RuvABC resolvasome, which is required for
HJ processing. This complex orchestrates two
major events of late-stage recombination: HJ
branch migration (catalyzed by RuvAB) and res-
olution (catalyzed by RuvC). RuvC is currently
the best-characterized cellular resolvase and
continues to serve as the paradigm for canonical
HJ resolvases in other organisms.

RuvAB

RuvA and RuvB were identified and purified in
the early 1990s (Iwasaki et al. 1989; Tsaneva et al.
1992a; Shiba et al. 1993) and shown to promote
branch migration (Iwasaki et al. 1992; Parsons
et al. 1992; Tsaneva et al. 1992b; Parsons and
West 1993). RuvA is a tetrameric DNA-binding
protein that has a high affinity for HJs. Binding
is structure-selective and occurs independently
of DNA sequence. Structural studies show that
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RuvA exhibits fourfold symmetry and resembles
a four-petaled flower (Rafferty et al. 1996; Ni-
shino et al. 1998). Each monomer is composed
of three distinct domains. Domains I and II
mediate DNA binding, whereas domain III
makes direct contacts with RuvB and regulates
branch migration (Hargreaves et al. 1998; Ni-
shino et al. 1998; Ariyoshi et al. 2000; Ingleston
et al. 2000; Nishino et al. 2000). The tetramer
presents two distinct surfaces; one face is convex
and has a predominately electronegative charge,
whereas the other side is concave and mainly
composed of electropositive residues that me-
diate protein–DNA interactions (Rafferty et al.
1996). Importantly, the concave face contains a
central acidic “pin” that is essential for the spe-
cific binding to HJ DNA (Ingleston et al. 2000).
Moreover, the negative residues repel the phos-
phate backbones of the four DNA strands at the
point of strand exchange and contribute to the
disruption of base pairs at the helical junction
(Rafferty et al. 1996; Ariyoshi et al. 2000). These
interactions are thought to be critical for strand
separation during branch migration.

RuvB is a hexameric ring ATPase that ex-
hibits DNA-binding activity (Iwasaki et al.
1992; Tsaneva et al. 1992a; Müller et al. 1993;

Parsons and West 1993; Shiba et al. 1993; Mitch-
ell and West 1994; Marrione and Cox 1995).
RuvA facilitates the interaction of RuvB with
DNA and stimulates its ATPase activity. The
RuvAB–HJ complex is a dumbbell-shaped tri-
partite structure, in which RuvA is flanked by
two oppositely oriented hexameric rings of
RuvB (Parsons et al. 1995). The two RuvB mo-
tors rotate opposing arms of the open HJ struc-
ture, effectively pumping DNA into and through
the RuvAB complex, and, in doing so, convert
homoduplex DNA into heteroduplex. The four
acidic pins on RuvA act as guides that facilitate
unwinding and strand exchange.

RuvC

The first evidence for a cellular HJ resolvase
came from studies demonstrating that fraction-
ated E. coli extracts contained an endonuclease
activity that (1) resolved recombination inter-
mediates made by RecA, (2) bound synthetic
HJs with high affinity and structure specificity,
(3) cleaved synthetic HJs into nicked DNA du-
plexes, and (4) cleaved the HJ by the introduc-
tion of symmetrically related nicks across the
junction (Connolly and West 1990). The activ-

Stacked-X junction Unfolded junction

Dimeric protein

A B C

Induced distortion Symmetrical
resolution

Ligatable nicked DNA
duplex products

Figure 3. Canonical mechanism of Holliday junction resolution. (A) Antiparallel stacked-X Holliday junction
with twofold symmetry. (B) Canonical Holliday junction resolvases are dimeric enzymes that induce structural
changes to the junction on binding, causing the junction to unfold. Resolution occurs by the introduction of two
coordinated and symmetrically related nicks in strands of like polarity at, or very near, the branchpoint. (C)
Symmetrical resolution gives a pair of nicked DNA duplexes, each of which can be directly repaired by nick
ligation. Asterisks signify a given strand of DNA. (From West 2009; adapted, with permission, from the author.)
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ity was subsequently identified as the product
of the ruvC gene (Connolly et al. 1991; Dun-
derdale et al. 1991, 1994; Iwasaki et al. 1991;
Sharples and Lloyd 1991).

The active form of RuvC is a homodimer
containing two 19-kDa subunits (Dunderdale
et al. 1991; Iwasaki et al. 1991). RuvC binds

DNA in a structure-specific manner such that
HJs are bound with a 103- to 104-fold higher
affinity than duplex DNA (Bennett et al.
1993). The formation of RuvC–HJ complexes
is independent of specific nucleotide sequences
or metal ions (Dunderdale et al. 1991; Iwasaki
et al. 1991; Bennett et al. 1993; Shah et al. 1994b;

Open-X conformation
E. coli RuvC

S. solfataricus Hjc

Distored open-X conformation
T4 endonuclease VII

Coaxial conformation
T7 endonuclease I

A

C D

B

Open square conformation
S. cerevisiae Cce1

S. pombe Ydc2

Figure 4. Global conformations of resolvase-bound Holliday junctions. Schematics showing the structural dis-
tortions that different canonical resolvases induce on binding the Holliday junction. Component helices are drawn
in different colors according to the scheme used in Figure 2. (A) RuvC and Hjc induce an open-X conformation
that retains twofold symmetry. (B) Cce1 and Ydc2 induce significant structural distortion to the junction to
produce an open square conformation with fourfold symmetry. (C) T4 endonuclease VII manipulates the junction
into a distorted open-X conformation. (D) T7 endonuclease I induces a nearly perpendicular structure with the
pairs of helical arms in a coaxial conformation. (Figure adapted from Declais and Lilley 2008.)
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Takahagi et al. 1994). In contrast, divalent cat-
ions are required for DNA cleavage. In the pres-
ence of Mg2þ (or Mn2þ), RuvC cleaves HJs by
introducing symmetrically opposed nicks in
strands of like polarity, at or near the junction
(Dunderdale et al. 1991; Iwasaki et al. 1991;
Bennett et al. 1993; Shah et al. 1994a; Takahagi
et al. 1994). Importantly, the two incisions oc-
cur within the lifetime of a single protein–DNA
complex (Fogg and Lilley 2000). Nonetheless,
the two active sites can be uncoupled and there-
fore act sequentially during resolution (Shah
et al. 1997; Fogg and Lilley 2000). To ensure
that both strands of the junction are cleaved
before the enzyme dissociates, the rate of sec-
ond-strand cleavage is accelerated by several or-
ders of magnitude compared to the first. The
increased flexibility of a nicked HJ likely under-
pins this acceleration by promoting placement
in the second active site for subsequent cleavage.
The products of symmetrical HJ resolution are
two nicked DNA duplexes with 50-phosphate
and 30-hydroxyl termini that can be rejoined
by DNA ligase (Bennett et al. 1993). Although
RuvC binds HJs in a sequence-independent
manner, the enzyme preferentially cleaves junc-
tions containing the tetranucleotide consensus
sequence 50-A/TTT�C.G/A-30 (where � indi-
cates the site of incision) (Bennett et al. 1993;
Shah et al. 1994a,b; Fogg et al. 1999). Optimal
resolution occurs when the 50-TT�-30 incision
site is positioned at, or one base pair away from,
the point of strand exchange (Bennett and West
1996; Shida et al. 1996; Fogg et al. 1999; Sha et al.
2000). RuvC can also bind and cleave three-
stranded junctions, but it fails to act on Y sub-
strates, mismatches, heteroduplex loops, and
duplex DNA.

