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In the recent years, much attention has been devoted to the in-
homogeneous nature of the mechanical response at the nanoscale
in disordered solids. Clearly, the elastic heterogeneities that have
been characterized in this context are expected to strongly affect the
nature of the sound waves which, in contrast to the case of perfect
crystals, cannot be completely rationalized in terms of phonons.
Building on previous work on a toy model showing an amorphiza-
tion transition, we investigate the relationship between sound
waves and elastic heterogeneities in a unified framework by con-
tinuously interpolating from the perfect crystal, through increas-
ingly defective phases, to fully developed glasses. We provide
strong evidence of a direct correlation between sound wave fea-
tures and the extent of the heterogeneous mechanical response at
the nanoscale.

elasticity | amorphous materials | molecular dynamics simulation |
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In crystals, molecules thermally oscillate around the periodic
lattice sites and vibrational excitations are well understood in

terms of quantized plane waves, the phonons (1). The vibrational
density of states (vDOS) in the low-frequency regime is well
described by the Debye model, where the vibrational modes are
the acoustic phonons. In contrast, disordered solids, including
structural glasses and disordered crystals, exhibit specific vibra-
tional properties compared with the corresponding pure crys-
talline phases. It is not possible here to give a fair review of the
extensive theoretical and experimental work generated by these
issues; we therefore mention below a few facts that we consider
the most relevant in the present context. The origin of the vDOS
modes in excess over the Debye prediction around ω ∼1 THz,
the so-called Boson peak (BP), is still debated (see, among many
others, refs. 2 and 3). At the BP frequency, ΩBP, localized
modes have also been observed (4). Acoustic plane waves, which
are exact normal modes in crystals, can still propagate in dis-
ordered solids. Indeed, at low frequencies, Ω, and long wave-
lengths, Λ, acoustic sound waves do not interact with disorder
and can propagate conforming to the expected macroscopic
limit. However, as Ω is increased beyond the Ioffe–Regel (IR)
limit, ΩIR, acoustic excitations interact with the disorder and
are significantly scattered (5–7). Interestingly, this strong scat-
tering regime occurs around the BP position, ΩIR ∼ ΩBP (8, 9).
The exact origin of this phenomenon and its connection to the BP
remain elusive.
A possible rationalization of the above issues is based on the

existence of elastic heterogeneities (10), which can originate
from structural disorder, as in structural glasses (2), or disor-
dered interparticle potentials, even in lattice structures such as
disordered colloidal crystals (11). In the heterogeneous-elasticity
theory of refs. 7 and 12 this amounts to consider spatial statistical
fluctuations of the shear modulus. Within the framework of
jamming approaches and using effective medium theories, elastic
heterogeneities are related to the proximity of local elastic
instabilities (13). Recent simulation work (14–16) has clearly

demonstrated their existence in disordered solids. This is at
variance with the case of simple crystals, which are character-
ized by a fully affine response and homogeneous moduli dis-
tributions (17). More specifically, in the large length scale limit,
macroscopic moduli are observed. In contrast, as the length
scale is reduced, moduli heterogeneities are detected, at a typ-
ical length scale ξ ’ 10−15σ (15), where σ is the typical atomic
diameter. Breakdown of both continuum mechanics (18) and
Debye approximation (5, 6) has been demonstrated at the same
mesoscopic length-scale ξ, where they are still valid for crystals.
Remarkably, the wave frequency corresponding to the wave-
length Λ ∼ ξ is very close to ΩIR ∼ ΩBP (19). Altogether these
results indicate that a close connection must exist between
elastic heterogeneities and acoustic excitations. In this paper
we precisely address this point.
In ref. 20 we considered a numerical model featuring an

amorphization transition (21). We showed how to systematically
deform the local moduli distributions, evaluated by coarse-
graining the system in small domains of linear length scale w. We
characterized the degree of elastic heterogeneity in terms of SD
of those distributions and studied the effect on normal modes
(eigenvalues of the Hessian matrix) and thermal conductivity.
Building on that work, we are now in the position to investi-
gate the relation between elastic heterogeneities and acoustic
excitations, unifying in a single framework ordered and disor-
dered solid states and considering quantities directly probed by
experiments. By interpolating in a controlled way from perfect
crystals, through increasingly defective phases, to fully de-
veloped amorphous structures, we (i) calculate the dynamical
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structure factors, extracting the relevant spectroscopic param-
eters; (ii) characterize the wave vector dependence of sound
velocity and broadening of the acoustic excitations and clarify
their nature in terms of the IR limit; and (iii) provide, for
the first time to our knowledge, direct evidence of the corre-
lation of the excitations lifetimes and ΩIR with the magnitude
of the elastic heterogeneities.

Results
We study by molecular dynamics simulation in the NVT en-
semble, at constant temperature T = 0.01 and number density
ρ̂=N=V = 1:015 (V being the system volume), a 50: 50 mixture,
composed by N atoms with different diameters, σ1 and σ2, and
same mass, m = 1. We consider two different system sizes N =
108,000 and 256,000, to improve statistics and wave vector range
and confirm that results are not affected by finite-size effects.
Particles interact via a soft-sphere potential, vαβ = e(σαβ/r)

12, with
σαβ = (σα + σβ)/2 and α, β ∈ 1,2. The potential is cut off and
shifted at r = 2.5σαβ. In a one component approximation, we
define an “effective” diameter σ3eff =

P
α;β=1;2σ

3
αβ=4 (22). Starting

from a perfect face-centered cubic crystal, defects are added in
the form of size disorder, by simultaneously decreasing σ1 below
the initial value σ1 = 1 and increasing σ2, keeping a constant σeff ≡ 1
(21). The size ratio, λ = σ1/σ2 ≤ 1, quantifies the size disorder
and is our control parameter. λ = 1 corresponds to the perfect
crystal case, whereas for λ = 0.7 a completely developed amor-
phous structure is observed. An amorphization transition occurs
at λ = λ* ’ 0.81 (20, 21). Additional details can be found in ref.
20. Simulations have been realized by using the large-scale,
massively parallel molecular dynamics computer simulation code
LAMMPS (23).
We first focus on the acoustic sound velocities in the macro-

scopic limit. In crystals, sound propagation depends on the di-
rection of the wave vector, ~q (1). This is at variance with the
isotropic amorphous phases, where only the wave vector modu-
lus is relevant. In the macroscopic limit, the q-independent
sound velocity is c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Meff=ρ

p
, where ρ is the mass density and

Meff is an effective macroscopic modulus that depends on both
the direction of propagation and the longitudinal or transverse
character of the excitation. In what follows we will consider the
(110) direction, with Meff = K + Gp/3 + Gs, Gs, and Gp, for the
longitudinal (L) and the two transverse (T1 and T2) branches,
respectively. Here K, Gp, and Gs are the bulk, pure shear, and
simple shear moduli, respectively (16). Additional results for
the (100) and (111) directions are reported in Supporting In-
formation. In Fig. 1A we show the λ dependence of c for the
three branches. For λ > λ*, cT1 > cT2 , and both slowly follow the
decrease of λ. At λ*, cT2 ’ 0, which can be associated with an
elastic instability controlled by Gp (20). For λ < λ*, cT1

decreases whereas cT2 increases, and both reach the same val-
ues in the fully developed amorphous state, as expected. Note
that glass and pure crystal show very similar cT2 in the macro-
scopic limit. Finally, in the entire λ range the overall variation
of cL is very mild.
In Fig. 1B we also display the λ dependence of the SD, δM,

calculated from the probability distributions of the local moduli,
M = K, Gs, and Gp, respectively. These can be evaluated by
coarse-graining the system in little cubic domains, of linear size
w = 3.16 in this case (20). Starting from a spatially homogeneous
distribution at λ = 1, δGp undergoes very important mod-
ifications, strongly increasing by decreasing λ, reaching a maxi-
mum at λ*, and abruptly decreasing to a stable low value on
the amorphous side. δGs follows a qualitatively similar be-
havior, while quantitatively less important, and the expected
degeneracy is recovered in the amorphous phases. Finally,
longitudinal data also undergo variations similar to those of
δGs for λ ≥ 0.82, eventually staying almost unchanged across
the transition.