The crystal structure of E. coli RuvC shows
that the two monomers are related by a dyad axis
(Fig. 5A) (Ariyoshi et al. 1994; Ichiyanagi et al.
1998). The dimerization interface is formed
mainly by two a/b helices that run parallel to
the dyad axis. The most interesting structural
feature of each subunit is a large cleft, with di-
mensions sufficient to accommodate duplex
DNA. The walls of the cleft are lined with basic
residues that mediate structure-specific DNA
binding. The active site is located on the floor

of the cleft and contains four acidic residues,
namely, Asp-7, Glu-66, Asp-138, and Asp-141
(Ariyoshi et al. 1994; Saito et al. 1995; Ichiyanagi
et al. 1998). This catalytic tetrad is expected to
coordinate a pair of divalent metal cations and
promote hydrolysis of the phosphodiester back-
bone (Saito et al. 1995; Yang et al. 2006). Impor-
tantly, the two DNA-binding clefts are separated
by approximately 30 Å (Ariyoshi et al. 1994).
This is consistent with studies showing that
RuvC holds the HJ in an unfolded conformation
with twofold symmetry, such that base pairing is
disrupted at the point of strand exchange (Fig.
4A) (Bennett and West 1995; Fogg et al. 2001).
The surface between the two DNA-binding
clefts contains an important aromatic reside,
Phe-69, which stabilizes the open-X conforma-
tion and promotes DNA cleavage by forming a
stacking interaction with a nucleotide base close
to the branchpoint (Ariyoshi et al. 1994; Ichiya-
nagi et al. 1998; Yoshikawa et al. 2001).

Recently, the structures of Thermus ther-
mophilus RuvC and a RuvC–HJ complex were
solved (Fig. 5B) (Chen et al. 2013; Gorecka et
al. 2013). The core consists of a five-stranded
b-sheet, made from two parallel and three an-
tiparallel strands, sandwiched between a-heli-
ces—a characteristic feature of the retrovirus
integrase superfamily (Nowotny 2009). As ex-
pected, the overall protein fold is similar to
that of E. coli RuvC, but there are also some
notable differences. First, the carboxyl termini
of T. thermophilus RuvC is fully ordered, where-
as E. coli RuvC contains a flexible carboxyl ter-
minus. Moreover, the most carboxy-terminal
residue of T. thermophilus RuvC (Leu-166) is
engaged in intermolecular interactions between
the two monomers. Second, the a-helices of
T. thermophilus RuvC are packed more tightly
at the dimer interface. This region also contains
more aromatic residues than are found in E. coli
RuvC, such that T. thermophilus RuvC has a
more tightly associated dimer interface, which
may contribute to its natural thermostability.

In the unliganded structure, the two RuvC
monomers are related by a pseudo twofold axis,
with distinct asymmetry near the dimer inter-
face (Chen et al. 2013). This region contains the
amino terminus ofa-helix B from each subunit,
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Figure 5. Crystal structures of canonical Holliday junction resolvases. For each structure, the view is approxi-
mately down the dyad axis of the protein and looking toward the predicted DNA-binding surface. Each structure
depicts two monomeric subunits, one colored in blue and the other in magenta. Active site residues are
illustrated in ball and stick format and colored in lime and orange. Metal ions bound in the active site are
shown as yellow spheres. For RuvC (A), T4 endonuclease VII (F), and T7 endonuclease I (G), the structures
of the apoprotein and Holliday junction-bound enzyme are shown with the four DNA helices colored, as in
Figure 2. The PDB IDs used to generate these structures are as follows: E. coli RuvC (A), 1hjr; T. thermophilus
RuvC–HJ complex (B), 4ldo; P. furiosus Hjc (C), 1gef; S. pombe Ydc2 (D), 1kcf; T4 endonuclease VII (E), 1en7;
T4 endonuclease VII–HJ complex (F), 2qnc; T7 endonuclease I (G), 1m0d; and T7 endonuclease I–HJ complex
(H ), 2pfj.
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the preceding loop, and catalytically important
aromatic residues, such as Phe-73 (Phe-69 in
E. coli RuvC), which adopts different conforma-
tions in the two monomers. Importantly, only
one of the two active sites exists in a catalytically
competent conformation. From a mechanistic
perspective, this was initially interpreted as evi-
dence that the two monomers undergo a “flip-
flop” motion, in which conformational changes
promote the sequential strand cleavages of HJ
resolution. However, in the structure of the
RuvC–HJ complex, the loops from each mono-
mer adopt a similar conformation, suggesting
that more subtle differences in protein confor-
mation or protein–DNA interactions may un-
derpin the mechanism of HJ resolution (Go-
recka et al. 2013). Comparison of the unliganded
and DNA-bound structures reveals that the only
major conformational change that occurs in
RuvC on DNA binding is a reorganization of
the loops that interact with the HJ substrate.
Importantly, the RuvC–HJ crystal structure
shows that the junction is bound in an unfolded,
tetrahedral conformation with twofold symme-
try (Fig. 5B). This tetrahedral geometry was
also observed in biochemical studies of E. coli
RuvC–HJ complexes (Fig. 4A) (Bennett and West
1995; Fogg et al. 2001), highlighting an evolu-
tionarily conserved mechanism of DNA binding.

The RuvABC Resolvasome

Genetic and biochemical studies indicate that
RuvAB-catalyzed branch migration is function-
ally coupled with RuvC-mediated HJ resolution
(Sharples et al. 1990; Eggleston et al. 1997; Da-
vies and West 1998; van Gool et al. 1998, 1999).
It is thought that RuvA targets the resolvasome
to the HJ and imposes an open configuration,
such that RuvB can then use the energy of
ATP hydrolysis to pump duplex DNA through
the RuvABC complex. This provides an ele-
gant mechanism for RuvC to scan the DNA for
its preferred cleavage sequences. Once encoun-
tered, RuvC catalyzes HJ resolution and the
RuvABC complex dissociates from DNA. How-
ever, despite the attractiveness of this model,
it remains unclear how the RuvC dimer can
dock onto the surface of the RuvA–HJ complex

because of steric hindrance between the DNA
backbone and symmetrical loops in the RuvC
dimer. These constraints may be alleviated by
the conformational changes that occur on
DNA binding.

HJ Resolvases in Archaea

The first evidence for archaeal HJ resolvases
came from biochemical studies showing that
fractionated extracts of the euryarchaeote P. fur-
iosus contained an activity that resolved HJs
in vitro (Komori et al. 1999). The protein was
subsequently purified and named Hjc, for Hol-
liday junction cleavage. Two similar proteins
have been identified in the crenarchaeote Sul-
folobus solfataricus. One is the homolog of P.
furiosus Hjc and the other is a related protein
called Hje, for Holliday junction endonuclease
(Kvaratskhelia and White 2000a,b). Although
Hjc is conserved in all archaea, Hje has only
been identified in S. solfataricus. As the open
reading frame for Hje has not been identified,
it is possible that Hje might represent a virally
encoded protein (Middleton et al. 2004).

Hjc is a dimeric protein that binds preferen-
tially to four-way DNA junctions with binding
affinities in the low nanomolar range (Komori
et al. 2000b; Kvaratskhelia and White 2000b). In
the presence of Mg2þ, Hjc catalyzes HJ resolu-
tion by introducing symmetrically opposed in-
cisions across the branchpoint (Komori et al.
1999, 2000b; Kvaratskhelia and White 2000b).
The major cleavage sites are located in the ex-
changing strands, positioned three bases on
the 30 side of the junction and are independent
of nucleotide sequence. Importantly, the cleav-
age products can be joined by T4 DNA ligase,
indicating that they contain symmetrically re-
lated nicks and 50-phosphate and 30-hydroxyl
termini. In addition to cleaving four-way HJs,
low levels of Hjc-mediated cleavage are also ob-
served on three-way junctions, but not linear
DNA duplexes.