Moving from the macroscopic limit, we now investigate the
wave-vector dependence of the dynamic structure factors,
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where a = L, T and jL
!ð~q; tÞ and jT

!ð~q; tÞ are the longitudinal and
transverse momentum currents, respectively (6, 9). It is by now con-
sensual that transverse modes play the most important role in de-
termining anomalies in vibrational properties (9).More specifically,
the transverse branchwith the lowest elasticmodulus has been dem-
onstrated to be the one that correlates most to the low-frequency
vibrational states (20). In what follows we therefore focus on the T2
excitations. Additional data for the T1 and Lmodes are included in
Supporting Information. In Fig. 2 we plot STð~q;ωÞ at the indicated
values of λ and q. For λ = 0.84 and 0.81, where the two transverse
sound velocities are well separated (Fig. 1A), STð~q;ωÞ features two
Brillouin peaks corresponding to T1 (high-ω) and T2 (low-ω) exci-
tations, respectively. In contrast, a single Brillouin peak is visible, as
expected, in the amorphous phase at λ = 0.7, where cT1 ’ cT2 .
Propagation frequency, Ωað~qÞ, and line broadening, Γað~qÞ, of

the sound excitations can be extracted from these data by fitting
the spectral region around the Brillouin peaks to a damped
harmonic oscillator model (6, 9),
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In Fig. 3 we show the sound velocity, cT2 =ΩT2ð~qÞ=q, and broad-
ening, ΓT2 , of the T2 excitations at the indicated values of the

 0

 2

 4

 6

 8

cL
cT1
cT2

 0

 1

 2

 3

 4

 5

 0.7  0.75  0.8  0.85  0.9  0.95  1

δK
δGs
δGp

A

B

Fig. 1. Macroscopic limit of sound velocities and width of the distributions
of local elastic moduli. (A) λ dependence of the longitudinal (L) and trans-
verse (T1 and T2) macroscopic sound velocities in the (110) direction. These
data have been calculated from the effective elastic moduli K + Gp/3 + Gs, Gs,
and Gp, respectively. Here K, Gp, and Gs are the bulk, pure shear, and simple
shear moduli, respectively. The vertical dashed line indicates the transition
point λ = λ* ’ 0.81. (B) λ dependence of the elastic heterogeneities, δM,
associated to K, Gs, and Gp. These data are the SDs of the distribution of the
local elastic moduli for a coarse-graining length scale w = 3.16 (20).
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disorder parameter λ. For the sake of clarity, we consider first
the isotropic amorphous case, λ = 0.7. As expected, for vanishing
Ω, cT2 corresponds to the macroscopic value of Fig. 1A (horizon-
tal dashed line), calculated directly from the value of Gp at the
same λ value. Next, cT2ðΩÞ decreases (softening), reaches a min-
imum, and eventually undergoes positive dispersion at higher
frequencies. In the same region where cT2 shows a minimum,
a cross-over from ∼Ω2 at high frequency [which can be described
by a two-mode Maxwell constitutive model (24)] to a Rayleigh-
like ∼Ωα with α close to 4 at intermediate frequency is evident
for ΓT2 around Ω ’ 1, which corresponds to ΩBP in this case
(20). Both these features are consistent with previous findings
for the Lennard-Jones glass (6, 7).
As λ increases, the sound velocity at a given frequency first