There are currently three different crystal
structures of Hjc; two represent P. furiosus Hjc
and one represents S. solfataricus Hjc (Bond et
al. 2001; Nishino et al. 2001a,b). Surprisingly,
structure–function studies revealed that Hjc is
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remarkably similar to type II restriction endo-
nucleases (Daiyasu et al. 2000; Komori et al.
2000a; Kvaratskhelia et al. 2000). The functional
unit is a symmetric homodimer, in which resi-
dues from the b-sheets of each subunit form a
central hydrophobic core that holds the two sub-
units together (Fig. 5C). The surface of the Hjc
dimer contains several electropositive residues,
most of which are clustered on one face and
generate a large flat DNA-binding surface that
traces around the conserved metal-binding sites
in the shape of an “S.” A flexible amino-terminal
segment of Hjc, composed of amino acids 1–5,
is crucial for stable protein–DNA contacts. The
active site contains three acidic amino acids and
one lysine residue, which form the conserved
catalytic motifs of type II restriction endonucle-
ases and are essential for Hjc activity. Notably,
the two active sites in the Hjc dimer are separated
by approximately 29 Å (Bond et al. 2001; Ni-
shino et al. 2001b). This spacing is consistent
with biochemical and structural studies showing
that Hjc manipulates the HJ into an open X-
shape with twofold symmetry (Fig. 4A) (Kva-
ratskhelia et al. 2000; Fogg et al. 2001). Hjc
induces a local disruption of base pairing near
the point of strand exchange, which is mediated
by the flexible amino-terminal segment (Kva-
ratskhelia et al. 2000; Nishino et al. 2001a).

Bacteriophage Resolvases

Unlike cellular HJ resolvases that have specific
roles in resolving four-way intermediates that
form during DNA recombination and repair,
the phage endonucleases have two additional
and essential roles: (1) debranching DNA struc-
tures prior to packaging the viral genome into
the head particles, and (2) degrading host DNA.
As indicated in Table 1 and discussed below,
this is reflected by the relatively broad substrate
specificity displayed by the recombinant pro-
teins in vitro.

T4 Endonuclease VII

The first biological evidence for a HJ resolvase
activity came from studies of phage-infected
bacteria. E. coli infected with bacteriophage T4

mutated in gene 49 were found to accumulate an
aberrant form of replicating DNAthat sediments
much faster than that formed during wild-type
infection (Frankel et al. 1971). This unusual
form of DNA, termed very-fast sedimenting
(VFS) DNA, is a network of highly branched
recombination intermediates that cannot be
packaged into phage heads. Mixing experiments
with extracts from cells infected with gene 49þor
gene 492 phage showed that VFS DNA could be
converted to the normal form of DNA. Further-
more, the hydrolysis reaction depended on
Mg2þ and was inhibited by excess DNA. Al-
together, these results showed that the product
of gene 49 was a phage-encoded endonuclease,
which was subsequently named T4 endonucle-
ase (endo) VII.

T4 endo VII is a dimeric protein that binds
preferentially to four-way DNA junctions in a
Mg2þ- and sequence-independent manner (Ni-
shimoto et al. 1979; Parsons et al. 1990; Picksley
et al. 1990; Giraud-Panis and Lilley 1996; Pöhler
et al. 1996; Golz et al. 1997). Interactions be-
tween the amino and carboxyl termini of differ-
ent monomers are essential for DNA binding
(Birkenbihl and Kemper 1998). This ensures
that only dimeric proteins interact with HJ sub-
strates and thus guarantees that two active sites
will be positioned on the junction for a coor-
dinated resolution reaction. Biochemical stud-
ies revealed that T4 endo VII distorts the HJ into
an open H-shaped structure with twofold sym-
metry (Fig. 4C) (Parsons et al. 1990; Pöhler
et al. 1996). Importantly, the crystal structure
of a catalytically inactive mutant bound to an
immobile HJ shows that the enzyme protrudes
into the center of the junction without disrupt-
ing the central base pairs (Fig. 5F) (Biertumpfel
et al. 2007).

Consistent with important roles in DNA
packaging and repair, T4 endo VII cleaves a
multitude of DNA structures, including ssDNA,
gapped DNA, heteroduplex loops, three-way
junctions, Holliday junctions, apurinic/apyri-
midinic lesions, and bulky adducts (Kemper
and Garabett 1981; Mizuuchi et al. 1982; Kem-
per et al. 1984; Lilley and Kemper 1984; Jensch
and Kemper 1986; Mueller et al. 1990; Picksley
et al. 1990; Murchie and Lilley 1993; Greger and
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Kemper 1998). In each case, the enzyme intro-
duces a pair of staggered nicks on either side of
the structure to be removed. The nicks are al-
ways located on the 30 side of the target DNA
and occur in a sequential nick and counternick
reaction. HJ resolution proceeds by a pair of
nicks in strands of like polarity, each positioned
one to five nucleotides on the 30 side of the
junction. T4 endo VII exhibits a bias toward
cleaving the exchanging strands and on the 30

side of thymine residues (Kemper et al. 1984;
Duckett et al. 1988; Mueller et al. 1988; Picksley
et al. 1990). The duplex products contain sym-
metrically related nicks with ligatable 50-phos-
phate and 30-hydroxyl termini (Mizuuchi et al.
1982; Lilley and Kemper 1984). Like RuvC, the
two active sites of T4 endo VII can function
independently (Giraud-Panis and Lilley 1997;
Fogg and Lilley 2000), although the reaction
involves two temporally coordinated cleavages
that occur within the lifetime of the protein–
DNA complex (Pottmeyer and Kemper 1992;
Giraud-Panis and Lilley 1997).

The structures of T4 endo VII (Fig. 5E)
and a T4 endo VII–HJ complex (Fig. 5F) have
been determined (Raaijmakers et al. 1999, 2001;
Biertumpfel et al. 2007), revealing that endo VII
is a remarkably flexible protein with several
unique features. First, the monomer represents
a novel fold, composed almost entirely of a

helices and containing two C-X-X-C motifs
that coordinate zinc binding. This contrasts
other HJ resolvases, whose monomers contain
stable a/b folds. Second, the dimer exhibits a
unique domain-swapped architecture, in which
the carboxyl terminus of one monomer inter-
acts with the amino terminus of the other sub-
unit. The two extensively intertwined mono-
mers are related by a twofold symmetrical axis
and form an elongated head-to-tail “S”-shaped
dimer (Fig. 5E). Finally, the dimerization inter-
face contains two pairs of antiparallel helices
that cross each other at an angle of 70˚–80˚,
thus forming a novel “four-helix cross” motif,
not found in any other HJ resolvase.

Similar to other HJ resolvases, the S-shaped
dimer contains a pronounced bipolar charge
distribution (Raaijmakers et al. 1999, 2001).
The 3.1-Å resolution crystal structure of a T4

endo VII–HJ complex shows that the concave
face (lined with solvent-exposed basic residues)
is bound to the minor-groove side of the junc-
tion (Biertumpfel et al. 2007). The only direct
interactions between T4 endo VII and DNA
bases occur at the helical branchpoint. Here,
residues from the “four-helix cross” motif pen-
etrate into the junction, separating all four
strands without any disruption in base pairing.
The active sites, defined by a cluster of catalyt-
ically essential His and Asp residues, are posi-
tioned such that the exchanging strands will be
cleaved two nucleotides from the branchpoint.
Importantly, a comparison of the T4 endo VII
crystal structures reveals a remarkable degree of
conformational flexibility in the dimerization
and DNA-binding domains (Raaijmakers et al.
1999, 2001). This likely underpins the enzyme’s
ability to recognize and cleave a broad range of
branched DNA structures.

T7 Endonuclease I

T7 endo I (gp3) is required for the resolution
of branched recombination intermediates and
for the maturation and packaging of phage
DNA (Tsujimoto and Ogawa 1978). The protein
is dimeric and forms stable protein–DNA com-
plexes (Parsons and West 1990; Picksley et al.
1990). Furthermore, catalytically inactive mu-
tants bind synthetic HJs with high affinity, pro-
viding evidence that endonuclease activity and
structure-selective DNA binding are separable
processes (Duckett et al. 1995; Parkinson and
Lilley 1997; Parkinson et al. 1999). The bound
junction adopts a conformation that is quite
different from that seen in other resolvase–HJ
complexes. First, although coaxial helical stack-
ing is maintained, there is a 90˚ rotation of the
axes, causing the arms to adopt a parallel, per-
pendicular orientation to each other (Fig. 4D)
(Duckett et al. 1995; Declais et al. 2003). Sec-
ond, the electrophoretic pattern of protein–
DNA complexes provide evidence for the co-
existence of T7 endo I in complex with both
crossover isomers, with a 4:1 bias toward one
of the two conformers. This is accompanied by a
localized distortion of the base pairs at the point
of strand exchange, which provides a strong
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contrast to the structure of the T4 endo VII–HJ
complex. In the presence of Mg2þ or Mn2þ, T7
endo I catalyzes the endonucleolytic cleavage
of (1) secondary structures that form in ssDNA,
(2) supercoiled plasmid DNA, and (3) various
branched double-stranded DNA (ds DNA),
substrates, including cruciforms, HJs, three-
way junctions, and Y-shaped structures (Center
and Richardson 1970; Sadowski 1971; de Massy
et al. 1987; Müller et al. 1990; Picksley et al.
1990; Parkinson and Lilley 1997). T7 endo I
shows a preference for cleavage between two
pyrimidine residues (Picksley et al. 1990).

Crystallographic structures have been deter-
mined for T7 endo I and the T7 endo I–HJ
complex (Hadden et al. 2001, 2002, 2007).
The apo structure reveals a symmetric homo-
dimer with two distinct catalytic domains sep-
arated by an elongated b-sheet bridge. As such,
the overall architecture of T7 endo I resembles a
curved barbell (Fig. 5G). As in T4 endo VII, the
two monomers are extensively intertwined, to
the extent that each domain is composed of
elements from both subunits. An extensive di-
meric interface accounts for this intimate asso-
ciation, which also explains the remarkable
stability of the homodimer in free solution (Par-
kinson and Lilley 1997). T7 endo I also has a
composite active site, in which each monomer
contributes distinct catalytic residues (Declais
et al. 2001; Hadden et al. 2001). The catalytic
site contains a conserved P-D . . . (D/E)-X-K
motif found in several type II restriction en-
zymes and coordinates a two-metal ion mech-
anism of phosphodiester hydrolysis (Parkinson
et al. 1999; Declais et al. 2001; Hadden et al.
2001, 2002).

The structure of T7 endo I–HJ complex
(Fig. 5H) shows that the protein straddles the
HJ (by virtue of its electropositive surface) and
wraps around it to a much greater extent than
T4 endo VII (Fig. 5F) (Hadden et al. 2007).
Residues in the amino and carboxyl termini
are required for efficient DNA binding (Parkin-
son et al. 1999; Freeman et al. 2013), which trig-
gers the formation of two long electropositive
channels that are aligned nearly perpendicular
to each other (Hadden et al. 2007). These chan-
nels are lined with basic residues that establish

hydrogen bonds with the phosphate groups
of the continuous strands, thus imparting T7
endo I with selectivity for DNA structures that
can be modeled into this near-perpendicular ge-
ometry (Declais et al. 2006; Hadden et al. 2007).
The two active sites are positioned such that the
continuous strands will be cleaved one nucleo-
tide on the 50 side of the junction (Hadden et al.
2007). Importantly, the amino terminus facili-
tates strand separation at the junction center
and thus, has an important role in mediating
HJ resolution in vitro (Freeman et al. 2013).

Junction-Resolving Enzymes in Eukaryotes

The quest for eukaryotic HJ resolvases has been
a slow and difficult task. The first evidence for
a RuvC-like resolvase activity came from stud-
ies with yeast cell-free extracts (Symington and
Kolodner 1985; West and Korner 1985). How-
ever, perhaps surprisingly, this activity turned
out to be mitochondrial rather than nuclear
(Kleff et al. 1992). Nonetheless, two distinct nu-
clear activities that cleaved HJs in vitro were
identified in extracts prepared from animal tis-
sues and human cells (Elborough and West
1990; Constantinou et al. 2002). The first activ-
ity was shown to cleave HJs in a manner similar
to RuvC (i.e., canonical resolution). The second
activity, which contained the MUS81 protein,
exhibited a noncanonical mechanism of reso-
lution. Unfortunately, because of its low abun-
dance, the gene encoding the canonical resol-
vase remained elusive for several years. In the
following section, we will first discuss the yeast
mitochondrial HJ resolvases Cce1 and Ydc2.
This will be followed by a description of three
mammalian nuclear enzymes (and their ortho-
logs in yeast, flies, and worms) that have been
implicated in HJ resolution, namely, GEN1,
MUS81-EME1, and SLX1-SLX4.

Mitochondrial HJ Resolvases: Yeast Cce1
and Ydc2

The HJ resolvase activity present in S. cerevi-
siae extracts was identified as the product of
the CCE1 (for cruciform cutting endonuclease)
gene (Kleff et al. 1992), but, surprisingly, CCE1
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null strains exhibit no obvious growth defects or
defects in recombination. However, the mutant
phenotypes suggest abnormal mitochondrial
function: (1) an elevated frequency of petite
cells, (2) cytoplasmic aggregation of mitochon-
drial DNA (mtDNA), and (3) increased mitotic
loss of mtDNA. Deletion of CCE1 also results in
the accumulation of branched mtDNA struc-
tures, which form large networks that are inter-
linked by unresolved three- and four-way junc-
tions (Lockshon et al. 1995). These observations
are consistent with data showing that Cce1 is
localized exclusively in the mitochondria and
that CCE1 is allelic to MGT1, which is essential
for mitochondrial genome transmission (Eze-
kiel and Zassenhaus 1993). The S. pombe homo-
log of Cce1 is Ydc2 (Whitby and Dixon 1997;
White and Lilley 1997a; Oram et al. 1998). Sim-
ilar to yeast lacking CCE1, Ydc2-deficient cells
contain large aggregates of mtDNA and fewer
mtDNA nucleoids than wild-type cells (Doe
et al. 2000).

Similar to other HJ resolvases, Cce1 and
Ydc2 have a high binding affinity for four-way
DNA junctions (White and Lilley 1996, 1997a;
Whitby and Dixon 1997; Oram et al. 1998). In
addition, both proteins bind to HJs as dimers
(White and Lilley 1996, 1997b). Substrate bind-
ing is mediated by structural selectivity and oc-
curs independently of nucleotide sequence and
divalent metal cations (White and Lilley 1996,
1997b; Schofield et al. 1998). Cce1 and Ydc2
both manipulate the HJ into a fully extended,
open square structure, in which the four central
bases are unpaired (Fig. 4B) (Declais and Lilley
2000). This structure is remarkably similar to
that of the protein-free HJ in the absence of
metal ions (Fig. 2A) and emphasizes the con-
formational flexibility of HJ resolvases and their
DNA substrates.