decreases, goes through a minimum at λ* ’ 0.81, and eventually
increases steadily. We note that the maximum ratio ’3.5 be-
tween the maximum and minimum value (as a function of fre-
quency) is reached at λ*, whereas cT2 is essentially frequency
independent at λ ≥ 0.9, where the Debye picture still holds.
Therefore, cT2 mirrors at all frequencies the nonmonotonic be-
havior of the macroscopic limit of Fig. 1A. Sound broadening
follows a quite different pattern. As λ increases from 0.7, ΓT2 is
enhanced and reaches a maximum at λ*. Next, it is strongly

suppressed for λ > λ*, converging to a very low value at λ = 1, of
anharmonic origin (damping). We remark that in this case the
ratio between the maximum and minimum values reached covers
almost two decades at Ω ’ 1. We will see below that this finding
can be rationalized in terms of a strong correlation with the
magnitude of the elastic heterogeneity associated with the ap-
propriate modulus (Fig. 1B).
Next, we focus on the IR limit, ΩIR

T2
, for all investigated λ’s.

In Fig. 4A we propose a different representation of the data
points of Fig. 3, as the ratio πΓT2ðΩÞ=Ω. At the IR limit,
πΓT2ðΩIR

T2
Þ=ΩIR

T2
= 1 (i.e., the decay time of the excitations equals

half of the corresponding vibrational period). ΩIR
T2

provides an
upper bound for the validity of acoustic-like descriptions of the
vibrational excitations. The λ dependence of ΩIR

T2
presents again

an interesting nonmonotonous pattern, which we make quanti-
tative in Fig. 4B. Here we plot the ΩIR

T2
extracted from the above

data, together with our results of ΩIR
T1

and ΩIR
L for the other

two branches T1 and L. Starting from the pure crystal, where
ΩIR

a is expected to be comparable to the highest frequency
comprised in the vDOS, the IR limit decreases steadily with λ
in all cases, reaches a minimum at λ* for T2 and L (in the T1
case ΩIR

T1
continuously decreases through the transition), and

levels off to a constant value on the amorphous side. For the
two transverse branches, this value corresponds to the ΩBP

position, whereas for the longitudinal mode ΩIR
L � ΩBP, as

already shown in refs. 6 and 9. Note that a recent study (25)
reported that the nature of the BP depends on the Poisson
ratio, ν: For fragile glasses with relatively high ν > 0.25,
ΩBP ∼ΩIR

T (transverse IR limit) (6, 9), whereas for strong
glasses with lower ν < 0.2, ΩBP ∼ΩIR

L (longitudinal IR limit)
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Fig. 2. Transverse dynamic structure factors, ST ð~q,ωÞ, at the indicated values
of the wave vector ~q in the (110) direction, calculated from Eq. 1. Three
values of λ are shown, in a defective crystal state (A), at the amorphisation
transition (B), and in the fully developed glassy phase (C). Two Brillouin
peaks, corresponding to the T1 and T2 branches, are visible for λ = 0.84 and
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Fig. 3. Spectroscopic parameters calculated from the dynamic structure
factors ST ð~q,ωÞ. (A) Transverse phase velocity, cT2 ðΩÞ=ΩT2 ðqÞ=q, and (B)
broadening, ΓT2 ðΩÞ, for the T2 excitations at the indicated values of λ. These
data have been obtained by fitting the calculated ST ð~q,ωÞ to the damped
harmonic oscillator line shape of Eq. 2. The horizontal dashed line in A
corresponds to the macroscopic limit of the sound velocity at λ = 0.7. The
dashed lines ∝ Ω2 and ∝ Ω4 in B are also guides for the eye, to emphasize the
extremely complex frequency dependence of ΓT2 at different values of λ. A
comprehensive discussion of these data is included in the text.
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(8). We have checked that our soft-sphere model is a fragile
system, with ν ’ 0.43 for λ ≤ 0.78, which is consistent with
these findings. Unfortunately, for λ > λ* we were not able to
determine reliably the value of ΩBP. However, in ref. 20 (Figs.
3B and 4) we showed that ΩBP shifts to lower frequencies as
λ tends to λ* from above and increases back to higher fre-
quencies below the transition. This behavior clearly mirrors
the pattern followed by ΩIR

T2
in Fig. 4B, implying the lowest-

frequency T2 excitations are most related to the BP. Therefore, we
can conjecture that ΩBP ∼ΩIR

T2
above the transition also.

Discussion
The data shown in Fig. 3B acquire even more interest in light of
the above discussion of the IR limit. Indeed, the shape of the
ΓT2ðΩÞ functions significantly changes with λ and follows quite
complex patterns. These show, at frequencies close to ΩIR

T2
, clear

cross-overs between regimes with different effective exponents,
α, at high and intermediate frequencies (6). The expected low-
frequency cross-over to the ’Ω2 behavior owing to anharmon-
icity can be recognized for λ ≥ 0.94 (also see the blue dashed line
in Fig. 5A), whereas it cannot be observed for lower values of λ at

the considered temperature. In Fig. 5A the red and green solid
lines are the best power-law fits to the data, in the high ðΩ>ΩIR

T2
Þ

and intermediate ðΩ<ΩIR
T2
Þ frequency ranges, respectively. The

positions of ΩIR
T2

are indicated by the vertical dashed lines, for the
cases λ < 0.94. For λ = 0.94, ΩIR

T2
is already close to the highest

frequency comprised in the vDOS. The obtained values of the
exponents α in the two regimes are shown in Fig. 5B. For
Ω<ΩIR

T2
, and for the deeply amorphous state λ = 0.7, α ’ 3.7,

compatible with the expected Rayleigh scattering exponent α =
4. By increasing λ, α first decreases steadily by reaching the value
2 at λ* and next increases up to a value ’3.5 at λ = 0.94. For
Ω>ΩIR

T2
, we recover the expected value α = 2 in the amorphous

phase (24), which decreases quite abruptly, reaching a value ’1.5 at
λ*. Subsequently, α increases to a value close to 2.5 at λ = 0.86.
These data, in particular those corresponding to the high- 0
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frequency branch, provide information similar to that of ref. 26.
There, it was shown by a quite involved analysis that frustration
seems to control the value of α. More precisely, α ’ 4 when
frustration is absent and decreases even below the value 2 by
increasing frustration. This is consistent with our findings,
which, however, provide a broader picture, including predic-
tions on the low-frequency values. Note that, at variance with
ref. 26, here we can refer to topologically ordered and disor-
dered systems described by the same family of Hamiltonians.
The above complex behavior of the sound velocities certainly

has a nontrivial impact on the frequency-dependent macroscopic
elastic response. Indeed, we plot in Fig. 6 the frequency
dependence of the bulk (Fig. 6A), simple shear (Fig. 6B),
and pure shear (Fig. 6C) moduli, at the indicated values of λ.
These have been obtained by our data for the sound velocities
as cLðΩÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðKðΩÞ+GpðΩÞ=3+GsðΩÞÞ=ρ
p

, cT1ðΩÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GsðΩÞ=ρ

p
,

and cT2ðΩÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GpðΩÞ=ρ

p
, respectively. We focus on the extreme

cases of the pure crystal and the completely developed glass. In
the first case, the shear moduli are frequency independent, as
expected, up to frequencies where they start to slightly decrease,
following the bending of the respective sound velocities when
approaching the first Brillouin zone. The data for the bulk
modulus K follow a similar scenario with a more pronounced
decrease for Ω ≥ 4. More intriguing is the result for the glass