Although Cce1/Ydc2 bind DNA substrates
in the absence of metal ions, DNA cleavage re-
quires Mg2þ or Mn2þ. The nucleases are active
on HJs, whereas weak or no endonuclease ac-
tivity is observed with three-way junctions in
vitro. Cleavage occurs by the introduction of
two sequential nicks across the junction within
the lifetime of the protein–DNA complex, with
a large rate enhancement for second-strand

cleavage (Fogg et al. 2000). This ensures that
bilateral cleavage occurs in a tightly coordinated
manner, such that HJs are efficiently resolved
into nicked DNA duplexes that can be ligated.
Cce1 exhibits a strong preference for cleaving
HJs with the consensus sequence 50-ACT�A-30

(White and Lilley 1996; Schofield et al. 1998),
whereas Ydc2 cleaves 50-C/TT�-30 (Whitby and
Dixon 1997; White and Lilley 1997a; Oram et al.
1998). Optimal activity for both enzymes is ob-
served when the target sequence is located in the
continuous strands and at the point of strand
exchange. Collectively, these studies indicate
that Cce1 and Ydc2 represent canonical HJ re-
solvases that are remarkably similar to RuvC.
Additional support for this conclusion comes
from the finding that Ydc2 overexpression in
resolvase-deficient E. coli is sufficient to com-
plement the UV sensitivity of these cells (Whit-
by and Dixon 1997).

The crystal structure of Ydc2 reveals a di-
meric protein with an overall “S” shape (Fig.
5D), the core of which is structurally homolo-
gous to RuvC (Ceschini et al. 2001). The S-
shaped structure is remarkably similar to that
of T4 endo VII, despite the fact that the two
proteins are unrelated in sequence and fold
(Raaijmakers et al. 1999; Ceschini et al. 2001).
Similar to other HJ resolvases, hydrophobic side
chains from each Ydc2 monomer contribute to
the dimeric interface. In addition, the Ydc2
dimer presents two distinct faces, one of which
is flattened and enriched in basic residues that
mediate protein–DNA interactions (Ceschini
et al. 2001; Sigala and Tsaneva 2003). One in-
teresting structural feature is the presence of a
small a-helical bundle (triple-helix domain)
that has no equivalent in RuvC. The triple-helix
domain, located in the electropositive face, pro-
trudes outward and is important for substrate
recognition and cleavage. A conserved patch of
acidic residues is located near the “elbow” be-
tween the laterally protruding triple-helix do-
main and the central dimerization interface,
and these residues form the catalytic triad that
is essential for enzyme activity. The two active
sites in the Ydc2 dimer are separated by approx-
imately 34 Å (Ceschini et al. 2001), in good
agreement with the finding that Ydc2 unfolds
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the HJ into an open square-planar conforma-
tion in which the scissile bonds in the continu-
ous strands are separated by 30–35 Å (Roe et al.
1998; White and Lilley 1998). Another intrigu-
ing feature in Ydc2 is the occurrence of small
flexible loops in the DNA-binding region
(Ceschini et al. 2001). One of these loops ex-
trudes from the surface to form a pin structure
that is positioned near the dimer interface. In
the modeled Ydc2–HJ complex, the pin fits
neatly into the center of the open junction
and may contribute to sequence specificity
and/or base pair disruption. Moreover, the
pin is thought to act as a conformational sensor
that relays active site conformation to the di-
meric interface, which promotes optimal posi-
tioning for metal ion binding and catalysis.

Canonical Nuclear HJ Resolvases:
GEN1/Yen1

The first evidence for a canonical mammalian
HJ resolvase was the detection of a RuvC-like
nuclease activity in fractionated cell-free ex-
tracts prepared from homogenized calf-thymus
tissue (Elborough and West 1990). The acti-
vity was subsequently observed in nuclear ex-
tracts from tissue-cultured human cells (Hyde
et al. 1994; Constantinou et al. 2001), and the
gene product was eventually identified as GEN1
(Ip et al. 2008). The human protein, GEN1, and
its S. cerevisiae ortholog, Yen1, represent a sub-
class of the Rad2/XPG family of endonucleases
(Lieber 1997). GEN1 orthologs are present in
higher eukaryotes, including the rice Oryza sat-
iva (OsSEND-1), Caenorhabditis elegans (GEN-
1), and Drosophila melanogaster (DmGEN), but
are absent from S. pombe (Furukawa et al. 2003;
Ishikawa et al. 2004; Ip et al. 2008). The Rad2/
XPG family includes several well-characterized
nucleases, such as the nucleotide excision re-
pair protein XPG and the 50-flap endonuclease
FEN1. These proteins are defined by the pres-
ence of three characteristic motifs: (1) an XPG-
type amino-terminal domain (XPG-N), (2) a
conserved nuclease domain positioned in the
central region of the protein (XPG-I), and (3)
a helix-hairpin-helix domain that flanks the nu-
clease domain.

Studies of an amino-terminal fragment of
human GEN1 (GEN11-527), containing the nu-
clease active site, revealed Mg2þ-dependent in-
cision of 50 flaps, replication forks, and nicked
or intact HJ structures (Ip et al. 2008; Rass
et al. 2010). In contrast, no activity is observed
with 30 flaps, splayed arms, duplex DNA, or
single-stranded substrates. Similar to other ca-
nonical HJ resolvases, GEN1 cleaves HJs into
nicked duplex products by introducing a pair
of symmetrically opposed incisions across the
junction to generate ligatable products. GEN1
cleaves immobile HJs at a unique site, posi-
tioned one nucleotide on the 30 side of the
branchpoint. In addition, GEN1 preferential-
ly cleaves the continuous strands of the HJ. At
the present time, the sequence specificity has
not been determined. One distinguishing fea-
ture of GEN11-527, although this has yet to be
shown for the full-length protein, is that it is
monomeric in solution, whereas other resol-
vases are stable dimers (Table 1). Nonetheless,
GEN11-527 dimerizes on the HJ substrate to en-
sure that twin active sites are positioned on the
junction for coordinated resolution.

The ability of human GEN1 to resolve HJs
in vivo is supported by genetic data showing
that ectopic expression of human GEN11-527

promotes HJ resolution and CO formation in
HR-deficient S. pombe mus81D strains (Lorenz
et al. 2010). In addition, ectopically expressed
GEN11-527 resolves recombination intermedi-
ates that otherwise accumulate in methyl meth-
anesulfonate (MMS)-treated S. cerevisiae sgs1 or
top3 mutants (Mankouri et al. 2011). Moreover,
microinjection of human GEN11-527 into the
germline of C. elegans mus-81 xpf-1 mutants
eliminates persistent DNA bridges (i.e., unre-
solved HJs) that form between bivalent chro-
mosomes (O’Neil et al. 2013). In mitotic human
cells, transient small interfering RNA (siRNA)-
mediated depletion of GEN1 disrupts mitotic
progression and increases the frequency of
multi- and micronucleated cells, centrosomal
defects, DNA bridges, and aberrant chromo-
some formation (Gao et al. 2012; Rodrigue
et al. 2013). These phenotypes indicate that hu-
man GEN1 is important for the removal of
DNA structures that impede chromosome seg-
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regation and provide further evidence that
GEN1 functions as a canonical HJ resolvase.
However, it is noteworthy that human cells de-
pleted of GEN1 display little sensitivity to DNA-
damaging agents such as cisplatin, camptothe-
cin (CPT), or MMS (Svendsen et al. 2009; Wyatt
et al. 2013). Furthermore, yen1D budding yeast
are resistant to genotoxic agents (e.g., 4-nitro-
quinoline-1-oxide [4NQO], hydroxyurea [HU],
MMS) and exhibit wild-type levels of cell
growth, viability, and meiotic CO formation
(Blanco et al. 2010; Ho et al. 2010; Matos et al.
2011; de Muyt et al. 2012; Zakharyevich et al.
2012). These results can be explained by the
presence of nuclear enzymes that (1) act redun-
dantly with GEN1/Yen1, and/or (2) compete
for the same or similar substrates and thus
mask the phenotype associated with the loss of
GEN1/Yen1 (e.g., the BLM/Sgs1 helicase and
other structure-selective endonucleases).