case, λ = 0.7. Here the shear moduli mirror the behavior of the
respective sound velocities, with softening followed by an in-
crease at higher frequencies. In contrast, the bulk modulus K
seems to undergo a cross-over at Ω ’ ΩBP ’ 1 from the constant
macroscopic value to a clear frequency-dependent (decreasing)
behavior. This result is at variance with what was reported in refs.
6 and 7, where a frequency-independent bulk modulus was
proposed. This also originated a simple scaling relation between
the longitudinal and transverse sound velocities, which is not
fulfilled here. This discrepancy could probably be reconciled by
referring to a nontrivial role played by the details of the in-
teraction potential, or of the implemented polydispersity. Cer-
tainly it imposes an important caveat on the universality of
approaches based on the hypothesis of a spatially homogeneous
bulk modulus (7, 12).
An additional challenge for future theoretical work comes

from another very interesting feature emerging from our results.
The total variation of the IR limit ΩIR

T2
for the T2 branch on

approaching λ* from above is very large (an order of magni-
tude), and ΩIR

T2
apparently is (anti-) correlated with the elastic

heterogeneities of Fig. 1B. Above λ*, we noticed that the sound
broadening also has a quite large overall variation and seems to
follow the evolution of the elastic heterogeneities. We make
quantitative these correlations in Fig. 7, which is the most rel-
evant result of this work. In Fig. 7A we plot ΓT2 on both sides of
the transition, at the low frequencies Ω ’ 0.5 and 1, and as
a function of the extent of the elastic heterogeneities at the corre-
sponding λ (Fig. 1B). Whereas in the nondegenerate cases λ > λ*
(open symbols) the appropriate data to consider are δG ’ δGp, in
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the amorphous cases (filled symbols), where the transverse moduli
are degenerate, we assume additivity of the disorder sources and use
δG ’ δGp + δGs. Remarkably, the data follow an exponential be-
havior ΓT2 ∝ expðδG=gΓÞ for both frequencies. Similarly, we find
ΩIR

T2
∝ expð−δG=gΩIRÞ (Fig. 7B) for both lattice and amorphous

cases. Note that no adjustable parameters are involved in these
plots. We can conservatively assert that these data are the first
strong evidence to our knowledge of a direct correlation of quan-
tities related to the intrinsic nature of acoustic-like excitations in
ordered/defective/amorphous phases with local mechanical proper-
ties at the nanoscale (i.e., heterogeneity of the elastic moduli). We
are convinced that important theoretical work will be needed in the
future to precisely understand the origin and the possible universal
character of the above particular functional form.

Conclusions
In summary, in this work we have investigated sound wave
propagation in a numerical model featuring an amorphization
transition. By controlling the extent of a well-designed form of
size disorder we have been able to consider a panoply of dif-
ferent solid states of matter, ranging from the perfect crystal and
increasingly defective lattice structures to completely amorphous
phases. This approach can be seen as a numerical analog of
experiments that compare scattering experiments on glasses and
the corresponding (poly-) crystalline polymorphs (27, 28). By
calculating the appropriate dynamical structure factors, we have
fully characterized transverse and longitudinal vibrational excita-
tions in terms of sound velocities and broadening, also providing

a very detailed analysis of the complex frequency dependence of
the latter. The frequency behavior of the macroscopic moduli has
also been scrutinized, demonstrating an interesting (and unex-
pected) frequency-dependent bulk modulus for frequencies larger
than ΩBP. This is at variance with previous results, owing to dif-
ferences of the considered interaction potentials or to hasty con-
clusions, based on datasets less extended than those considered in
the present work. Most important, both the lifetime and the IR
limit of the sound-like excitations have been shown to directly
correlate with the width of the distributions of local elastic moduli,
both in the cases of lattice systems with defects and isotropic
amorphous structures. The fact that elastic heterogeneities cor-
relate with sound transport properties is very often referred to as
evidence in the literature, but it has never actually been demon-
strated. Our results therefore provide the first direct evidence to
our knowledge that elastic heterogeneities crucially influence the
most puzzling features in acoustic-like excitations in disordered
systems, including strong scattering and BP. They also constitute
a true challenge for important theoretical work in the near future.
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