Recent genetic studies in yeast have un-
covered a complex relationship between Yen1
and two noncanonical HJ resolvases, namely,
Mus81-Mms4 and Slx1-Slx4 (Blanco et al.
2010; Ho et al. 2010; Matos et al. 2011, 2013;
de Muyt et al. 2012; Gallo-Fernandez et al. 2012;
Zakharyevich et al. 2012; Szakal and Branzei
2013). Specifically, Yen1 activity is only required
in cells lacking Mus81-Mms4, suggesting that it
provides a backup function for Mus81-Mms4.
The observation that yen1D mus81D double
mutants exhibit a synthetic phenotype indicates
that the enzymes define two distinct pathways of
HJ resolution (Blanco et al. 2010; Ho et al. 2010;
Matos et al. 2011, 2013). Synthetic lethality has
also been observed between D. melanogaster
Gen and Mus81, in which double mutants ex-
hibit significantly increased levels of apoptosis
(Andersen et al. 2011). In contrast to yeast, how-
ever, flies rely predominantly on DmGEN for
the resolution of DNA repair and/or recombi-
nation intermediates (Andersen et al. 2011). In
C. elegans, the loss of gen-1 enhances the severity
of the mus-81 phentyope, in terms of embryon-
ic lethality, brood size, and meiotic chromo-
somal abnormalities (O’Neil et al. 2013; Saito
et al. 2013). Moreover, the synthetic phenotype
of gen-1 slx-1 mutants reveals that GEN-1 and
SLX-1 define two separate pathways for process-

ing recombination intermediates in vivo (Saito
et al. 2012, 2013). A similar relationship exists
in mitotic human cells in which transient de-
pletion of GEN1 and either MUS81, SLX1, or
SLX4 generates an additive phenotype in terms
of SCE frequency, chromosome abnormali-
ties, and cell death (Wechsler et al. 2011; Garner
et al. 2013; Wyatt et al. 2013; Sarbajna et al.
2014). Notably, the phenotypes associated
with the loss of GEN1 and either MUS81, SLX1,
or SLX4 are particularly severe in the absence of
the BLM helicase. This observation emphasizes
that both HJ dissolution and HJ resolution (Fig.
1) are required for the efficient removal of DNA
structures that would otherwise impede normal
cell cycle progression.

Noncanonical Nuclear HJ Resolvases: MUS81-
EME1/Mus81-Mms4

The Mus81 protein was initially discovered
through its physical association with the S.
pombe replication checkpoint kinase Cds1
(Boddy et al. 2000) and the S. cerevisiae recom-
bination/repair protein RAD54 (Interthal and
Heyer 2000), as well as in a synthetic-lethal
screen for genes required in the absence of the
Sgs1 helicase (Mullen et al. 2001). MUS81/
Mus81 is a member of the ERCC4/XPF fam-
ily of structure-selective endonucleases, which
also includes the XPF-ERCC1 nucleotide exci-
sion repair endonuclease (Ciccia et al. 2008).
MUS81/Mus81 contains tandem helix-hair-
pin-helix motifs in the carboxyl terminus,
which likely mediate DNA binding, as well as
a conserved endonuclease domain in the central
region of the protein, which contains the cata-
lytic G-D-Xn-E-R-K-X3-D motif (Nishino et al.
2003; Chang et al. 2008). Similar to other mem-
bers of the ERCC4/XPF family, MUS81/Mus81
forms a stable heterodimer with a noncatalytic
subunit called EME1 in humans (Ciccia et al.
2003; Ögrünc and Sancar 2003), Mms4 in bud-
ding yeast (Kaliraman et al. 2001; Mullen et al.
2001), and Eme1 in fission yeast (Boddy et al.
2001). The formation of a functional hetero-
dimer is supported by the findings that yeast
mus81 and mms4/eme1 double mutants have
identical phenotypes (Boddy et al. 2001; de los
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Santos et al. 2001; Kaliraman et al. 2001; Mullen
et al. 2001; Doe et al. 2002).

Genetic studies revealed that Mus81-Mms4
has important roles in (1) cellular resistance to
genotoxic agents (e.g., MMS and UV), (2) res-
olution of potentially toxic meiotic and mitotic
recombination intermediates, and (3) mainte-
nance of genomic stability (Boddy et al. 2000,
2001; Interthal and Heyer 2000; de los Santos
et al. 2001; Kaliraman et al. 2001; Mullen et al.
2001; Doe et al. 2002; Smith et al. 2003; Ho et al.
2010; Dayani et al. 2011). In S. pombe mus81
mutants, ectopic expression of RusA (a cryptic
bacteriophage HJ resolvase) restores cellular re-
sistance to genotoxic agents and productive
meiosis (Boddy et al. 2001; Doe et al. 2002). In
contrast to fungi, loss of MUS81-EME1 has lit-
tle, if any, impact on meiotic progression in mice
(Abraham et al. 2003; McPherson et al. 2004;
Dendouga et al. 2005), flies (Johnson-Schlitz
and Engels 2006; Trowbridge et al. 2007), or
worms (Agostinho et al. 2013; O’Neil et al.
2013; Saito et al. 2013). Nonetheless, these mu-
tants exhibit mitotic defects and are hypersen-
sitive to specific DNA-damaging agents, includ-
ing CPT, cisplatin, and MMC. The observation
that MUS81 is down-regulated in hepatocellular
and colon carcinoma provides circumstantial
evidence that MUS81-EME1 is also required
for chromosomal stability in humans (Wu
et al. 2008, 2011).

Importantly, in yeast lacking the Sgs1/Rqh1
helicase, Mus81-Mms4/Eme1 is essential for
cell viability and the resolution of aberrant re-
combination intermediates in meiosis (Boddy
et al. 2001; Kaliraman et al. 2001; Mullen et al.
2001; Doe et al. 2002; Jessop and Lichten 2008;
Oh et al. 2008). A similar relationship exists in
higher eukaryotes because C. elegans mus-81
him-6 and D. melanogaster mus81 mus309 mu-
tants exhibit severe defects in mitosis and mei-
osis (HIM-6 and MUS-309 are orthologs of
the BLM/Sgs1 helicase) (Johnson-Schlitz and
Engels 2006; Trowbridge et al. 2007; Agostinho
et al. 2013; O’Neil et al. 2013). Moreover, BLM-
deficient mammalian cells require MUS81 for
cell viability and SCE formation (Wechsler et
al. 2011; Castor et al. 2013; Wyatt et al. 2013).
Collectively, these observations indicate that (1)

MUS81-EME1/Mms4 is involved in the pro-
cessing of mitotic and meiotic recombination
intermediates, and (2) HJ dissolution and res-
olution are both required for the efficient re-
moval of potentially toxic recombination inter-
mediates.

Initial in vitro studies with partially purified
MUS81-EME1 from human cells (Chen et al.
2001; Constantinou et al. 2002) or fission yeast
(Boddy et al. 2001) showed Mg2þ-dependent
cleavage of synthetic HJs in a manner that was
significantly different from that of RuvC. Spe-
cifically, HJs are resolved with asymmetric
nicks, thus generating one gapped and one
flapped DNA duplex that cannot be ligated
in vitro (Boddy et al. 2001; Chen et al. 2001;
Constantinou et al. 2002). Moreover, in contrast
to canonical HJ resolvases, purified MUS81-
EME1/Mms4 cleaves intact HJs with very low
efficiency compared to nicked HJs, 30 flaps, and
replication forks (Kaliraman et al. 2001; Ciccia
et al. 2003; Gaillard et al. 2003; Fricke et al. 2005;
Ehmsen and Heyer 2008; Taylor and McGowan
2008; Wyatt et al. 2013). This is consistent with
observations showing that MUS81-EME1/
Mms4 is a single heterodimer in solution or
when bound to DNA (Chang et al. 2008;
Schwartz et al. 2012). However, these biochem-
ical observations appear to contradict the ge-
netic data showing that MUS81-EME1/Mms4
is important for HJ resolution and, indeed, have
sparked a long-standing controversy regarding
the role of MUS81-EME1/Mms4 in HJ resolu-
tion (Haber and Heyer 2001).

Two hypotheses have been proposed to rec-
oncile the apparent discrepancies surrounding
the activity of MUS81-EME1/Mms4 on HJs,
and these are not necessarily mutually exclusive
scenarios. First, nicked HJs may be the true
substrates for MUS81-EME1/Mms4; the first
nick arises from the initial strand invasion event
that precedes the formation of a joint molecule.
Alternatively, it might be introduced by another
endonuclease, thus creating a substrate that
could be “counternicked” by MUS81-EME1/
Mms4. Second, the MUS81-EME1/Mms4 en-
zyme itself might need to be “activated” to re-
solve intact HJs, and this could involve a post-
translational modification and/or interaction
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with another protein. Support for the second
hypothesis comes from recent studies showing
that Mus81-Mms4 is phosphorylated and acti-
vated at G2/M by the actions of Cdk and the
polo-like kinase Cdc5 (Matos et al. 2011, 2013;
Gallo-Fernandez et al. 2012; Szakal and Branzei
2013). Thus, the nuclease activity of Mus81-
Mms4 is temporally regulated to ensure that
meiotic and mitotic recombination intermedi-
ates are eliminated prior to chromosome segre-
gation, while also limiting the possibility of rep-
lication fork cleavage that could drive genomic
instability. Interestingly, however, phosphoryla-
tion of Mus81-Mms4 does not induce dimeri-
zation, and, therefore, the mechanistic details
of its activation remain unknown (Schwartz
et al. 2012).

In human cells, the mechanism of activation
of MUS81-EME1 also involves CDK and the
polo kinase PLK1, but, in this case, phosphory-
lation leads to interactions with another struc-
ture-selective endonuclease implicated in HJ
resolution, namely, SLX1-SLX4 (Andersen et
al. 2009; Fekairi et al. 2009; Munoz et al. 2009;
Svendsen et al. 2009; Wyatt et al. 2013). Bio-
chemical and/or genetic interactions between
MUS81-EME1 and SLX1-SLX4 have also been
reported in mouse (Castor et al. 2013) and
C. elegans (Agostinho et al. 2013; Saito et al.
2013). These observations, taken together
with the finding that MUS81 and SLX1-SLX4
are epistatic in terms of SCE formation (Wechs-
ler et al. 2011; Castor et al. 2013; Garner et al.
2013; Wyatt et al. 2013), indicate that cell-cycle-
regulated phosphorylation of MUS81-EME1
triggers its interaction with SLX1-SLX4 and that
these enzymes cooperate to resolve intact HJs.

Noncanonical Nuclear HJ Resolvases:
SLX1-SLX4/Slx1-Slx4

The SLX1 and SLX4 genes were first identified
in S. cerevisiae in a synthetic-lethal screen for
proteins that are required for viability in the
absence of SGS1(Mullen et al. 2001). Likewise,
S. pombe Slx1 and Slx4 are essential in cells lack-
ing the Rqh1 helicase (Coulon et al. 2004). A
similar synthetic relationship exists between
these genes in flies (Andersen et al. 2009,

2011) and worms (Agostinho et al. 2013; Saito
et al. 2013). The mammalian SLX1 and SLX4
proteins were identified in 2009 (Fekairi et al.
2009; Munoz et al. 2009; Svendsen et al. 2009).
In all organisms studied to date, SLX1 and SLX4
interact to form a stable heterodimer, although
the formation of higher-order oligomers has
not yet been excluded. Sequence alignment re-
veals that SLX1 contains a conserved UvrC-in-
tron (URI)-endonuclease domain in the amino
terminus and a carboxy-terminal RING/PHD-
type zinc finger domain and, thus, belongs to
the GIY-YIG superfamily of endonucleases (Du-
nin-Horkawicz et al. 2006). In contrast, the
amino acid sequence of SLX4 is evolutionarily
diverse. Nonetheless, fungal and human SLX4
proteins share a conserved carboxy-terminal
SAP domain that is thought to mediate DNA
binding and substrate specificity. Human SLX4
is a large, multidomain protein that provides a
scaffold for the binding of several other proteins,
including the MUS81-EME1 and XPF-ERCC1
nucleases (Andersen et al. 2009; Fekairi et al.
2009; Munoz et al. 2009; Svendsen et al. 2009).

Full-length yeast Slx1-Slx4 and human
SLX1-SLX4 have been biochemically purified
and are versatile 50 flap endonucleases that
cleave a variety of branched DNA structures,
including 50 and 30 flaps, splayed arms, replica-
tion forks, stem loops, and synthetic HJs con-
taining a mobile or immobile core (Fricke and
Brill 2003; Coulon et al. 2004; Wyatt et al. 2013).
Negligible cleavage is observed with ssDNA,
dsDNA, or DNA duplexes containing either a
nick or single-stranded extension. Endonucle-
ase activity requires the presence of divalent cat-
ions (Mg2þ or Mn2þ) and is abolished by mu-
tation of conserved catalytic residues in SLX1.
The ability of SLX1-SLX4/Slx1-Slx4 to cleave
diverse DNA structures is reminiscent of the
broad substrate specificity displayed by bacte-
riophage resolvases such as T4 endo VII and
T7 endo I. However, whereas the bacteriophage
resolvases cut HJs by the introduction of a pair
of coordinated and symmetric nicks, the SLX
proteins promote asymmetric nicking to gener-
ate duplex products that are poorly ligatable.
Mechanistic studies of human SLX1-SLX4
show that the nuclease introduces a nick near
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the base of the HJ and then dissociates be-
fore the second nick can occur, thus deviating
from the classical RuvC-like mechanism of HJ
resolution (Fig. 3) (Wyatt et al. 2013).

In yeast, slx1 and slx4 single mutants exhibit
wild-type growth rates, chromosome segrega-
tion, and sporulation efficiency (Mullen et al.
2001). However, the loss of either protein results
in sensitivity to MMS (Fricke and Brill 2003)
and elevated levels of spontaneous genome re-
arrangements (Zhang et al. 2006). Moreover,
both genes exhibit synthetic lethality with
sgs1/rqh1 mutants (Mullen et al. 2001; Coulon
et al. 2004) and this is not suppressed in a rad52
background (Fricke and Brill 2003). This pro-
vides an interesting contrast to the observation
that the synthetic lethality of sgs1 and mus81 or
mms4 mutants is rescued by mutations in HR
genes, including RAD52 (Fabre et al. 2002; Bas-
tin-Shanower et al. 2003). Collectively, these re-
sults suggest that yeast Mus81-Mms4 and Slx1-
Slx4 act on different DNA structures in vivo,
which is consistent with the promiscuous nu-
clease activities of Slx1-Slx4 in vitro (Fricke and
Brill 2003; Coulon et al. 2004). More specifi-
cally, in the absence of Sgs1/Rqh1, Mus81-
Mms4 is important for the resolution of toxic
recombination intermediates, whereas Slx1 and
Slx4 are required to maintain the structural in-
tegrity of replicating ribosomal DNA (rDNA)
presumably by resolving recombination inter-
mediates that are generated at stalled replication
forks (Kaliraman and Brill 2002; Coulon et al.
2004, 2006).

Genetic studies in worms and flies indicate
that SLX1 and/or SLX4 have important roles
in processing recombination intermediates that
arise at stalled or collapsed replication forks in
both mitotic and meiotic cells, particularly in
the absence of the BLM helicase (Andersen et al.
2009, 2011; Saito et al. 2012; Agostinho et al.
2013). In mouse, disruption of Giyd2/Slx1 or
Btbd12/Slx4 results in a hypersensitivity to
DNA-damaging agents that cause DNA inter-
strand cross-links (ICLs), which require recom-
bination for repair (Crossan et al. 2011; Castor
et al. 2013). However, Slx12/2 mice are born at
Mendelian frequencies, are fertile, and do not
exhibit any overt morphological, developmen-

tal, or hematological defects (Castor et al. 2013).
In contrast, Slx4þ/2 and Slx42/2 mice are born
at sub-Mendelian ratios and display growth re-
tardation and reduced fertility owing to altered
meiotic progression and genomic instability
(Crossan et al. 2011; Holloway et al. 2011; Cas-
tor et al. 2013). The phenotypic differences
between Slx1- and Slx4-compromised animals
has been attributed to (1) redundancy between
SLX1 and other structure-selective nucleases,
and (2) the observation that SLX4 interacts
with multiple DNA-repair proteins in higher
eukaryotes.

In somatic human cells, transient depletion
of SLX1 or SLX4 causes sensitivity to campto-
thecin and genotoxic agents that cause ICLs
(Andersen et al. 2009; Fekairi et al. 2009; Munoz
et al. 2009; Svendsen et al. 2009). Importantly,
biallelic mutations of the SLX4 gene have been
identified in patients with Fanconi anemia, a
rare genetic disorder characterized by hyper-
sensitivity to ICL agents, bone marrow failure,
genome instability, and cancer predisposition
(Kim et al. 2011; Stoepker et al. 2011). Also,
the defects observed when mammalian SLX1-
SLX4 function is compromised are exacerbated
in the absence of BLM or in the presence of
exogenous DNA damage (Castor et al. 2013;
Garner et al. 2013; Wyatt et al. 2013).

SLX-MUS: A Unique HJ Resolvase in Higher
Eukaryotes

It is now clear that the HJ resolvases are involved
in recombination to different extents, depend-
ing on the organism, cell type (mitotic or mei-
otic), and whether recombination is induced
by naturally occurring events or exposure to
specific genotoxic agents. In all cases, however,
the resolvases are largely dispensable in cells
containing BLM/Sgs (i.e., HJ dissolution).
This observation has led to the notion that HJ
resolution may provide a ubiquitous back-up
mechanism for HJ dissolution, and together,
these pathways ensure that HJs are efficiently
removed prior to cell division. In mitotic hu-
man cells, it is now clear that there are at least
two distinct pathways of HJ resolution: one
mediated by MUS81-EME1 and SLX1-SLX4
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(termed SLX-MUS), and the other mediated by
GEN1 (Fig. 6) (Wechsler et al. 2011; Castor et al.
2013; Garner et al. 2013; Wyatt et al. 2013).
Specifically, MUS81, SLX1, SLX4, and GEN1
are required (to different extents) for cell viabil-
ity, chromosome segregation, and for the elevat-
ed levels of SCEs that occur in BLM-deficient
cells. Moreover, MUS81 and SLX1-SLX4 (but
not GEN1) are epistatic with respect to SCE
frequency (i.e., HJ processing) and chromo-
some stability in BLM-deficient cells.

Consistent with the epistatic relationship
between MUS81-EME1 and SLX1-SLX4, phys-
ical interactions between the human proteins
have been observed at the onset of mitosis,
which correlates with MUS81-EME1 and SLX4
phosphorylation (Wyatt et al. 2013). Further-

more, coexpression of the human MUS81-
EME1 and SLX1-SLX4 proteins in insect cells
is sufficient for their direct interaction, provid-
ing evidence for a stable SLX-MUS enzyme that
is amenable to biochemical purification. More-
over, SLX-MUS can be reconstituted in vitro
using purified full-length MUS81-EME1 and
SLX1-SLX4 proteins (Wyatt et al. 2013). These
studies showed that SLX-MUS is more efficient
at cleaving synthetic HJ substrates than either
of the two component nucleases. Furthermore,
HJ resolution proceeds by a coordinated nick
and counternick mechanism, within the life-
time of the protein–DNA complex. Mixing ex-
periments performed with catalytically inactive
SLX1E82A-SLX4 and MUS81D307A-EME1 mu-
tants revealed that SLX1 catalyzes the initial,

Holliday junction
dissolution

EME1

MUS81

SLX4
SLX1
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Noncrossover products
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Figure 6. Holliday junction–processing enzymes in higher eukaryotes. In mitotic mammalian cells, the majority
of junctions are removed by the BTR complex (BLM helicase, topoisomerase IIIa, and RMI1/2; left panel). This
dissolution reaction exclusively generates noncrossover products and is critical for the avoidance of loss of
heterozygosity. However, mitotic cells also rely on structure-selective endonucleases to process HJs, particularly
when the BTR pathway is compromised (e.g., in cells carrying BLM mutations). Three structure-selective endo-
nucleases implicated in HJ processing comprise only two pathways of HJ resolution (right panel). One pathway is
mediated by the canonical HJ resolvase GEN1, whereas the second genetically distinct pathway involves the
noncanonical resolvases SLX1-SLX4 and MUS81-EME1, which interact to form the SLX-MUS complex.
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rate-limiting incision and MUS81 introduces
the second cut on the opposing strand of like
polarity. Although this reaction is reminiscent
of those catalyzed by canonical HJ resolvases,
SLX-MUS promotes asymmetric cleavage of
the junction and yields gapped and flapped
DNA products that require further cellular pro-
cessing (Fig. 6). Thus, SLX-MUS represents a
noncanonical HJ resolvase that, intriguingly,
appears to be specific for higher eukaryotes.
Collectively, these studies provide novel insights
into the nuclease activities of SLX-MUS and
help to resolve the long-standing debate sur-
rounding the HJ resolvase activity of MUS81-
EME1 (Haber and Heyer 2001).

CONCLUDING REMARKS

Homologous recombination is an essential pro-
cess that conserves genetic information in so-
matic cells, while also promoting genetic diver-
sity during meiosis. Central to the process of
recombination is the formation and resolution
of HJs, four-stranded DNA structures that phys-
ically connect two otherwise separated DNA
helices. As such, HJs are potentially detrimental
structures that need to be removed to allow for
efficient DNA repair, accurate chromosome seg-
regation, and maintenance of genome stability.

HJ resolvases are highly specialized endonu-
cleases that exhibit a remarkable specificity for
branched DNA substrates and, in particular,
four-way DNA structures (i.e., HJs). Although
junction-resolving enzymes were first identified
in bacteriophages, the bacterial protein RuvC
subsequently provided the paradigm for the
identification of cellular HJ resolvases in higher
organisms. However, this has been a slow and
difficult task, partly because these enzymes lack
primary sequence conservation. Nonetheless,
junction-resolving enzymes have now been iso-
lated from several different organisms, ranging
from prokaryotes to mammals. The unifying
property of these enzymes is their ability to con-
vert the intact HJ into two disconnected DNA
duplexes, in a metal-ion-dependent reaction
called HJ resolution.

Intriguingly, HJ resolvases come in different
flavors. Canonical HJ resolvases are defined as

those proteins that exhibit biochemical similar-
ity to RuvC. More specifically, these are homo-
dimeric enzymes that use twin active sites to
introduce two symmetrically opposed nicks
across the helical junction. This reaction yields
two nicked DNA duplexes that can be repaired
by direct nick ligation. High-resolution struc-
tural data are available for several canonical
HJ resolvases and have provided crucial in-
sight into the mechanisms of HJ recognition
and cleavage. However, eukaryotes also contain
noncanonical HJ resolvases, which are hetero-
dimeric enzymes that cleave HJs with asymmet-
ric nicks. The products of these reactions are
gapped and flapped DNA duplexes that cannot
be directly ligated. Of particular interest are re-
cent studies with the SLX-MUS enzyme, a non-
canonical HJ resolvase in which the dual active
sites for resolution are provided by two distinct
structure-selective endonucleases. Our knowl-
edge regarding the structure, biochemistry,
and enzymology of such a eukaryotic nonca-
nonical HJ resolvase remains limited, and this
represents an important area of future research.
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